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ABSTRACT

Chimera states are spatiotemporal patterns in which coherent and incoherent dynamics coexist simultaneously. These patterns were observed
in both locally and nonlocally coupled oscillators. We study the existence of chimera states in networks of coupled Rössler oscillators. The
Rössler oscillator can exhibit periodic or chaotic behavior depending on the control parameters. In this work, we show that the existence of
coherent, incoherent, and chimera states depends not only on the coupling strength, but also on the initial state of the network. The initial
states can belong to complex basins of attraction that are not homogeneously distributed. Due to this fact, we characterize the basins by means
of the uncertainty exponent and basin stability. In our simulations, we find basin boundaries with smooth, fractal, and riddled structures.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0014013

Chimera states are spatiotemporal patterns in which the dynam-
ics are simultaneously composed of coherent and incoherent
domains. They have been observed in mathematical models of
networks, e.g., coupled Kuramoto phase oscillators and networks
composed of Landau–Stuart oscillators. Experimental evidences
of chimera states were reported in mechanical oscillator net-
works, coupled optoelectronic oscillators, and chemical setups.
We study chimera states in a network of coupled Rössler oscil-
lators. The Rössler model is a set of ordinary differential equa-
tions that can exhibit chaotic dynamics. Circuits based on the
Rössler system have been used in secure communication. In this
work, we find basins of attraction for chimera states; i.e., we
compute the sets of initial conditions that go to chimera states.
We calculate the relative sizes of these basins of attraction for
chimera using the basin stability. Furthermore, we characterize

the basin boundaries between the coexisting spatial states in the
phase space. By calculating the uncertainty exponent, we show the
existence of smooth, fractal, and riddled basin boundaries.

I. INTRODUCTION

Mathematical models of oscillators have been employed to
describe the dynamical behavior of various types of complex sys-
tems, such as electronic circuits,1 circadian clocks,2 and oscillatory
chemical systems.3 Zou et al.4 reported complex chaotic chemi-
cal reactions in electrochemical oscillators. In experimental stud-
ies, chaotic oscillators were implemented in secure communication
systems.5
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In the 1970s, Rössler6 introduced a three-dimensional dynam-
ical system composed of one nonlinear and two linear equations.
The Rössler system is a classical chaotic oscillator in the field of
nonlinear dynamics and has been used to investigate, among other
things, phase synchronization,7 chaotic synchronization,8 commu-
nication scheme based on coupled chaotic circuits,9 chaotic signals
in electronic circuits,10 and spatial coherence in networks.11

Networks of coupled oscillators have been considered to study
synchronization in power grids,12,13 neuronal oscillations,14 and con-
trol of networks.15 Synchronization transitions in coupled Rössler
oscillators were studied by Rosenblum et al.16 They reported tran-
sition from a nonsynchronous state to phase synchronization and
transition to lag synchronization.

In 1989, Umberger et al.17 found coexistence of periodic and
chaotic regimes in a dispersively coupled chain of oscillators. The
investigation of this type of spatiotemporal dynamics was not fur-
ther noticed until 2002 when Kuramoto and Battogtokh18 reported

FIG. 1. Trajectories of the i = 100 Rössler system for a = 0.42, b = 2,
c = 3.9, N = 200, and σ = 0.05. (a) and (b) display periodic and chaotic
behavior, respectively.

patterns with coexisting coherence and incoherence domains in
nonlocally coupled Ginzburg–Landau oscillators. In 2004, these pat-
terns were named chimera states by Abrams and Strogatz.19 Since
then, many researchers have experimentally observed the existence
of chimera states in coupled mechanical systems,20 opto-electronic
oscillators,21 and chemical oscillators.22 Santos et al. found chimeras
in neuronal models based on the cat cerebral cortex23 and in coupled
adaptive exponential integrate-and-fire neurons.24 They identified
two different chimera patterns according to the desynchronized
spikes and bursts.

The coexistence of coherence and incoherence domains in
spatiotemporal patterns was also observed in networks of cou-
pled Rössler oscillators.25 In 2011, Omelchenko et al.26 reported
that chaotic chimera states arise in nonlocally coupled Rössler sys-
tems. They identified a mechanism for the coherence–incoherence
transition27 that occurs in networks with nonlocal connections. In
2014, Chandrasekar et al.28 demonstrated a mechanism for intensity-
induced chimera states in globally coupled Rössler oscillators, in
which the coexistence depends on the initial state. Recently, chimera
states were found in a network of chaotically oscillating Rössler sys-
tems with small-world topology and randomly switching nonlocal
connections.29 An experimental verification of chimeras states was
showed by Meena et al.30 in a circuit implementation of a chaotic
Rössler-type oscillator. Considering star networks, they also com-
puted the basin of attraction and found that it has greater prevalence
of chimeras. Ghosh and Jalan31 demonstrated a method to engineer
a chimera state by means of a distribution of heterogeneous time
delays on the edges. They suggested the spatial inverse participation
ratio as a measure to identify chimera states.

The initial conditions play a crucial role in the emergence
of chimera states.32 With this in mind, many researchers analyzed

FIG. 2. Snapshot of (a) synchronized and (b) desynchronized states for
σ = 0.05 and r = 0.28. We consider a = 0.42, b = 2, c = 3.9, N = 200: (a)
oscillators are initialized with the same initial conditions and (b) different initial
conditions. The red circle corresponds to the oscillator shown in Fig. 1.
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FIG. 3. (a) Space–time plot of a chimera state for N = 200, a = 0.42, b = 2,
c = 3.9, σ = 0.05, and r = 0.28, where the color bar corresponds to the value
of xi . (b) Snapshot of the chimera state. (c) Space–time plot of vi .

the basin of attraction for chimera states, namely, the set of initial
condition that goes to chimera states. Martens et al.33 considered
two populations of Kuramoto–Sakaguchi oscillators and investi-
gated the basins of attraction for states in which one population
was synchronized, while the other was desynchronized. A network
of nonlocally coupled Mackey–Glass systems was used to explore
the basin stability related to the coexistence of domains.34 In 2018,
Santos et al.35 determined the basins of attraction of spatial states
observed in a network of coupled Hénon maps. The basins were
separated into sets of initial conditions that led to coherent, inco-
herent, and chimera states. Through the uncertainty exponent, they
found fractal and riddled basin boundaries. In dissipative systems
with more than one attractor, the basin is said be riddled when it
is punctured with holes that belong to the basins of other attrac-
tors. Some mathematical conditions are required to identify riddled
basin.36 On the other hand, it has been often the case that, when
the uncertainty exponent is about zero, the basins are also called
riddled.

In this work, we study the basin of attraction for chimera states
in a network of coupled Rössler oscillators. In our simulations, we
find coherent and incoherent domains composed of synchronized
and desynchronized systems, respectively. We show that the bound-
ary between the basin of spatially coherent and chimera states can
be smooth or fractal. We also observe basins with riddled struc-
tures, where there are points that belong to chimera and incoherent
states. The basins of attraction for chimera states in a network of
coupled Rössler oscillators have characteristics similar to the ones
observed in a network of coupled Hénon maps.35 Meena et al.30 con-
sidered star networks and computed the basin of attraction. They
found a greater prevalence of chimeras states in the basin of attrac-
tion. Depending on the parameters of our network, we also identify
large regions in the basin of attraction in which the initial conditions
go to chimera states.

This paper is organized as follows. In Sec. II, we introduce
the network of coupled Rössler oscillators. Section III shows the

FIG. 4. Basin of attraction of Eq. (1) for five slices [z1(0) = −60,−30, 0, 30, 60], where all oscillators have initial conditions equal to 0 except for the oscillator i = 1. The
coherent, chimera, and incoherent states are denoted by gray, red, and black colors. We consider (a) σ = 0.05 and (b) σ = 0.07.
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FIG. 5. Fraction of initial conditions that converges to each state as a function of
(a) x1(0), (b) y1(0), and (c) z1(0) for σ = 0.05. Coherent states in gray color,
chimera states in red color, and incoherent states in black color.

existence of chimera states in the coupled Rössler systems and how
the spatiotemporal patterns are identified. In Sec. IV, we calculate
the basins of attraction and characterize the boundaries between the
spatiotemporal patterns. We draw our conclusions in Sec. V.

II. NETWORK OF RÖSSLER OSCILLATORS

Aiming to investigate coherence and incoherence domains, as
well as chimera states, we consider a network composed of N Rössler
oscillators coupled according to a ring topology, which is given by

ẋi = −yi − zi +
σ

2rN

i+rN
∑

j=i−rN

(xj − xi),

ẏi = xi + ayi +
σ

2rN

i+rN
∑

j=i−rN

(yj − yi),

żi = b + zi(xi − c) +
σ

2rN

i+rN
∑

j=i−rN

(zj − zi),

(1)

where i = 1, . . . , N is the index of each oscillator. a, b, and c are
the parameters of the Rössler oscillator, and r and σ are the cou-
pling radius and the coupling strength, respectively. In this work, we
consider N = 200 and c = 3.9. Omelchenko et al.27 verified the exis-
tence of chimera states in a network of coupled Rössler oscillators
for c = 4 and different values of r and σ .

In Fig. 1, we plot the numerical trajectory of the oscillator
i = 100 [Eq. (1)] for r = 0.28 and σ = 0.05. Figures 1(a) and 1(b)
display periodic and chaotic attractors, respectively. The periodic
attractor emerges from a synchronized behavior of the network
when we consider the same initial conditions for all oscillators, as
shown in Fig. 2(a). For different initial conditions, all oscillators
exhibit chaotic behavior [Fig. 2(b)]. The red circle corresponds to
the trajectories of the oscillator i = 100, as shown in Fig. 1.

III. CHIMERA STATES

In order to identify the chimera states, we use the strength of
incoherence that was proposed by Gopal et al.37 To calculate the
strength of incoherence, we separate the network into M boxes with
n = N/M oscillators and compute

sm = 2[δ − χ(m)], (2)

FIG. 6. Magnifications of the basin boundaries for (a) z1(0) = −30, (b) z1(0) = 0, and (c) z1(0) = 30, where we consider σ = 0.05, r = 0.28, a = 0.42, b = 2, c = 3.9,
and N = 200.
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FIG. 7. Fraction of trajectories f(ε) generated by the uncertain points for the basin boundary between (a) coherent and chimera states and (b) incoherent and chimera states.
We calculate f(ε) for z1(0) = −30 (red points), z1(0) = 0 (blue points), and z1(0) = 30 (black points), where we consider σ = 0.05. The γ values are the exponents
obtained by the fitting of each colored line.

for m = 1, . . . , M, where 2 is the Heaviside step function and δ is a
predetermined threshold. χ(m) is the local standard deviation given
by

χ(m) =

〈

√

√

√

√

1

n

nm
∑

j=n(m−1)+1

[

vj − v̄
]2

〉

, (3)

where vi = xi − xi+1. If a box k has a χ(k) value lower than δ, Eq. (2)
results in sk = 1, which means that the oscillators in the box are
coherent. The value of strength of incoherence is given by

SI = 1 −
1

M

M
∑

m=1

sm (4)

and is equal to 0 or 1 when the network exhibits coherent or incoher-
ent states, respectively. When 0 < SI < 1, the state is characterized
as chimera.37

Figure 3 shows a chimera state for 200 coupled Rössler oscilla-
tors; a = 0.42, b = 2, c = 3.9, σ = 0.05, and r = 0.28. In Fig. 3(a),
the color scale corresponds to the x values of each oscillator i as a
function of t. Figure 3(b) displays the snapshot of xi in a chimera
state. We see a group of oscillators around i = 100 with incoher-
ent dynamics. Through the space–time plot of vi, it is possible to
see the domains with coherent and incoherent patterns, as shown in
Fig. 3(c). In addition, the strength of the incoherence value is equal
to 0.25.

IV. BASIN OF ATTRACTION FOR CHIMERA STATES

In our simulations, we observe different dynamical patterns for
the same parameter values in the network given by Eq. (1) for differ-
ent configurations of initial conditions. Due to this fact, we compute
the basins of attraction to characterize the patterns. To do that, we
set to zero the initial conditions of all the oscillators except for one.
After changing the initial condition of one oscillator, we track the
trajectories to know if the network goes out of the synchronized

FIG. 8. Basin stability (BS) of each state as a function of (a) x1(0), (b) y1(0), and
(c) z1(0), where the gray and red colors denote the coherent and chimera states,
respectively, for σ = 0.07.
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state. The choice of changing one initial condition is a strategy to
study chimera states based on a single control parameter; otherwise,
the chimera could be conditional to several other initial conditions,
making it even more frequent, but much more difficult to study. The
initial conditions and control parameters play a crucial role in the
existence of chimera states.

Figure 4 exhibits five slices [z1(0) = −60, −30, 0, 30, 60] of ini-
tial conditions of the oscillator i = 1 that do not lead to divergent
trajectories of the network. The gray dots correspond to initial con-
ditions, leading the network to coherent states, the red to chimera,
and black to incoherent states. In Fig. 4(a), considering σ = 0.05,
we see that the slices show coherent, chimera, incoherent states. For
σ = 0.07, we do not find black dots, as shown in Fig. 4(b); namely,
there are no incoherent states. Therefore, the spatiotemporal pattern
can depend on the initial conditions.

Changes in the basin size can be estimated by means of the
basin stability (BS).38 Figures 5(a), 5(b), and 5(c) display the basin
stability for x1(0), y1(0), and z1(0), respectively, which is also called
single node basin stability.39,40 To calculate the basin stability, we
consider 4096 random initial conditions and verify if the system
converges to incoherent (black), chimera (red), or coherent (gray)
states. Comparing the results of basin stability for x1(0), y1(0),
and z1(0), we see that the BS has a larger variation for y1(0) than

x1(0) and z1(0). The fraction of initial conditions that converges to
chimera is small and large for negative and positive y1(0) values,
respectively.

Another important feature in this system is the boundary struc-
ture of the attraction basin. In Fig. 6, we plot the magnifications of
regions of the basin for z1(0) equal to (a) −30, (b) 0, and (c) 30.
We verify that there is a border between the basins of the coherent
and chimera states, while inside the chimera basin, there are points
belonging to the basin of incoherent states.

We compute the uncertainty exponent41,42 to investigate the
existence of fractal basin boundaries. The uncertainty exponent
was proposed by Grebogi et al.43 to characterize basin boundaries.
They analyzed the dependence of the predictability on the fractal
and smooth structure of the basin boundaries. To calculate the
uncertainty exponent, first, we consider a number of random initial
conditions in a region of the basin and compute the final state. An
initial condition is ε—uncertain when at least one of its neighbors
within a circle of radius ε goes to a different final state. It is expected
that the fraction of trajectories f(ε) generated by the uncertain points
scales as

f(ε) ∼ εγ , (5)

FIG. 9. (a) Basin of attraction for σ = 0.07, r = 0.28, a = 0.42, b = 2, c = 3.9, N = 200, and z1(0) = 0. (b), (c), and (d) are magnifications.
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where γ is the uncertainty exponent. The γ value is related to the
box-counting dimension d of the basin boundary by

γ = D − d, (6)

where D is the phase space dimension.
The fractal boundaries are more sensitive to initial uncertainty

and exhibit γ less than 1.35 In our network of coupled Rössler oscil-
lators, the γ value allows characterizing the boundaries between
the basins related to the coherent, chimera, and incoherent states.
Figure 7 exhibits f(ε) as a function of ε for the three magnifications
plotted in Fig. 6. To calculate f(ε), we sort N0 = 8192 random initial
conditions in the range according to Fig. 6, record the final state of
each initial condition, and compare it with the final state of two dis-
tinct initial conditions inside the ε-neighborhood. We compute the
uncertainty fraction by means of f(ε) = Nε/N0, where Nε is the total
number of uncertain initial conditions for a given ε.

In Fig. 7(a), we compute f(ε) as a function of ε for the
basin boundary between the coherent and chimera states. For z1(0)
= −30 (red points), z1(0) = 0 (blue points), and z1(0) = 30 (black
points), we find uncertainty exponent values very close to 1. Accord-
ing to Ref. 41, D = 2 − γ , the dimension is approximately equal to 1,
indicating that the boundary is smooth. Figure 7(b) displays f(ε) vs
ε for the boundary basin between the incoherent and chimera states.
The values of γ are very small, and the dimensions are approx-
imately equal to 2. Therefore, the uncertainty of the final state
remains unchangeable even when the precision of the initial con-
ditions is increased. In this situation, the basin of chimera states is
riddled with points of the basin of the incoherent states; namely, the
basin boundary is riddled.

For σ = 0.07, the trajectories do not go to incoherent states
[Fig. 4(b)]. As a consequence, basin stability exhibits the absence of
incoherent states (black color) in x1(0), y1(0), and z1(0), as shown
in Figs. 8(a), 8(b), and 8(c), respectively. Then, the basin boundary
exists only between the coherent and chimera states.

FIG. 10. Fraction of trajectories f(ε) generated by the uncertain points for the
basin boundary between the coherent and chimera states for σ = 0.07. We cal-
culate f(ε) for z1(0) = −30 (red points), z1(0) = 0 (blue points), and z1(0)
= 30 (black points). We find γ ≈ 0.02 for the three cases.

Figure 9 displays magnifications of Fig. 4(b) for z1(0). We see
complex structures that are caused by the crossing of the stable
manifold that bounds the basin of attraction with an unstable man-
ifold. To characterize the basin boundary, we compute the value of
γ . In Fig. 10, we plot f(ε) as a function of ε for z1(0) = −30 (red
points), z1 = 0 (blue points), and z1 = 30 (black points), where the
lines correspond to the respective fittings. We find γ ≈ 0.02 for the
three cases. This γ value implies a basin boundary with a fractal
dimension D ≈ 1.98.

V. CONCLUSIONS

In the 1970s, Rössler introduced a set of differential equations
that exhibits periodic and chaotic attractors. Networks composed of
Rössler systems have been used to analyze synchronization in cou-
pled chaotic oscillators. In this work, we study basins of attraction
for chimera states in a network of Rössler oscillators. Depending on
the system parameters and initial conditions, we show that the spa-
tiotemporal dynamics of nonlocally coupled Rössler oscillators can
converge to coherent, incoherent, or chimera states.

We investigate the basin of attraction considering the same
initial conditions for all oscillators except for one. In the chosen
oscillator, we separate the initial conditions space into slices and
compute the strength of incoherence. By means of the strength of
incoherence, it is possible to identify coherence, incoherence, and
chimera. To characterize the boundary structure of the basin of
attraction, we use the uncertainty exponent γ .

For the coupling parameter equal to 0.05 and varying the initial
conditions, we observe the existence of coherent, incoherent, and
chimera states. We calculate the relative size of each basin through
the single node basin stability. The basin stability remains approx-
imately constant for x1(0) and z1(0), and it changes for y1(0). The
fraction of initial conditions that converges to chimera is smaller
for negative values of y1(0). With regard to the basin boundary, the
uncertainty exponent shows that the boundary between the coher-
ent and chimera states is smooth, while the boundary between the
incoherent and chimera states is riddled. Considering the coupling
parameter equal to 0.07 and varying the initial conditions, we verify
the existence of coherent and chimera states and the absence of inco-
herent states. In our simulations using the uncertainty exponent, we
find a fractal structure of the basin boundary between the coherent
and chimera states.

All in all, depending on the coupling parameter of a network
composed of nonlocaly coupled Rösslers, we observe in our simula-
tions the existence of the basin boundary with different structures.
For three basins of attraction, the smooth boundary appears between
coherent and chimera states, while the riddled boundary occurs
between incoherent and chimera states. When there are two basins
of attraction with the absence of incoherence, the basin boundary
has a fractal structure.
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