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Abstract
Neuronal spike variability is a statistical property associated with the noise environment. Considering a linearised

Hodgkin–Huxley model, we investigate how large spike variability can be induced in a typical stellate cell when submitted

to constant and noise current amplitudes. For low noise current, we observe only periodic firing (active) or silence

activities. For intermediate noise values, in addition to only active or inactive periods, we also identify a single transition

from an initial spike-train (active) to silence dynamics over time, where the spike variability is low. However, for high

noise current, we find intermittent active and silence periods with different values. The spike intervals during active and

silent states follow the exponential distribution, which is similar to the Poisson process. For non-maximal noise current, we

observe the highest values of inter-spike variability. Our results suggest sub-threshold oscillations as a possible mechanism

for the appearance of high spike variability in a single neuron due to noise currents.

Keywords White noise � Linearised Hodgkin–Huxley � Spike variability � Spike-trains

Introduction

It is known that neurons are submitted to environment

noise from different sources. The origins of such noises

range from thermodynamic to quantum effects (Faisal et al.

2008). It is also understood that noise is an integral part of

the brain’s functioning and there are evidences suggesting

that noise may be beneficial for the neuronal capabilities

(Yarom and Hounsgaard 2011). However, high variability

of neuronal spikes can be related to elevated levels of noise

amplitudes (Protachevicz et al. 2020). An optimal noise is

able to generate stochastic resonances in neuronal networks

(Vázquez-Rodrı́guez et al. 2017). Cleanthous (Cleanthous

and Christodoulou 2012) suggested that high firing irreg-

ularity can optimise the learning process. Li et al. (2018)

observed that brain code can arise via silence and active

variability.

The cornerstone of mathematical description of a single

neuron is the well-known, empirically based, Hodgkin–

Huxley (HH) model (Hodgkin and Huxley 1952). The HH

model is as effective as computationally complex, being a

nonlinear, multiparametered set of coupled differential

equations. Some simplified versions of the HH model have

been proposed, with the aim of being applied not generally,

but rather in specific contexts. Among those, a linearised

version of the HH neuron subject to a nonlinear, irre-

versible reset (associated with the ‘‘spike’’), oftentimes

called ‘‘the resonate-and-fire model’’, is of particular

interest in the description of the dynamics of a single

neuron. That linearised neuron model was considered by

Erchova et al. (2004) in order to analyse the dynamics of

rat entorhinal cortex cells.

The main advantage of using the resonate-and-fire

model is the comparatively small set of parameters to be

determined for the purpose of fitting experimental data

(Engel et al. 2008). For instance, a pronounced character-

istic of the stellate cells of rat entorhinal cortex (EC) is the

existence of subthreshold membrane oscillations and res-

onances (Erchova et al. 2004). Cell activities in the
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entorhinal cortex have been associated to working (Fransén

2005), episodic memory (Umbach et al. 2020), and spatial

cognition (Van Cauter et al. 2013). Abnormal alterations in

EC have been reported in diseases like epilepsy, Alzhei-

mer, and Schizophrenia (Coutureau and Di Scala 2009).

Stochastic resonance is a phenomenon in which a sta-

tistical property can be optimised due to a noise (Gam-

maitoni et al. 1998). The resonance phenomenon is

recurrently obtained due to periodic input signals, however,

the regularity on the input is not a necessary condition

(Gerstner and Kistler 2002). Guo and Li (2012) demon-

strated that the input frequency plays an important role in

the stochastic resonance of the HH model when submitted

to excitatory and inhibitory currents. Recently, Lu et al.

(2020) reported the appearance of inverse stochastic reso-

nance in a single HH model when submitted to Gaussian

and non-Gaussian coloured noises. The results of Mino and

Durand (2008) suggest that stochastic resonance can induce

an oscillatory phenomenon in a recurrent neuronal network

where each node is represented by the HH neuron. Zhao

et al. reported that the increase of the connection proba-

bility between neurons is able to enhance the stochastic

resonance, indicating that the network topology affects the

signal propagation in feedforward networks composed of

coupled FitzHugh-Nagumo neurons (Zhao et al. 2020).

Cao et al. showed that noises can enhance more than

suppress the coherent resonance in neuronal bursting with

spike undershoot (Cao et al. 2020). Some experimental

results suggest that noise sources could be non-Gaussian.

Following in this direction, Gong et al. (2009) demon-

strated that non-Gaussian noises can optimise spiking

activities of random complex networks of Hodgkin–Huxley

neurons. Nozaki et al. (1999) showed that coloured noise

spectrum can modify the signal-to-noise ratio curve and the

optimal characteristic depends on the dynamic system.

Hänggi et al. (1993) studied the effect of coloured noises in

the stochastic resonance of overdamped systems from

small to large noise correlations. They reported that

coloured noise is able to reduced stochastic resonance.

For some parameters of the linearised HH model, the

resonant properties present in the sub-threshold oscillations

have a strong influence on the spike events (Verechtch-

aguina et al. 2007). The simple description of the neuronal

model is enough to reproduce activities found in experi-

mental observations. In this way, the basic neuron

dynamics can be observed by means of a simple neuron

model, while that same dynamics can be difficult to

observe in the original HH model (Izhikevich 2001). Fur-

thermore, the resonate-and-fire model permits to derive

some analytical results, such as the asymptotic state of a

silence neuron when no noise or low noise levels are

considered.

In this work, we consider the resonate-and-fire model to

study the effects of constant and noise currents in the

neuronal dynamics, characterising their firing frequency,

pattern, silence or spike predominance, coefficient of

variation and local variation of the inter-spike intervals. In

our results, we observe continuous neuronal silence and

firing for small noise amplitudes. For intermediate ampli-

tude values, these two neuronal activities and a single

transition from an initial active to silence states are iden-

tified. For large noise amplitudes, an activity of high

variability occurs with the appearance of spike-trains per-

meated by intervals of no spikes. We find values of the

noise and constant current amplitudes in which the spike

variability is high. By varying the constant and noise cur-

rents for a non-maximal noise amplitude, it is possible to

identify a higher variability of the inter-spike intervals. In

this case, the neuronal dynamics remains greater time

intervals in silence periods. In addition, we show that the

transition from silence to spike predominance is abrupt for

small and intermediate noise amplitudes, and it is smooth

for large values of the noise amplitude.

This paper is organised as follows: In Sect. 2, we intro-

duce the neuronal model. Section 3 exhibits the methods to

diagnose the neuron dynamics. In Sect. 4, we present our

results about firing patterns, mechanism of large variability,

and comparison with the LIF neuron. In Sect. 5, we discuss

our results about the noise effects, as well as the model

limitation. We draw our conclusions in the last section.

Neuronal model

We consider a linearised Hodgkin–Huxley model (Erchova

et al. 2004), also known as resonate-and-fire model, given

by the following set of two coupled linear differential

equations

C
dV

dt
¼� 1

R
V � IL þ I0; ð1Þ

L
dIL
dt

¼� ILRL þ V � V0; ð2Þ

where V and IL are the membrane potential and inductance

current, respectively. In the first equation, C and R corre-

spond to the capacitance and resistance, respectively, while

I0 is a constant current applied in the neuron. In the second

equation, L and RL are related to the inductance and

inductive resistance, respectively, and V0 is the resting

potential Vr re-scaled as

V0 ¼ Vr 1 þ RL

R

� �
: ð3Þ

In Verechtchaguina et al. (2007), they considered a noise
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ion channel in the deterministic model (Eq. 1 and 2). To do

that, they used a white-noise approximation for the external

current (Richardson and Gerstner 2005). In such approach,

Eqs. (1) and (2) represent the membrane potential U ¼
V � Vr of the neuron which satisfies

d2U

dt2
þ c

dU

dt
þ x2U ¼ f0 þ

ffiffiffiffiffiffi
2Q

p
nðtÞ; ð4Þ

where the constants c, x, f0, and Q are defined as

c ¼ 1

C

1

R
þ RLC

L

� �
;

x2 ¼ 1

LC
1 þ RL

R

� �
;

f0 ¼ RLI0
LC

; and

Q ¼ D

C2

I0RL þ V0

1 þ RL=R

� �2

:

ð5Þ

Equation (4) is readily identified as the equation of motion

for a damped harmonic oscillator with external forcing.

The parameters c, x, and f0 are, then, the damping coef-

ficient, the angular frequency, and a constant external force

in this analogy, respectively. In addition, Q is related to the

noise intensity and nðtÞ represents the Gaussian white noise

with unitary standard deviation.

In this model, the neuron generates spikes immediately

after the membrane voltage overtakes the threshold

potential (UT). The m-th spike time is identified by tm. The

membrane potential is reset to the value Ures after a time

interval (sres ¼ 15 ms) that the neuron potential overtakes

the threshold potential (U[UT). Figure 1 shows a repre-

sentation of the reset rule. As shown in the figure, in the

reset rule, potential is restarted to the value of the reset

potential (Ures). sres value can be associated with the period

of the neuron in the absolute refractory state. The state of

the neuron evolves over time according to the linearized

Hodgkin–Huxley model until (and if) such state crosses the

threshold potential UT. If that happens, the neuron con-

tinues to evolve linearly until a time interval sres later,

when the reset takes place and the evolution of the states

becomes irreversible (U = Ures). On the other hand, if the

state never crosses the threshold, its evolution is always

governed by the Eq. (4). The constant forcing, f0, depends

on I0, and the noise amplitude, Q, depends on both I0 and

D, where D is the intensity of the applied white Gaussian

noise (Verechtchaguina et al. 2004).

The results shown in this work are for initial U ¼ �7

mV and _U=0. Although the initial conditions can change

the pattern found for small and intermediate noise inten-

sity, they have less influence on the results for high noise.

We consider an integration step equal to dt ¼ 10�5 s. The

integration method is the Second-Order Stochastic Runge-

Kutta (Honeycutt 1992). The neuron parameters are chosen

as for a typical stellate cell according to Table 1

(Verechtchaguina et al. 2007).

Methods

Coefficient of variation

We consider that the neuron spikes when it crosses the

threshold potential UT. The m�th inter-spike interval of the

neuron ISIm is defined as the time difference between two

consecutive spikes

ISIm ¼ tmþ1 � tm [ 0; ð6Þ

where tm is the time in which the m�th spike occurs.

Fig. 1 Schematic representation of the reset rule identifying the

threshold potential (UT), m-th spike time (tm), reset potential (Ures),

and time to reset (sres) after the membrane potential overtaking the

threshold

Table 1 Standard parameters (Verechtchaguina et al. 2007)

Parameter Description Value

C Neuronal capacitance 2:1 � 10�4 lF

R Leak resistance 56.7 MX

RL Inductive resistance 46.1 MX

L Inductance 1.26 MH

D Noise level [10�10,10�5] Hz MX�2

I0 Constant current [220,360] pA

Vr Resting potential -61.5 mV

UT Threshold potential 12 mV

Ures Reset potential -7 mV

sres Time to reset 15 ms

dt Integration step 10�5 s

tsim Simulation time 106 s
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In order to monitor the mean coefficient of variation, we

calculate the mean value of ISI, ISI, and its standard

deviation, rISI. The coefficient of variation (CV) is given

by Lengler and Steger (2017)

CV ¼ rISI

ISI
: ð7Þ

Local variation

We calculate the local variation (LV) defined as Shinomoto

et al. (2009)

LV ¼ 3

n� 1

Xn�1

i¼1

ISIi � ISIiþ1

ISIi þ ISIiþ1

� �2

ð8Þ

where n is the number of inter-spike intervals of the neu-

ron. For regular ISIs, LV is close to 0. This diagnostic

detects instantaneous variabilities of ISIs.

Active (A) and the silence (S) durations and their
predominance coefficient

We constructed the ISI histogram and identified the value

for the active and silence intervals. Figure 2 shows the ISI

distribution identifying the active (A) and silence (S) states.

This particular histogram turned out to be a bimodal dis-

tribution. The active regime is typically characterised by

ISI � 0.14 s, value identified by a vertical dashed line in

the figure. This ISI distribution is also displayed by

Verechtchaguina et al. (2007). Based on that information,

we consider that when two spikes occur with ISIm � 0:14 s,

the spikes belong to the same spike-train, whose duration is

Am. On the other hand, when the interval between two

adjacent spikes is ISIm [ 0:14 s, we consider that a silence

period Sm occurs.

In order to analyse the predominance of the spike-trains

or the silence on time, we define the predominant silence-

active coefficient N as

N ¼ Atot � Stot

Atot þ Stot

; ð9Þ

where Atot and Stot are the total durations of the active and

silent during the stimulation period, respectively. This

coefficient ranges from N ¼ �1 (absolute silence) to N ¼
þ1 (a single, uninterrupted train). N ¼ 0 indicates an

average equal of mix between active and silence durations.

Results

Firing patterns

Figure 3 shows the time series of U for D ¼ 10�8 Hz

MX�2 considering three different values of the constant

current applied in the neuron: (a) I0 ¼ 230 pA, (b) I0 ¼ 242

pA, and (c) I0 ¼ 260 pA. In Fig. 3(a), the neuron potential

does not overtake the threshold potential UT and, conse-

quently, there is no firing activity. Figure 3(b) displays an

initial spike-train followed by a silence activity. Finally,

Fig. 3(c) exhibits a periodic firing activity. These time

series of the neuron potentials correspond to intermediate

noise levels. For low noise, we observe either only silence

or only periodic firing activity, depending on the specific

value of I0. This result is very similar to the case where

there is no presence of noise.

Fig. 2 Probability density as function of the ISI values for I ¼ 325 pA

and D ¼ 5 � 10�6 Hz M X�2
Fig. 3 U � t for D ¼ 10�8 Hz MX�2, (a) I0 ¼ 230 pA, (b) I0 ¼ 242

pA, and (c) I0 ¼ 260 pA

Cognitive Neurodynamics

123



In Fig. 4, we compute the time evolution of the neuronal

potential U for I0 ¼ 320 pA and two values of the applied

white Gaussian noise intensity, namely, (a) D ¼ 8 � 10�7

Hz MX�2 and (b) D ¼ 4 � 10�6 Hz MX�2. These values

correspond to a large noise amplitude. Figure 4(a) exhibits

spike-trains with the active state A and the silence S. By

increasing the value of D, we observe a variation in the

values of both A and S, as shown in Fig. 4(b).

In order to study the neuronal dynamics, we compute the

D� I0 parameter space. Figure 5(a) and (b) show,

respectively, the mean firing frequency F—i.e. the average

number of spikes in a second—and the pattern related to

the firing through colour bars. In Fig. 5(a), we see that

F depends on I0 and D, while Fig. 5(b) displays the patterns

according to the neuronal activity, where 0 denotes no

firing activity, 1 represents the periodic firing, 2 identifies

initial spike-train ending in no firing activity, and 3 denotes

the oscillatory activity between spike-trains and silence

periods. That figure makes it clear that there are regions, in

the parameter space, with very distinct qualitative

behaviours.

Mechanism of large variability

The different patterns of the resonate-and-fire neuron

depend on the trajectories in the phase space. Figures 6 and

7 show the five typical trajectories in the _U � U phase

space. Figure 6(a), (b), and (c) display the silence, initial

burst activity, and active dynamics, respectively, which are

also shown in Fig. 3, in the same colour representation. In

Fig. 6(a), the trajectory does not cross the threshold UT.

This is a linear evolution and the dynamics of the neuron

activity is described as a damped harmonic oscillator under

the action of constant and white noise external forces. If

both forces are removed, the trajectory asymptotes to the

null vector of the phase space. The effect of turning the

constant force on is a translation in the asymptotic state.

Denoting such state by Asy
�!

, we find Asy
�! ¼ f0

x2 ; 0
� �

, whereFig. 4 U � t for I0 ¼ 320 pA, (a) D ¼ 8 � 10�7 Hz MX�2, and

(b) D ¼ 4 � 10�6 Hz M X�2

Fig. 5 Parameter space D� I0 for initial condition U ¼ �7 mV and
_U ¼ 0. In panel (a), the colour bar corresponds to the values of F. The

panel (b) displays the regions for the absence of spikes (black),

continuous spikes (blue), a single spike train followed by silence

activity (orange), and oscillatory activity between active and silence

periods (gray). (Color figure online)

Fig. 6 U � _U for D ¼ 10�7 Hz MX�2, (a) I0 ¼ 230 pA (silence),

(b) I0 ¼ 242 pA (initial burst activity), (c) I0 ¼ 330 pA (active). The

vertical dashed line represents the threshold potential UT

Fig. 7 U � _U for I0 ¼ 320 pA, (a) D ¼ 4 � 10�7 Hz MX�2 and

(b) D ¼ 4 � 10�6Hz MX�2 (green). The dashed line represents the

threshold value UT. (Color figure online)
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f0 and x are defined in Eq. (5). Then, by turning the noise

force on, we see random deviations from the original tra-

jectory, as seen in Fig. 6(a), while the asymptotic state

remains Asy
�!

, which we are able to compute analytically.

Figure 6(b) shows what happens when a trajectory crosses

the threshold potential UT. It is reset many times after

crossing the threshold and, eventually, tends to the same

Asy
�!

.

In Fig. 6(c), the blue line represents the trajectories of

the region in the parameter space in which A dominates, as

displayed in Fig. 3(c). The trajectory starts on the left side

and goes to the right side crossing the threshold potential,

UT, represented by the vertical dashed line. The trajectory

is reset to the reset potential (Ures) sres times after crossing

the threshold (UT). This reset operation can be mathemat-

ically described by the operation R

Rv0;u vð Þ ¼ Tv0
� Puð Þ vð Þ � Tv0

PuðvÞð Þ; ð10Þ

where, for any vector v lying in the phase space, Tv0
vð Þ ¼

v� v0 is the translation operator for v0 ¼ �Ur; 0ð Þ,
Pu vð Þ ¼ u�vð Þu

uj j2 the projection operator for u ¼ 0; 1ð Þ, and �
represents the function composition. The projection leads

the state which crosses the threshold (U, _U) to the state (0,
_U). The projected state is then translated only in the

U variable, and it ends up in the state Ur; _U
� �

. It can be

shown that the reset state does not depend on the U value

before the reset, although it depends on the value of _U. In

this way, we may have different states, with the same value

of _U, reset to the same state (Ur , _U). This reset operation

R explains the apparent discontinuous vertical line at U ¼
Ur in Fig. 7.

The trajectory in Fig. 7(a) corresponds to states lying in

the region of the parameter space where S dominates. This

trajectory corresponds to the U evolution in Fig. 4(a). sres

times after U crosses the threshold UT, the trajectory is

reset according to Eq. 10. The trajectory crosses UT other

times and it is always reset after the time interval sres.

However, before the trajectory crosses UT, it spends a long

time near the region that contains the state Asy
�!

of the

previous cases. Then, the neuron spends a time orbiting the

state Asy
�!

before firing and, consequently, the silence pre-

vails. Although trajectories in the upper arch path mostly

spike, sometimes they do not. The same is valid for silence

trajectories represented in the lower circular path. The

trajectory associated with the silence can get out, exceed-

ing the threshold potential. These changes in the trajectory

occur due to the presence of noise.

In Fig. 7(b), the trajectory represents the states in the

region of the parameter space in which Atot � Stot. This

trajectory is plotted in Fig. 4(b). Unlike the red trajectory,

the green trajectory does not spend much time orbiting Asy
�!

and it soon crosses the firing threshold UT, causing the

observed interplay between A and S.

Figure 8(a), (b), and (c) display D� I0 where the colour

bars denote N, CV and LV, respectively. In Fig. 8(a), the

white region corresponds to the regimes dominated by the

spike-train and the black region by the silence behaviour.

We see that the transition from silence to spiking pre-

dominance is continuous for large noise amplitudes. Fig-

ure 8(b) shows a small region in which the variability in the

neuronal activity is large. We consider as initial conditions

U ¼ �7 mV and _U ¼ 0. If we consider larger values of

U as the initial condition, the neuron can not fire for small

and intermediate noise amplitudes. Increasing the initial

condition of U, the transition from silence to firing under

small and intermediate noise amplitudes moves to the right.

On the other hand, CV values remain similar to different

initial conditions. For large noise intensity, the initial

conditions do not have a significant influence on the pat-

terns and CV values. In Fig. 8(c), for regular ISIs, LV is

close to 0. This diagnostic tool detects instantaneous

variabilities of ISIs. As shown in the figure, large values of

CV do not coincide with high LV values. However, the

highest values of LV also occur for non-maximal noise and

constant current intensities.

Figure 9 shows (a) N and (b) CV for D ¼ 7:5 � 10�7 Hz

MX�2 as a function of I0. We observe that a larger vari-

ability of spikes occurs for N � 0, where Atot and Stot have

Fig. 8 (a) Predominant silence-active coefficient (N), (b) coefficient

of variation (CV), and (c) local variation (LV) of inter-spike intervals

in the parameter space of D� I0. N, CV and LV are calculated

considering a time duration equal to 106 s. The initial conditions are

U ¼ �7 mV and _U ¼ 0. In the resonate model, highest LV values do

not coincide with the CV ones
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approximately the same values. Vertical and horizontal

brown dashed lines indicate I0 in which N � 0.

Figure 10(a) and (b) show N and CV for I0 ¼ 325 pA as

a function of D, respectively. We observe small values of

CV for small noise intensities (D\2 � 10�7 Hz MX�2) and

higher CV for a certain D value. There is a value of D that

maximises CV, taking place between two crossing points,

where N � 0.

Figure 11(a) and (b) display the raster plot for the

orange, red, green, and blue circles indicated in Fig. 10(b).

We see an initial spike-train activity (orange dots) and long

silence periods (red dots) in Fig. 11(a). Smaller spike-trains

(green and blue dots) are shown in Fig. 11(b). The increase

in D leads to an increase in the number of silence and

spike-trains over time, as displayed in Fig. 11(a) and (b).

Figure 12(a) and (b) exhibit the A and S distributions,

where the blue points correspond to the blue points shown

in Figs. 10(b) and 11(a), (b), respectively. By increasing

the noise intensity from the point in which CV is maxi-

mum, we observe that the values of A and S converge to an

exponential distribution. Exponential distributions suggest

an absence of memory, where the events occur in a con-

tinuous and independent way (Balakrishnan and Basu

1995). The exponential distributions are related to the

Poisson processes that describe the simplest representation

of the firings in a stochastic neuron (Gerstner et al. 2014)

and are not uncommon in biological processes. For

instance, Nobile et al. reported exponential probability

density functions for the first-passage-time of an Ornstein-

Uhlenbeck process (Nobile et al. 1985).

Fig. 9 (a) Predominant silence-active coefficient (N) and (b) coeffi-

cient of variation of inter-spike intervals for D ¼ 7:5 � 10�7 Hz

MX�2. The values of N and CV are calculated for a time duration

equal to 106 s. The initial conditions are given by U ¼ �7 mV and
_U ¼ 0

Fig. 10 (a) Predominant silence-active coefficient (N) and (b) coef-

ficient of variation of inter-spike intervals (CV) for constant I0 ¼ 325

pA. The values of N are calculated considering a time duration equal

to 106 s. The initial conditions are given by U ¼ �7 mV and _U ¼ 0

Fig. 11 Raster plot for I0 ¼ 325 pA, D ¼ 3:162 � 10�7 Hz MX�2

(orange dots), D ¼ 3:652 � 10�7 Hz MX�2 (red dots), D ¼ 4:870 �
10�7 Hz MX�2 (green dots), and D ¼ 6:494 � 10�7 Hz MX�2 (blue

dots). The panel (a) exhibits the entire time interval of spikes, while

panel (b) the magnification in interval [0.1,1.0] �105 s. The black

dots exhibit a long initial burst activity, while the red, green, and blue

dots show the neuronal activities with high variability. CV is larger

for red dots than for green and blue dots. (Color figure online)

Fig. 12 (a) P(A) and (b) P(S) distributions for I0 ¼ 325 pA and D ¼
6:494 � 10�7 Hz MX�2 (blue points). C.C. is the correlation coeffi-

cient of the exponential law. (Color figure online)
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Comparison with the LIF neuron

Lánský and Rospars analysed a two-point stochastic neuron

model and reported that noise can play a beneficial role in

the neuron dynamics (Lánský and Rospars 1995). In the

model, they observed that the coefficient of variation of

ISIs is high near the silence to spike transition when the

mean input is increased. However, as opposed to our

results for the resonate-and-fire model, the large variability

is not observed in our simulations in the Leak Integrate-

and-Fire (LIF).

In order to compare the results of the resonate-and-fire

model with the LIF model, we consider constant and

Gaussian currents in the LIF model. The LIF model is

described by the follow equation

sm

dV

dt
¼ �ðVðtÞ � VrestÞ þ RLIFIðtÞ ð11Þ

where V and sm are the membrane potential and membrane

time constant, respectively. Vrest and RLIF are the resting

potential and LIF resistance (Gerstner and Kistler 2002).

Considering that the current has both constant and white

Gaussian noised components, we obtain

sm
dV

dt
¼ �ðVðtÞ � VrestÞ þ RLIFI0 þ

ffiffiffiffiffiffi
2D

p
nðtÞ; ð12Þ

where, we consider sm ¼ 20 ms, Vrest ¼ 10 mV, and

RLIF ¼ 20 X, sres ¼ 15 ms (Ostojic 2014). In Fig. 13, we

observe that in the LIF model, (a) CV and (b) LV provide

similar results, in the sense that the highest values occur in

the same D and I parameter values. For the resonate-and-

fire model, the highest values of CV and LV do not coin-

cide. In this way, in the integrate-and-fire model, we also

observe that there is an optimal noise and constant ampli-

tude which can maximise the coefficient of variation.

Burkitt reviewed some mechanisms that can cause the

firing variability, such as random or balanced excitatory

and inhibitory currents, large inhibition, and dendritic

nonlinearities (Burkitt 2006). Given the interest in the

dynamics of integrator and resonate neurons, we consider

the analyses of CV for the LIF model, that is useful to

elucidate many questions about neuron dynamics. We also

analyse the CV values for the original Hodgkin–Huxley

model in the same scenario. As a similar result, we find that

the maximal variability is obtained for a certain constant

and non-maximal noise amplitude.

Discussion

Many studies focused on the variability of a spike train

from a theoretical point of view (Nobile et al. 1985;

Lánský and Rospars 1995; Burkitt 2006; Kobayashi 2009)

and by performing and analysing experiments (Shinomoto

et al. 2009). While most theoretical works focus on a one-

dimensional neuron model (e.g., leaky integrate-and-fire

model), this research focuses on a two-dimensional model.

It is important to mention that other mechanisms, such as

threshold variation (Wilbur and Rinzel 1983), random

initial condition (Lánský and Smith 1989), and balanced

excitation and inhibition (Shadlen and Newsome 1998),

can also induce a high variation of the inter-spike intervals.

The resonator mechanism can cause large CV values

compared to the other mechanisms.

The high variability of inter-spike intervals are observed

in vivo and are associated with spike bursts neuron activ-

ities (Svirskis and Rinzel 2000). Sometimes, this high

variability could not be explained by means of simple

models like leak integrate-and-fire (Softky and Kock

1993). Ditlevsen and Lanky highlighted that the classical

integrate-and-fire could be not able to reproduce the spik-

ing variability and coefficient of variation of cortex neu-

rons (Ditlevsen and Lansky 2005). The generalisation of

the LIF model could enable the description of real data.

Wilbur and Rinzel pointed out the basis for the large

coefficient of variation related to the bimodal inter-spike

distributions (Wilbur and Rinzel 1983). They also associ-

ated large variability with clusters of spikes and long

silence periods.

In our simulations considering the resonate-and-fire

model, we observe that large variability of ISIs is associ-

ated with long silence periods and spike-trains. Usually, the

silence periods correspond to the subthreshold oscillations

of the membrane potential when the neuron variables cir-

culate around the fix point. For low and intermediate noise

intensities, the variability is small due to the fact that ISIs

assume very close values. In this case, the neuron dynamics

do not oscillate more than once between silence and active

periods. Close to the maximal noise intensity, the spike

variability is not large due to the fact that the silence

periods are smaller. The neuron variables are not captured

around the fix point for a long time. In the region of the

large variability, the main neuron dynamics is below the

threshold, however, sometimes noise makes the neuron

Fig. 13 (a) Coefficient of variation (CV) and (b) local variation (LV)

of inter-spike intervals on the space parameter of D and I0 for the LIF

model
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spikes. In this case, the neuron dynamics stay more time in

the silence activity. Wilbur and Rinzel associated the large

variability with long silence periods and spike bursts

(Wilbur and Rinzel 1983). Besides, we suspect based on

the simulations that additive noise can also play an role to

increase the variability in a typical resonance curve. The

results suggest that the noise can optimize the high vari-

ability in a typical resonance curve. In particular, a non-

maximal noise amplitude can increase the spike variability.

Furthermore, in the resonate-and-fire model, high CV is

due to the change in the firing rate, i.e., the transitions

between the silent and the active state. This result is also

consistent with Fig. 11. While the red points look regular in

the short time window, it exhibits high CV due to the

transitions between the silent and the active state. In

addition, the LIF model does not generate high CV activity

(Fig. 13). These results suggest that the transition between

silent and active states is essential for high CV activity.

A limitation of this study is that the resonate-and-fire

model is a reduced model of the Hodgkin–Huxley model.

There are several approaches to simplify the Hodgkin–

Huxley model (Kobayashi and Kitano 2016). Among these

models, it is interesting to mention the adaptive threshold

model that can accurately predict the spike patterns of

cortical neurons (Kobayashi et al. 2009). We plan to con-

sider both this simplified model and the original HH model

in future works.

Conclusions

In this work, we consider a linearised Hodgkin–Huxley

model, known as resonate-and-fire neuron, to study how a

noise current amplitude influences the dynamic behaviour

of a single neuron, with a focus on the effect of the inter-

spike variability. This model was studied by Verechtch-

aguina et al. (2007). By means of the parameter space, we

identify the firing frequencies and patterns found in the

model. We also analyse the mean silence and train dura-

tions, as well as the train-silence predominance. Finally, we

calculate the coefficient of variation and local variation of

the inter-spike intervals.

For small noise current, D\10�9 Hz MX�2, we observe

a continuous spike or silence activity depending on the

applied constant current. We find an abrupt transition from

silence to firing when I0 is increased. For intermediate

noise amplitude, 10�9
/D/10�6 Hz MX�2, besides only

continuous silence or firing activity, an initial active to

silence activity is identified. For large noise, D’10�6 Hz

MX�2, silence and spike-trains occur over time. In this

way, we classify four different patterns of activity of the

membrane potential: sub-threshold oscillations without

firing, periodic firing activity, initial spike-train followed

by a silence behaviour, and oscillatory activity between

spike-train and silence periods.

Considering large noise amplitudes, silence and spike-

train activities oscillate over time. In the parameter space,

there is a region in which a large variability between the

spikes occurs. Regarding the large variability, we observe

an interplay between the firings and the asymptotic state. In

this case, a continuous transition from silence to active

predominance appears when I0 is increased. For the region

of large variability, active and silence durations converge

to exponential distributions. While large coefficient of

variations are due to long silence periods, high local vari-

ations are due to the differences in subsequent inter-spike

intervals.

For the same initial condition in the parameter space,

close to the transition of each neuronal pattern, different

activities can occur due to specific noise inputs. Different

initial conditions affect mainly the patterns for small and

intermediate noise amplitudes. Depending on the initial

value of membrane potential, different frequencies and

patterns can occur on the parameter space for small noise

amplitudes. However, for a large noise amplitude, the

results are not affected by the initial condition. For high

noise current, we find intermittent active and silence peri-

ods. Furthermore, the large variability occurs for a noise

intensity that is not the maximum in the considered noise

range. Our results suggest sub-threshold oscillations as a

possible mechanism for the appearance of high spike

variability in a single neuron due to noise currents. In

future works, we plan to investigate this phenomenon

considering a Markovian process.
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