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h i g h l i g h t s

• Parametric perturbation in the Rulkov mapping.
• A model that describes the neuronal membrane potential is studied.
• The system presents periodic behavior followed by chaotic bursts.
• We show how is the organization of the periodic regions in the parameter space.
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a b s t r a c t

The Rulkov mapping is a phenomenological model that simulates the changes in the
neuronal membrane potential. In this work, we introduce a parametric perturbation in
the Rulkov map, that can be related to an unexpected behavior, such as a malfunction
of the neuronal membrane due to pathologies. The perturbed system still keeps its main
characteristics, which includes periodic behavior followed by chaotic bursts. We verify the
existence of a set of periodic regions, known as shrimps, embedded in chaotic attractors in
the systemwith parametric perturbation. Some changes in the phase space, time evolution
of the variables and bifurcation diagrams are observed. Finally, we show the extreming
curves, which demonstrate how is the organization of the periodic regions in the parameter
space.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

With the develop of fast computers, the study of dynamical systems has attracted a lot of attention during the last years. In
particular, dissipative dynamical systems have helped the researchers to describe several phenomena from diverse areas of
science, such as physics [1,2], economics [3], biology [4,5], and mathematics [6,7]. In general, dynamical systems have been
mathematically modeled bymeans of nonlinear equations [8] or N-dimensional nonlinear mappings [9,10]. One of the most
important aspects of dynamical system is to understand its properties in the phase space. In the case of dissipative systems,
information about the periodicity of orbits and bifurcations are fundamental to make predictions about the asymptotic
behavior of the dynamics.

The study of attractors and its evolution has attracted much attention from the scientific community. In this sense, we
propose to study the two dimensional mapping formulated by Rulkov [11] to describe the neuronal membrane potential.
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The Rulkov map is from the computational point of view very simple to iterate than other models, beside that, its dynamics
exhibits interesting properties in the phase space, such as bifurcations and attractors. It has been applied in the description
of neuronal networks [12].

Our goal is to study the origin and the evolution of attractors in the Rulkov map, where we introduce a parametric
perturbation. In literature, there are experimental and theoretical results about the effects of parametric perturbation in
dynamics systems. Fronzoni et al. [13] reported experimental evidence of chaos suppression by parametric perturbations in
magnestoelastic beam systems. Parametric perturbation can be used to control chaotic behavior [14,15] and to synchronize
coupled systems [16]. Deivasundari et al. [17] observed the existence of transition from ordered to chaotic behavior in
voltage-mode controlled buck converter under parametric perturbation. In this work, we consider the perturbation in the
nonlinearity parameter of the Rulkov map. This parameter controls the variable that is related to the membrane potential of
the neuron. Depending on the parameter value, the neuron can display chaotic bursts or continuous chaotic oscillations [18].
This way, the parametric perturbation can change the chaotic behavior. Alteration in membrane potential can be associated
with pathologies [19].

We show periodic self similar structures embedded in chaotic regions in the parameter space, known as shrimp-
shapes [20,21]. As diagnostic tools we use the Lyapunov exponent to identify the shrimps. We also analyze the organization
of these shrimp structures applying the concept of extreming curves [22].

This paper is organized as follow. Section 2 presents the Rulkov mapping and its dynamical properties. In Section 3
the parameter space is analyzed and the shrimp-shapes structures are characterized. Our final remarks are presented in
Section 4.

2. The Rulkov mapping under a parametric perturbation

The model proposed by Rulkov is a two dimensional map in terms of the dynamical variables Xn+1 and Yn+1 [18], and can
be written as

R :

{
Xn+1 =

α

1+Xn2
+ Yn,

Yn+1 = Yn − σ (Xn − ρ) ,
(1)

where Xn and Yn are the fast and low scale variables, respectively, and α, ρ, and σ are the control parameters. We introduce
a parametric perturbation in the Rulkov map, such as α → α(1 + bnϵ), that leads the map to be written as

R̃ :

{
Xn+1 =

α(1+bnϵ)
1+Xn2

+ Yn,

Yn+1 = Yn − σ (Xn − ρ) ,
(2)

where ϵ is a parametric perturbation, with bn = (−1)n or bn = (−1)n+1. For ϵ = 0 the traditional Rulkov map is
recovered [11].

The successive application of the map given by Eq. (2) over an initial condition is shown in Fig. 1(a–d). Fig. 1(a) shows
that the behavior of the fast variable X along the time is composed by the alternation of periodic and chaotic oscillations,
known as bursts. The period of the bursts are linked with the oscillations of the low variable Y (see Fig. 1(b)). Every time the
low variable reaches a characteristic maximum value, the period of bursts is initialized (green dashed lines). The opposite is
also observed, so the end of bursts period happens when the low variable reaches a characteristic minimum value. Between
chaotic bursts, one can see that there exist a period twobehavior of the variableX . The control parameters have an interesting
role in the dynamics of the problem, as shown in Fig. 1(c,d), the change of the control parameter α to 4.15 leads the dynamic
to present bursts smoother than the observed in Fig. 1(a,b).

The phase space X vs Y from the Rulkovmap is shown in Fig. 2, where the black curves represent the evolution of an initial
condition starting from the blue arrow. An important aspects to understand the properties of the phase space is looking for
the fixed points and how the initial condition are influence by them. For this, we made an approximation of the Eq. (2) for a
one dimensional map

Xn+1 =
α(1 + bnϵ)
1 + Xn

2 + γy, (3)

where such approximation is possible because the low variable Y does not change too much in a small period of time, so
allowing us to approach Y as a constant γy. It is important to remark that if we do ϵ = 0 the traditional one dimensional
Rulkov map found in the literature is recovered.

The fixed points X∗ from the dynamics are found when the equation Xn+2 = f (X∗) = X∗ is satisfied. If we start with
bn = +1, one can find the solution for

Xn+2 =
α(1 + ϵ)

1 +

[
α(1−ϵ)
1+(X∗)2

+ γy

]2 + γy = X∗. (4)

This equation is not so simple to be solved analytically. But one can prove that this equation has five solutions X∗

j(+), with
j = 1, 2, . . . , 5, that correspond to the fixed points of the dynamics. Similar procedure can be found when we start with
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Fig. 1. (Color online) Time evolution of the variables: (a) X; (b) Y . The combination of control parameters are α = 3, σ = 0.001, ρ = −1.25 and ϵ = 0.15.
The green dashed vertical line marks the beginning of the chaotic burst, which happens when the value of Y is maximum at item (b). In items (c,d) we have
changed the value of α to 4.15.

Fig. 2. Phase space X vs Y considering α = 4.15, σ = 0.001, ρ = −1.25 and ϵ = 0.15. The black curve is an orbit in the phase space, and we plotted only
one cycle starting from the blue arrow. The red line represents the position of two stable period 2 fixed points obtained for the 1D version of the mapping,
while the green curves represent two unstable period 2 fixed points.. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

bn = −1, leading to the following equation

Xn+2 =
α(1 − ϵ)

1 +

[
α(1+ϵ)
1+(X∗)2

+ γy

]2 + γy = X∗, (5)

which also has five solutions X∗

j(−), with j = 1, 2, . . . , 5. It is important to mention that some of the solutions are in the
complex plane and some of them are real values.

We classify these fixed points studying the return map as presented in Fig. 3. The return map shows that initially the
Rulkov map has three fixed points, been X∗

1(+) and X∗

1(−) stable, and X∗

2(+), X
∗

2(−), X
∗

3(+) and X∗

3(−) unstable (see Fig. 3(a)).
However, when the parameter γy is increased, the fixed points X∗

1(+), X
∗

1(−), X
∗

2(+) and X∗

2(−) begin to approach each other
until collide and disappear, as shown in Fig. 3(b,c). Only the fixed points X∗

3(+) and X∗

3(−) remains. In such a case, the other
eight fixed points are in the complex plane.

A natural question that came from the analyze above is about the influence of the fixed point over the dynamics. To
answer this question, we first plot the position of stable (unstable) fixed points over an orbit from the phase space of Fig. 2.
As one can see, the orbit tends to follow the fixed points for a time interval until starting the chaotic burst.
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Fig. 3. (Color online) X2 vs X0 for different values of γy: (a) γy = −2.9; (b) γy = −2.756; (c) γy = −2.7. In (a) we have period two stable fixed points
marked as X∗

1(+) and X∗

1(−) and four other period two fixed points are also observed, X∗

2(+) , X
∗

2(−) , X
∗

3(+) and X∗

3(−) , but in this case they are unstable. In (b) X∗

1(+)
and X∗

1(−) are approximately at the same position and the same for X∗

2(+) and X∗

2(−) , indicating that a saddle–node bifurcation is observed. In item (c) only
two period two fixed points, X∗

3(+) and X∗

3(−) , remains. The other fixed points are in the complex plane, where we have a total of ten different solutions.

Fig. 4. Bifurcation diagram X vs γy for the one-dimensional version of the Rulkov map. In red we show two unstable period two fixed points.. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

If the bifurcation diagram is taken into account, as showing in Fig. 4,we see that the behavior ofX changes fromperiodicity
to chaotic oscillations (bursts) as γy is increased (decreased). It is interesting to note that a saddle–node bifurcation appears
exactly when the fixed points X∗

1(+), X
∗

1(−), X
∗

2(+) and X∗

2(−) vanish from the dynamics and only after that, the bursts are
initialized inside of the chaotic attractor. Therefore, when the attractor crises happens, the dynamics is forced to return
to a stable behavior marking the end of the burst period.

3. Parameter space analysis

After the description above about the system dynamics, we find that depending on the control parameter an initial
condition may exhibit chaotic or regular behaviors. However, when a small perturbation is added over the parameter, these
behaviors can change. This information lead us to natural question about the parameter space,what happenswith the system
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Fig. 5. Parameter space for ϵ vs γy . In items (a, c) we have considered as colors the Lyapunov exponents (λ), while in items (b, d) the colors represent the
period of the shrimps, where lines are the extreming curves. The value of α chosen was 4.15.. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

if we simultaneously change the control parameters? To answer this question, we analyze the parameter space from the
system using Lyapunov exponents to characterized regions where the control parameter leads the dynamic to chaos or
regular motion.

For one dimensional system, the Lyapunov exponent [23] is given by

λ = lim
n→∞

1
n

n∑
i=1

ln
⏐⏐⏐⏐∂Xn+1

∂Xn

⏐⏐⏐⏐, (6)

where
∂Xn+1

∂Xn
= −

2αXn(1 + bnϵ)(
1 + Xn

2)2 . (7)

The classification of the exponent for one orbit shows that forλ > 0 a chaotic behavior is observed,whileλ < 0 characterizes
that the orbit is periodic or quasi-periodic. The parameter space ϵ vs γy for the Rulkov map are shown in Fig. 5(a, c).

In order to generate Figs. 5(a, c), we split in 1000 by 1000 different values of ϵ and γy. For each combination of parameters,
we iterate mapping (3) up to 106 times. For the next 106 iterations the Lyapunov exponent λ (given by Eq. (6)) is computed.
Figs. 5(a, c) present a set of colors, where red to yellow have negative values of λ, meaning that orbits are periodic in these
regions, on the other hand, green to blue indicate regions of positive values of λ, meaning that the orbits tend to reach chaotic
attractors. As one can see, there are many periodic self similar structures embedded in chaotic regions in the parameter
space, such structures are known as shrimps-shapes. The characterization of the shrimps-shape can be done by the Lyapunov
exponents as presented above, on the other hand, if we study the periodicity of the parameter space as made in Fig. 5(b, d),
where the periods are indicated by colors, the self similar structures are still found. Observe that Fig. 5(c) is an enlargement
of the black dashed rectangle in Fig. 5(a).

In order to find local maximums and minimums, one need to consider ∂Xn+1
∂Xn

= 0. As solution, we find X∗
= 0, that is a

local maximum. We consider Xn+1 = Xn = X∗ to calculate the extreming curve with period 1, where it results in

ϵ = −
1
bn

(
1 +

γy

α

)
. (8)
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Fig. 6. (Color online) Time evolution of X for the two-dimensional version of our map. In (a) we show an orbit which starts in the chaotic region of Fig. 5(c)
(marked as the point A in such a figure), while in (b) an orbit starting in the periodic region of Fig. 5(c) (marked as the point B in such a figure).

This curve is shown in Fig. 5(b) labeled as 1(−). The minus means that we start with bn = −1 in Eq. (3), otherwise, the plus
sign means that bn = +1. The other extreming curves were found numerically, where the main idea to find these curves
is as follows: if you want to find the period 3 extreming curve, choose 1000 by 1000 different values of γy and ϵ. For each
combination of control parameters we start an orbit with initial condition given by X0 = X∗ and bn = ±1. After 3 iterations
of the mapping (3) we check if the condition |X3 − X0| < 10−3 is true. If it is true, it means that after 3 iterations the orbit
returns to the initial condition X0 = X∗. This orbit is not periodic because it only happens for even values of iterations. As
an example, in Fig. 5(b), the curve 3(+) means that it is a period 3 extreming curve starting with bn = +1. It is possible to
obtain an infinity number of extreming curves, but we decided to show it until the period 5.

The extreming curves can be used to predict the position of the shrimps in the parameter space. The intercept between
negative and positive extreming curves happens exactly in a periodic structure. For example, in Fig. 5(b) the intercept
between curves 1(−) and 3(+) happens in the period 4 shrimp (extremings 1 + 3 = 4). Another example is the intercept of
5(+) and 1(−), which happens in the period 6 shrimp (5 + 1 = 6). So, as conclusion, the position of the other shrimps can
be found using the extreming curves, where some of them were highlighted in Figs. 5(b, d).

Now we compare the result obtained in Fig. 5(c) to the two-dimensional map (2), where we use α = 4.15. If we take
the coordinates of the point A in Fig. 5(c), given by (ϵ, γy) = (0.014596, −1.72767), one can start an orbit in the 2-D
version of the mapping, considering Yn = γy and the other control parameters are set as σ = 0.001 and ρ = −1.25 (as
used in Figs. 1 and 2). As result, in Fig. 6(a) we show the time evolution of an orbit which started in the chaotic region
of Fig. 5(c). Now one can compare with an orbit that starts in a periodic region of Fig. 5(c). The point B, which is taken in
(ϵ, γy) = (0.092508, −2.16444), is then used to produce Fig. 6(b). As one can see, if we use a chaotic region as shown in A,
one can see that the burst size of the chaotic region is larger than the periodic region. As shown in Ref. [24], The periodicities
of the burst follows a period-increasing pathway as known from the Arnol’d tongues, scaling in size with periodicity. As our
system does not exhibit these Arnol’d tongues, it is very difficult to count the number spikes for each shrimp or periodic
region taken in Fig. 5(c). More simulations are necessary in order to understandwhat is happening, but it is a first step trying
to understand such a system, which does not exclude the results found here.

In a next work, one can explore this connection and try to reproduce results in systems with more than one neuronal
membrane. We believe that this systemwill provide some interesting results when coupled systems are taken into account.

4. Conclusion

The Rulkovmap is phenomenologicalmodel that simulates the changes in the neuronalmembrane potential. In thiswork,
we introduced a parametric perturbation in this system, where it can be related to a malfunction of a neuronal membrane.
It was shown that the system still keeps its main characteristics, presenting periodic behavior, followed by chaotic bursts.
We found the fixed points exhibited by the system and analyzed their stability through the return maps. We showed that
the chaotic oscillations of the dynamics were initialized when a saddle–node bifurcation happened, however, when the
attractor crisis was observed, the chaotic motion was forced to return to a regular regime. In the final part of this paper, we
characterized chaotic and regular regions in the parameter space. Such study revealed some periodic self similar structures,
known as shrimp-shapes, that emerged from chaotic regions. Through the concept of returning curves, the organization of
these structures were described.
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