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2 Graduate Program in Science, State University of Ponta Grossa, Ponta Grossa, Brazil
3 Department of Physics, Federal University of Paraná, Curitiba, Brazil
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Abstract. Memristor is a passive element theoretically proposed by Leon Chua in the 1970’s. It started
to receive attention after 2008, when researchers from the HP Labs presented a device with memristive
properties. Since then, several models have been proposed to describe the memristor. In this work, we
analyze the linear drift model, comparing the numerical solutions with analytical solutions and SPICE
simulations. We demonstrate that different solutions can be found depending on the method and parameter
set.

1 Introduction

In 2008, Strukov et al. (HP Labs) published a paper entitled “The missing memristor is found” in Nature [1], where
they claimed to have built a device with memristive properties. Memristor was theoretically proposed by Leon Chua in
1971 [2], it is an element that behaves like a resistor but the resistance varies according to the history of voltages applied
on it. The name memristor means resistor with memory, in this case, the dependence on the past states is considered
as a memory property. The main application of memristor is in computation. In combination with transistors, they
are expected to improve performance of digital circuits without shrinking transistors [3]. Recently, a memristor-based
hardware to perform a high precision computing task was proposed [4]. Memristors can be used as ultra dense non-
volatile memory [5, 6], artificial synapse [6, 7], detection of weak signals [8], suppression of chaotic ferroresonance [9]
and optimization of microwave passive circuits [10].

In electronics, the elements can be divided into passive and active elements. Active elements can increase the
power of a signal, on the other hand, passive elements cannot, usually, causing loss of power [11]. There are four basic
passive elements: resistor, capacitor, inductor and memristor (recently introduced). All other passive elements can be
built from the four basic elements. Here, we are accepting memristor as a basic passive element, however, it is not a
consensus in the literature and it is still a subject of debate [12–14]. The passive elements are characterized by four
elementary physical quantities: charge q, voltage V , electrical current i and magnetic flux φ. The relation between the
passive elements and elementary physical quantities are presented in fig. 1(a).

The most fundamental element is the resistor, as shown in fig. 1(b), it is a two-terminal element able to transform
the electric current in heat, causing a resistance in the current flow [15]. The amount of resistance R can be quantified
through the Ohm’s Law: dV = R di. The capacitor, represented in fig. 1(c), is a two-terminal element able to store
energy in the electric field, it is characterized by the capacitance C. The capacitance can be obtained from the relation:
dq = C dV . The inductor is a two-terminal element able to store energy in the magnetic field. Different from resistors
and capacitors, inductors require alternate current to operate, as represented in fig 1(d). They are characterized by
the inductance L, obtained from the relation dφ = Ldi [15]. Furthermore, there is a relation between charge and
current, that is the basic definition of electric current, dq = idt, and a relation between magnetic flux φ and voltage
V , that is the basic definition of magnetic flux, dφ = V dt. In the 1970’s, Leon Chua proposed an hypothetical element
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Fig. 1. (a) Relation between the fundamental variables and basic passive elements, (b) power source + resistor circuit, (c) power
source + capacitor circuit, and (d) power source + inductor circuit.

associated with the relation between charge q and magnetic flux φ. This element (latter called memristor) would be
characterized by a constitutive relation dφ = M dq. We can re-write the constitutive relation in terms of the other
quantities, in this case:

V dt = Midt, (1)

this means that, M and R have the same unit. Due to its dependency on the past states of current and voltage, the
element that satisfies eq. (1) works as a resistor with memory.

The first model to explain the memristor behavior is the linear drift model [1]. This qualitative model assumes that
free particles move in the memristor according to a linear drift movement. Experimental results, however, demonstrate
that, the free particles should move in a non-linear manner. This effect can be included in the linear drift model
adding a term in the differential equation, called window function [16, 17]. In memristors, the conductance alternates
between two states, often called ON and OFF states. To characterize this behavior, researchers at HP Labs developed
a memristor model compatible with the experimental results [18]. They showed that, in nonlinear memristors, the
energy required to switch a metal-oxide device decreases exponentially with increasing applied current [18].

Currently, several models describe properties and behavior of memristor with good agreement with experimental
results [19–23]. Yakopcic et al. presented a model that could be used to model memristor-based neuromorphic sys-
tems [19]. The circuit emulator, TEAM (ThrEshold Adaptive Memristor Model) is simple and computational efficient
being adapted to Verilog-A and SPICE simulations [22]. One of the main challenges in the study of memristor prop-
erties is to define an appropriated model. In this paper, we focus on the simulation issues of the linear drift model.
However, even more realistic models can present numerical errors or problems of convergence due numerical methods,
and most of them require special treatments to be solved [24].

The fundamental properties that must be satisfied by a memristor model are discussed in sect. 2. In sect. 3, we
present the details about the linear drift model. Despite the large number of memristor models, in this paper, we
focus on the linear drift model because of the large amount of features that can be observed when different numerical
methods are considered. This results are discussed in sect. 4. In sect. 5, we present our conclusions.

2 Properties of a memristor

The memristor can have a current or voltage input, when the input is the voltage, the system is voltage controlled, in
a generalized form it can be described as

i = W (x1, x2, . . . , xN )V, (2)
dxk

dt
= fk(x1, x2, . . . , xN , V ), (3)

where W () is called memductance (W = 1/M), k = 1, 2, . . . , N , where N is the number of state variables. When the
input is the current, the system is current controlled, it can be described as

V = M(x1, x2, . . . , xN )i, (4)
dxk

dt
= gk(x1, x2, . . . , xN , i). (5)

The memristors that satisfy M(fk(x1, x2, . . . , xN )) = d(fk(x1, x2, . . . , xN ))/dq are called ideal memristors [25].
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Fig. 2. Characteristics of a memristor. (a) Memristor’s pinched hysteresis loop, (b) memristor’s constitutive relations.

Fig. 3. Representation of TiO2 memristor. The width of the bilayer is D meters and the doped region is w meters.

According to Leon Chua, any 2-terminal non-volatile memory device based on resistance switching can be considered
as a memristor [26]. However, in order to be considered a memristor the device needs to satisfy three properties [7]:

– The voltage-current plane must describe a pinched hysteresis loop.
– The area inside the loop have to decrease as frequency ω is increased.
– In the limit ω → ∞, the voltage-current plane shall describe a straight line, indicating ohmic behavior.

Memristive behaviors are generally identified by the pinched hysteresis loop, as shown in fig. 2(a), however, the
hysteresis loop varies as the frequency or the amplitude of the signal is varied. The appropriated quantities to define
a memristor is the constitutive relation, φ = f(q), as shown by the purple line in fig. 2(b). The relation between
memristance M and charge q can also identify a memristive signature (green line in fig. 2(b)) [26].

3 Linear drift model

The device, presented in 2008 by Strukov et al. [1], is composed of two layers, one doped by oxygen vacancies TiO2−x,
and other composed of undoped molecules of TiO2, as represented in fig. 3. The bilayer is D meters width and the
doped region is w(t) meters width. When voltage is applied between the layers, the free charged particles, called
dopants, move due to the electrical field, causing the variation in the size of the doped layer. This mechanism is also
responsible for the memristive behaviors.
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The behavior of HP TiO2 device can be described by the system:

R(x) = RONx + ROFF(1 − x), (6)
dx

dt
= ki(t)f(x), (7)

where RON is the resistance of the doped region, ROFF is the resistance of the undoped region, usually, ROFF � RON.
k is a constant that depends on the properties of the material, i(t) is the applied current, f(x) is called “window
function” and it is an artificial argument that guarantees the solution remains in the interval of physical meaning.
The variable x is the state variable, it is a normalization of the w width, such as: x = w/D and 0 < x < 1. Despite of
being a qualitative description, this model is of great interest because it can be derived from physical assumptions.

In eq. (7), when f(x) = 1, the state variable x is proportional to the electric current i(t), in this case, the dopants
are assumed to move in a linear drift at speed vD,

dx

dt
=

d(w/D)
dt

=
vD

D
,

dx

dt
= k

dq

dt
, (8)

where vD = [(μRON)/D]i(t) and μ is the dopant mobility. The parameters can be grouped in a single parameter
k = μRON/D2.

The general solution of eq. (8) is
x(t) = x0 + kq(t), (9)

where x0 is a parameter and depends on the boundary conditions. Replacing eq. (9) in eq. (6), we have

R(q) = R0 + kq(RON − ROFF),
R(q) = R0 − Δkq, (10)

where R0 = ROFF − x0ΔR and ΔR = ROFF − RON. Applying the Kirchoff’s Law in the circuit of fig. 3, we have

v(t) = R(q)
dq

dt
, (11)

φ(t) =
∫ t

−∞
V (τ)dτ, (12)

consequently,

φ(t) = R0q −
αq2

2
+ q0, (13)

where α = kΔR. The boundary condition q(0) = 0, implies q0 = 0. Equation (13) can be rewritten as

q =
R0

α

(
1 −

√
1 − 2αφ

R2
0

)
. (14)

The linear drift case is defined by eqs. (13) and (14), they describe the memristor behavior when the state variable
x is distant of the borders in x = 0 or x = 1. When the state variable x spends time in the vicinity of the borders, the
use of a window function, f(x) �= 1, is required. In this work, we used the Joglekar’s window function fp(x) [17],

fp(x) = 1 − (2x − 1)2p, (15)

where p is an integer parameter, p = 1, 2, . . . ,∞. This window function has the advantage of being simple, it can
provide analytical solutions and good convergence for numerical simulations.

For the case p = 1, the Joglekar’s window function can be rewritten as

f1(x) = 1 − (2x − 1)2 = 4x(1 − x). (16)

Substituting eq. (16) in eq. (7), we have

dx

dt
= 4kx(1 − x)

dq

dt
, (17)

1
x(1 − x)

dx

dt
=

d(4kq)
dt

, (18)

d
dt

ln
{

x

1 − x

}
=

d
dt

{4kq(t)}, (19)
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Fig. 4. Memristors’s pinched hysteresis loop: (a) linear drift case, (b) non-linear drift case. The analytical solution p = 1 is the
solution described by eq. (21) and the analytical solution p → ∞ is described by eq. (9). “T. RKM” is the Runge-Kutta-Merson
solution and “T. AB” is the Adams-Bashforth solution.

consequently

ln
{

Ax

1 − x

}
= {4kq(t) + B}, (20)

x =
Ce4kq

(A + Ce4kq)
, (21)

where C = eB . The coefficients A and C must to be defined such 0 < x < 1, in this case

A = 1 − x0, (22)
C = x0. (23)

When p → ∞, the system recovers the linear drift solutions (eqs. (13) and (14)).

4 Numerical simulations

In sect. 3, we presented a qualitative model to describe the memristor behavior. In this section, we compare the
analytical solutions1 with numerical and SPICE simulations. We tested two types of numerical methods: the Runge-
Kutta-Merson method, that is one-step, and the Adams-Bashforth method, that is multi-step. The details about the
numerical methods and SPICE simulations are described in appendix A and B, respectively. In all simulations was
used h = 0.001 as the integration step size. We fixed this value because it provides good results for a wide range of
system parameters.

4.1 Linear drift case

The linear drift cases are those where the state variable x is distant of the borders at x = 0 and x = 1. To analyze
this case, we use the same set of parameters used by Biolek et al. [16].

RON (Ω) ROFF (Ω) x0 V0 (V) f (Hz)

100 16000 0.25 1.2 1.0

Considering that a sinusoidal voltage, v(t) = V0 sin(2πft) is applied on the memristor, the pinched hysteresis loop for
this case is shown in fig. 4(a). When the window function parameter p = 1, all methods present the same solution.
When p = 10, we observe two different solutions, the SPICE and Adams-Bashforth results evolve to one solution and
the analytical and the Runge-Kutta results evolve to another.

1 The analytical solutions were first developed by Joglekar et al. [17].
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Fig. 5. Changes in the pinched hysteresis loop induced by phase: (a) linear drift case, (b) non-linear drift case. Simulations
with the Runge-Kutta-Merson method.

4.2 Non-linear drift case

Aiming to reproduce the non-linear drift case, we applied a sinusoidal voltage using the appropriate set of parameters
proposed by Biolek et al. [16]

RON (Ω) ROFF (Ω) x0 V0 (V) f (Hz)

100 5000 0.8 2.0 1.0

Different from the linear drift case, when we use p = 10, we do not observe the hysteresis loop, except for a very
unusual set of parameters. For p = 1, the solutions from Runge-Kutta-Merson method matches with the analytical
solution. Only setting the appropriate p parameters is not enough to observe the hysteresis loop in a robust way. The
desired solution is obtained through the adjust of the applied voltage phase, i.e., v(t) = V0 sin(2πft + θ). In fig. 4(b)
we see a slight difference between the solutions from the Runge-Kutta-Merson and Adams-Bashforth methods. In this
case, the solution from SPICE is different from the others. Besides, depending on the parameter set other types of
solutions can be observed. Sometimes, the solutions diverges, other times a straight line is observed (ohmic behavior)
or, in very few cases, other types of pinched hysteresis loops appear.

4.3 The effect of phase

As occurred in fig. 4(b), variation in the voltage phase can change the area of the hysteresis loop, as shown in fig. 5(a).
The phase changing can also lead to distinct solutions, as shown for the non-linear drift case in fig. 5(b). When the
phase is changed to θ = (5/10)π, the blue line in fig. 5(b), the hysteresis loop evolves to a straight line, indicating the
phase can switch the system from a memory to a memoryless state.

4.4 Unexpected solutions using Adams-Bashforth method

Some unexpected results appear when the amplitude of the voltage is varied. As shown in fig. 6(a), as the voltage is
varied the hysteresis loop rotates and goes to the second and forth quadrant. This effect is not verified when Runge-
Kutta-Merson method is used. A similar behavior happens when the sinusoidal voltage is replaced by a triangular
wave voltage, as shown in fig. 6(b). In these cases, the area of the hysteresis loops varies in a nonuniform manner. The
hysteresis loop in the second and fourth quadrants indicates the memristor is behaving as an active element [26]. As
memristors are passive elements, these type of solutions have no physical meaning.

4.5 Distortions due time evolution using Runge-Kutta-Merson method

Differences between Adams-Bashforth and Runge-Kutta-Merson methods are observed when we analyze the time
evolution of the solution. For the Runge-Kutta-Merson and the analytical solution, the hysteresis loop change as time
evolves. Black lines in figs. 7(a) and (b) describe the distortions for the linear and non-linear drift cases. In both cases
the pinched hysteresis loop evolves to a straigth line. The deformation of the hysteresis loop is slow for the linear
case and fast for the non-linear case. The solutions from Adams-Bashforth method, on the other hand, remains in
stationary state after a short transient time.
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Fig. 6. Effect of varying the amplitude in the linear drift case (a) of the sinusoidal voltage and (b) of the triangular wave
voltage.

Fig. 7. Distortions due to time evolution: (a) linear drift case, (b) non-linear drift case.

Fig. 8. MLC circuit representation.

4.6 MLC circuit

From this point is clear that Adams-Bashforth and Runge-Kutta-Merson can provide different solutions, however,
what happens when we analyze the memristor behavior in a circuit? To answer this question we compare the methods
in a MLC circuit. In this case, the memristor is coupled in series with an inductor and a capacitor, as shown in fig. 8.
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Applying the Kirchoff laws, the differential equation that describes the system is given by

L
di(t)
dt

+ Mi(t) + v(0) +
1
C

∫ t

0

i(τ)dτ = v(t), (24)

where L is the inductance, C is the capacitance, M is the memristance and v(t) is the applied voltage. To solve eq. (24)
we differentiate it with respect to t

L
d2i(t)
dt2

+ M(t)
di(t)
dt

+
i(t)
C

=
dv(t)
dt

. (25)

We separate the second-order differential equation of eq. (25) into two first-order differential equations,

z(t) =
di(t)
dt

, (26)

dz(t)
dt

=
1
L

(
−M(t)z(t) +

dv(t)
dt

)
− i(t)

ω2
0

, (27)

where ω0 = 1/
√

LC is the resonant frequency of the RLC circuit [27].
In our analysis, we apply a sinusoidal voltage in the circuit, v(t) = v0 sin(ωt), and the memristance M(t) is described

by eqs. (6) and (7). We observe that, there are no solutions for RON ∼ ROFF, and when RON is reduced the system
exhibits pinched hysteresis loop, as shown in fig. 9(a). For RON � ROFF the memristor behaves as a simple resistor,
hence the circuit behaves like a RLC circuit. To simulate the circuit of fig. 9 we used the following parameter set

RON (Ω) ROFF (Ω) x0 v0 (V) p L (H) C (F)

0.002 2 0.5 1.0 10 1 1

When the Adams-Bashforth method is used, besides the window function, it is necessary to include the conditions:

if x > 0.99, then x = 0.99,

if x < 0.01, then x = 0.01, (28)

otherwise the solution will diverge, the solutions are exhibited in fig. 9(a). A mismatch between the methods appear
when ω < ω0. As expected for memristor, its behavior evolves to a resistor when the frequency of the applied voltage
is increased. The area of the hysteresis loop reaches a maximum at ω = ω0, this can be explained by the fact that
the amplitude of the memristor voltage is maximum at this point, as shown in fig. 9(b). The voltage time series of
fig. 9(b) show that the voltage amplitude increases up to the case where ω = ω0, and after this point it decreases as
voltage frequency is increased.
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5 Conclusions

It is known that the model proposed by Strukov et al. [1] was introduced to qualitatively demonstrate the memristive
behaviors. In this paper, we did a meticulous analysis of the numerical simulations using two different numerical meth-
ods (Adams-Bashforth and Runge-Kutta-Merson). We compared the numerical simulations with analytical solutions
and SPICE simulations.

The results of sect. 4 raise a concern about the results obtained from numerical simulations. While the Runge-
Kutta-Merson method provided solutions that changes with time. The Adams-Bashforth solutions usually evolved to a
stationary state. When we compared the solutions with circuit emulators and analytical results, the Adams-Bashforth
described the circuit emulators solutions with more precision and the Runge-Kutta-Merson described the analytical
solutions better.

All methods evolved to similar solutions for the linear drift case, on the other hand, for the non-linear drift case,
when the state variable spends time close to the borders of the domain, each method can evolve to a different state.
Based on all the analyses we concluded that numerical simulations of memristor should be considered with caution.

The memristor coupled in series with an inductor and a capacitor preserves its pinched hysteresis loop. When the
voltage frequency is increased, ω � 1, the memristor behaves as a resistor. For low voltage frequencies values, ω < ω0,
we observe disagreement between the solutions of the methods considered in this work.

We thanks Araucaria Foundation, Capes (Finance code 001), CNPq, FAPESP (2015/07311-7) and UFVJM-PROACE for partial
financial support.

Publisher’s Note The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

Appendix A. numerical methods to solve differential equations

In this paper, to solve differential equations were used two methods, one based on the Runge-Kutta’s method and
other based on Adam’s method. Runge-Kutta’s based methods are widely used because they require no specific set
of initial conditions, demands low storage of data and the computational procedure is always the same [28]. Runge-
Kutta’s method are one-step methods, this means the former step depends only on the previous step, they are often
called self-started. In contrast, Adam’s based methods are multi-step, they require information about more than one
previous state. The additional information on multi-step methods are expected to increase accuracy and stability [28].

In this appendix, we will present methods to solve the initial value problem:

dy

dx
= f(x, y), (A.1)

y(x0) = y0. (A.2)

Runge-Kutta-Merson method

The Runge-Kutta-Merson method depends on 5 coefficients:

k1 = hf(xn, yn), (A.3)
k2 = hf(xn + h/3, yn + k1/3), (A.4)
k3 = hf(xn + h/3, yn + (k1 + k2)/6), (A.5)
k4 = hf(xn + h/2, yn + (k1 + 3k3)/8), (A.6)

k5 = hf

(
xn + h, yn +

1
2
(k1 − 3k3 + 4k4)

)
. (A.7)

In this case the solution for an equation like eq. (A.1) is given by

yn+1 = yn +
1
6
(k1 + 4k4 + k5). (A.8)

An advantage of this procedure is that if the differential equation (eq. (A.1)) is linear with x and y variables, then
the error ε can be estimated as [29]

ε ∼ 1
30

(2k1 − 9k3 + 8k4 − k5). (A.9)



Page 10 of 10 Eur. Phys. J. Plus (2019) 134: 102

Adams-Bashforth method

An alternative to the Runge-Kutta’s based methods are the Adam’s based methods that are multi-step. For Adams-
Bashforth method the numerical solution for eq. (A.1) will be [28]:

yn+1 = yn +
h

24
(55f(xn, yn) − 59f(xn−1, yn−1) + 37f(xn−2, yn−2) − 9f(xn−3, yn−3)), (A.10)

h is the integration step, the local error is of order ∼ h5 and global error of order ∼ h4.

Appendix B. SPICE simulation

In this work, to emulate electric circuits, was used LTSpice. LTSpice is a freeware software from Linear Technology
Corporation, now part of Analog Devices. The circuit was emulated using the SPICE code proposed by Biolek et
al. [16].
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