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ABSTRACT

On a rational magnetic surface, an isochronous bifurcation transforms one island chain into another chain with the same winding number.
This transformation has been the subject of recent studies in tokamak plasmas. Namely, visco-resistive magnetohydrodynamic simulations of
NSTX-U and DIII-D plasmas showed the onset of bifurcations with new magnetic isochronous islands for two competing helical perturba-
tions on the same rational magnetic surface. To investigate these bifurcations, we use a cylindrical plasma model, with first-order correction
for toroidicity, subject to externally applied magnetic perturbations, generated by a pair of resonant helical windings (RHWs) on the external
wall and superposed to a helical current sheet (HCS) located on a rational plasma surface. We numerically integrate the magnetic field line
equation and show that isochronous islands emerge when the perturbation created by the HCS increases. We present examples of such bifur-
cations on primary and secondary magnetic surfaces for different RHW configurations.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0212655

I. INTRODUCTION
In the phase space of twist Hamiltonian systems, the emergence

of different isochronous island chains on the same rational surface is
observed when multiple resonant perturbations with different wave
numbers and the same winding numbers are applied.1–3 All the con-
cerned islands in the chains, called isochronous islands,2 have the
same winding number, which means they have the same average speed
around an invariant circle. The transformation from one of these
chains to another occurs through bifurcations called isochronous.
Such isochronous islands and bifurcations have been found in several
systems—see Refs. 1–3 and references cited therein.

In tokamaks, the magnetohydrodynamics equations for the mag-
netic field lines can be, in general, described as a twist Hamiltonian sys-
tem after defining a suitable field line Hamiltonian.4 Thus, the
emergence of isochronous bifurcations can be expected for multiple
resonant perturbations with the same winding number, as considered
in Refs. 5 and 6. In a Poincar!e section, the magnetic island chains can
be obtained by integrating the field line equation.

Recently, studies with visco-resistive magnetohydrodynamic
(MHD) simulations have investigated the role of resonant magnetic

perturbations (RMPs) on the onset of magnetic islands in the isochro-
nous bifurcations at the NSTX-U tokamak.5,6 In Ref. 5, a series of
Poincar!e sections were calculated by following magnetic field lines for
two different approaches: (i) superposing the equilibrium axisymmet-
ric field with the externally applied magnetic perturbation, but without
considering the plasma response to this perturbation (the so-called
vacuum approach); and (ii) superposing the equilibrium axisymmetric
field with both the externally applied magnetic perturbation and the
field due to the response of a visco-resistive single-fluid plasma.
Perturbations create the reported islands due to the application of reso-
nant external coils on the plasma equilibrium perturbed by an internal
mode described by a linear resistive MHD approximation.5,6 These cal-
culations show the existence of island bifurcations. Evans et al.,6 how-
ever, have shown that island elongation is followed by a sequence of
isochronous bifurcations when the perturbation current is increased.

Experimental observation of isochronous island chains during
DIII-D plasma discharges has also been reported, reinforcing that fur-
ther studies on the impact of RMPs are required to control these heter-
oclinic structures.7 These studies described a bifurcation from
heteroclinic to homoclinic topology in DIII-D plasmas.
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To study these effects on magnetic topology, we use a model that
can generate isochronous bifurcations similar to the ones above when
two RMPs are superposed for a cylindrical plasma with first-order cor-
rection on toroidicity. The first perturbation is created by a pair of res-
onant helical windings (RHWs) located on the external wall. It is
usually applied to reduce wall erosion by generating a chaotic layer in
the plasma edge.8–13 The second perturbation is created by a helical
current sheet (HCS) located on a rational flux surface that acts as a
plasma current perturbation.14,15 Since a first-order correction on tor-
oidicity is applied to this cylindrical plasma model, an RMP field will
result in the formation of magnetic islands at the resonant rational sur-
face (the primary mode associated with the RMP) and also on the
neighboring rational surfaces (the secondary modes associated with
the RMP due to poloidal mode coupling induced by toroidicity).
Similarly to the study reported in Ref. 5, the resulting magnetic topol-
ogy around a rational surface in this work is a combination of primary
and secondary modes caused by RHWs and HCS. Here, we estimate
the current amplitude required for the onset of isochronous islands
around rational surfaces.

Additionally, the analytical expressions for the magnetic field
are obtained for a cylindrical plasma in equilibrium with first-
order corrections on toroidicity included and with the superposi-
tion of perturbations due to a pair of RHWs16 and an HCS.17–20

Solving the field line equations allows us to calculate the Poincar!e
maps for a plasma cross section, considering different combina-
tions of parameters for specified perturbations. We have identified
isochronous bifurcations located around rational flux surfaces, all
of them modifying the distribution of field lines similarly to the
bifurcations observed in visco-resistive MHD simulations5,6 and in
experiments.7

This paper is structured as follows: Sec. II presents the MHD
equilibrium for a cylindrical plasma with first-order correction due to
toroidicity. The magnetic field generated by a pair of RHWs and an
HCS is calculated in Secs. III and IV, respectively. Section V shows the
Poincar!e sections of field lines, while conclusions are presented in Sec.
VI. The Appendix details the numerical procedure used to calculate
the Poincar!e sections and to identify the isochronous bifurcations of
Sec. V.

II. EQUILIBRIUM
The static MHD equilibrium for a low beta cylindrical plasma is

described by the Grad–Shafranov equation in cylindrical coordinates
(r, h, z),17,18

1
r
@

@r
r
@W
@r

! "
¼ l0Jz Wð Þ; (1)

whereW is the magnetic poloidal flux, l0 is the vacuum magnetic per-
meability, and Jz is the current density. Within this approximation, Eq.
(1) can be obtained from the Grad–Shafranov equation as the lowest
order approximation in local coordinates, expanding in powers of
inverse aspect ratio.21

In this work, we suppose that Jz peaks at the plasma column cen-
ter (r¼ 0) and vanishes at the plasma edge,

Jz rð Þ ¼
4Ip
pa2

1$ r
a

! "2
" #c

; (2)

where Ip is the plasma current, a is the plasma radius, and c is a con-
stant. Since the plasma is confined inside a cylindrical chamber (radius
b), we also consider that a< b.

The equilibrium magnetic field (~B0) for a cylindrical plasma can
be written as

~B0 ¼ Bh
0~eh þ Bz

0~ez; (3)

where Bh
0 and Bz

0 are the angular and axial components, expressed in
T/m and T, respectively, and the vectors~er ,~eh, and~ez form a non-
normalized basis that satisfies the relation~ez &~er ¼~eh=r. The equilib-
rium magnetic field is calculated by solving Eq. (1) with the current
profile shown in Eq. (2), resulting in the following expression:

~B0 ffi
l0Ip
2pr2

1$ 1$ r2

a2

! "cþ1
" #

~eh þ
l0Ie
2pR0

~ez; (4)

where Ie is an equivalent current generating the toroidal magnetic field,
and 2pR0 is the periodic length of the cylindrical plasma along the z
axis.

In this work, we apply a toroidal correction to the axial compo-
nent of the equilibrium magnetic field,19

~B0 ffi
l0Ip
2pr2

1$ 1$ r2

a2

! "cþ1
" #

~eh þ
l0Ie

2p R0 þ r cos hð Þ~ez : (5)

The safety factor is defined as16

q rð Þ ¼
1

2pR0

ð2p

0

Bz
0

Bh
0
dh ¼ qc rð Þ

R0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0 $ r2

p ; (6)

where qc(r), the safety factor for a cylindrical plasma, is calculated by
the following expression:

qc rð Þ ¼
Ie
Ip

r2

R2
0

 !

1$ 1$ r2

a2

! "cþ1
" #$1

: (7)

The parameters used in Secs. III–VI are related to the operation
of the TCABR tokamak:22 Ip¼ 100kA, Ie¼ 4 MA, a¼ 0.2 m, R0¼ 0.6
m, and c¼ 3. Figure 1 shows the safety factor radial profile considering
Eq. (6) and the TCABR parameters. This figure also shows that radial
positions (r/a) 0.610, 0.800, and 0.925 are approximately associated
with safety factor values of 2, 3, and 4, respectively. In the following
sections, trajectories of magnetic field lines around these radial posi-
tions are analyzed.

III. RESONANT HELICALWINDINGS
A pair of RHWs generates an external perturbation that is super-

posed to the equilibrium magnetic field. It consists of two helical wires
located on the surface r¼ b separated by 180( and with current Ih in
opposing directions, as indicated in Fig. 2.16,23,24

We define the winding law as

uh ¼ mhh$ nh z=R0ð Þ ¼ constant; (8)

where mh and nh are the applied field’s poloidal and toroidal mode
numbers, respectively. The RHWs with mode (mh,nh) are resonant on
the surface, where q rhð Þ ¼ mh=nh.

The current density~J h is defined as
16–18
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~J h ¼ Ilhd r $ bð Þ d uh $ 0ð Þ $ d uh $ pð Þ
% &

~ehel; (9)

where Ilh ¼ Ih=ð2pbÞ is the perturbation current density, considering
b¼ 0.22 m, and~ehel is a vector defining the helix direction.

16–18

Although the current distributions in this work are located on a
surface—in Eq. (9), for instance, the surface is r¼ b—considering a
current layer of finite thickness would result in more realistic values
for the resonance amplitudes and the corresponding Poincar!e maps.
However, these alterations should not change the resonance sequence
and the observed bifurcations.

In order to calculate the magnetic field due to the RHWs (~Bh), we
use the fact that r )~Bhðr; h; zÞ ¼ 0 and write ~Bhðr; h; zÞ
¼ r/hðr; h; zÞ in the region r 6¼ b, resulting in the following equa-
tion:16–18

r2/h r; h; zð Þ ¼ 0: (10)

In the low beta plasma considered in this article, the solution of
Eq. (10) determines approximately the perturbing magnetic field in the
vacuum approximation, obtained by neglecting the effect of viscous
and resistive plasma reaction.

The solution of this Laplace equation is25,26

/h r; h; zð Þ ¼
Xþ1

kh¼$1

Xþ1
kz¼$1

Ckz ;kh Ikh kzbrð Þei khh$kzbzð Þ; (11)

where Ckz ;kh is a constant that can be calculated from boundary
conditions and Ikh kzbrð Þ is the modified Bessel function of the first
kind.18

Thus, the perturbing magnetic field ~Bh r; h; zð Þ; created by the
helical windings, can be calculated from the potential /h for the region
r< b,

Bh;r ¼
@/h r; h; zð Þ

@r

¼
Xþ1

kh¼$1

Xþ1

kz¼$1

Ckz ;khkzb
2

Ikh$1 kzbrð Þ þ Ikhþ1 kzbrð Þ
% &

ei khh$kzbzð Þ;

(12)

Bh;h ¼
@/h r; h; zð Þ

@h
¼ i

Xþ1

kh¼$1

Xþ1

kz¼$1
Ckz ;khkhIkh kzbrð Þei khh$kzbzð Þ;

(13)

Bh;z ¼
@/h r; h; zð Þ

@z
¼ $i

Xþ1

kh¼$1

Xþ1

kz¼$1
Ckz ;khkzbIkh kzbrð Þei khh$kzbzð Þ:

(14)

This perturbation excites the main mode (mh,nh) on the magnetic
rational surface associated with the safety factor q¼mh/nh and other
sideband modes due to the toroidal correction.

IV. PLASMA CURRENT PERTURBATION
In this work, a perturbation to the plasma current is repre-

sented as an RMP generated by a HCS located at the equilibrium
rational surface r¼ rs, with rs < b and q(rs)¼ms/ns (ms and ns here
are the mode numbers associated with this perturbation).15

Figure 3 shows a schematic diagram of the surfaces r¼ b and r¼ rs
with a representation of the helical direction in which the current
density is applied.

The current density related to the HCS is described by14,15,19

~J s ¼ jei msh$nsz=R0þ/pð Þd r $ rsð Þ~es; (15)

where j (in A/m) is the amplitude of the current density, /p is a phase
angle, and~es is the helical vector. To compare the amplitude j with
parameters such as the plasma current Ip, we also define the current
Is ¼ j2prs. The helical vector~es is defined as

~es ¼
asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2s a2s þ 1
p ~eh þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s a2s þ 1

p ~ez: (16)

In Eq. (16), the parameter as ¼ Bh
0=B

z
0 defines the helical direc-

tion of the equilibriummagnetic field on the radial position r¼ rs.

FIG. 1. Safety factor radial profile across the plasma column considering a cylindri-
cal plasma with toroidal correction.

FIG. 2. Schematic diagram of RHWs on the surface r¼ b. The red and blue wires
conduct current Ih in opposing directions.

FIG. 3. Schematic diagram of the HCS highlighting surfaces r¼ b (external wall,
shown in black) and r¼ rs (HCS, shown in red). The single helix wound around the
surface r¼ rs represents the direction in which the surface current density is
applied.
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The magnetic field due to the current sheet (~Bs) is calculated by
solving r )~Bsðr; h; zÞ ¼ 0, considering that~Bs r; h; zð Þ ¼ r/sðr; h; zÞ
for r 6¼ rs, which results in the following Laplace equation:18

r2/s r; h; zð Þ ¼ 0; (17)

whose solution is18,25,26

/s r; h; zð Þ ¼

Xþ1

kh¼$1

Xþ1

kz¼$1
Ci
kz ;kh Ikh kzbrð Þei khh$kzbzð Þ; if r < rs;

Xþ1

kh¼$1

Xþ1

kz¼$1
Ce
kz ;khKkh kzbrð Þei khh$kzbzð Þ; if r > rs;

8
>>>>><

>>>>>:

(18)

where Ci
kz ;kh

and Ce
kz ;kh

are constants calculated from the boundary
conditions and Ikh kzbrð Þ and Kkh kzbrð Þ are the modified Bessel func-
tions of the first and second kind, respectively.18

Thus, the perturbing magnetic field ~Bs r; h; zð Þ; created by the
internal current density, can be calculated from the potential /s in the
region r< rs as follows:

Bs;r ¼
@/s r; h; zð Þ

@r

¼
Xþ1

kh¼$1

Xþ1

kz¼$1

Ci
kz ;kh

kzb

2
Ikh$1 kzbrð Þ þ Ikhþ1 kzbrð Þ
% &

ei khh$kzbzð Þ;

(19)

Bs;h ¼
@/s r; h; zð Þ

@h
¼ i

Xþ1

kh¼$1

Xþ1

kz¼$1
Ci
kz ;khkhIkh kzbrð Þei khh$kzbzð Þ;

(20)

Bs;z ¼
@/s r; h; zð Þ

@z
¼ $i

Xþ1

kh¼$1

Xþ1

kz¼$1
Ci
kz ;khkzbIkh kzbrð Þei khh$kzbzð Þ:

(21)

In the region r> rs, the perturbing field components are

Bs;r ¼
@/s r;h;zð Þ

@r

¼$
Xþ1

kh¼$1

Xþ1

kz¼$1

Ce
kz ;kh

kzb

2
Kkh$1 kzbrð ÞþKkhþ1 kzbrð Þ
% &

ei khh$kzbzð Þ;

(22)

Bs;h ¼
@/s r; h; zð Þ

@h
¼ i

Xþ1

kh¼$1

Xþ1

kz¼$1
Ce
kz ;khkhKkh kzbrð Þei khh$kzbzð Þ;

(23)

Bs;z ¼
@/s r; h; zð Þ

@z

¼ $i
Xþ1

kh¼$1

Xþ1

kz¼$1
Ce
kz ;khkzbKkh kzbrð Þei khh$kzbzð Þ: (24)

This perturbation excites the main mode (ms,ns) on the magnetic
rational surface associated with the safety factor q¼ms/ns and other
sideband modes due to the toroidal correction.

V. NUMERICAL RESULTS
In this section, we analyze the effect of the superposition of two

perturbations—one generated by a pair of RHWs around the plasma
and the other one by an HCS, as modeled in Eq. (12)—on the mag-
netic field topology by solving the magnetic field line equation,

~B0 þ~Bh þ~Bs

' (
& d~l ¼~0; (25)

where d~l is an infinitesimal displacement along the field line.
The pair of RHWs is resonant to mode (mh,nh)¼ (2,1) and has a

perturbation parameter Ih/Ip¼ 0.4%, while the plasma current pertur-
bation is resonant to mode (ms,ns)¼ (8,2) and has amplitude j. The
chosen wave numbers are among those observed in usual tokamak dis-
charges. The toroidal correction of our cylindrical approach introduces
secondary sideband resonant modes interacting with the dominant
modes.

In this article, the “vacuum approximation” has been used to cal-
culate the magnetic field structure, although plasma response effects
may result in a screening (or even an amplification) of the external
perturbations. However, for low beta plasma and non-marginally sta-
ble modes, as considered here, this effect is not so noticeable.27,28

A set of initial values of radial and angular coordinates is chosen
at the plane z¼ 0, and Eq. (25) is integrated numerically to obtain the
Poincar!e sections showing the intersection of field lines with this plane.
The chosen wave numbers are among those observed in usual tokamak
discharges. The Appendix provides a detailed explanation of the
numerical procedure used to solve Eq. (25), generate the Poincar!e
maps, and identify the bifurcations.

A complete toroidal description would make the identification of
bifurcations more difficult than our cylindrical approach with toroidal
corrections, which introduces the sideband modes but underestimates
their amplitudes. In fact, for large-amplitude perturbations, the chaotic
area increases while the island size is reduced, making the identifica-
tion of bifurcations more difficult.

In the Poincar!e sections, we consider the isochronous island
chains (islands with the same winding number) created by the primary
and secondary modes. Thus, we analyze the island chains on the
q¼mh/nh magnetic surface due to the primary mode (mh,nh) gener-
ated by the external RHWs and the secondary mode (ms,ns) generated
by the internal plasma current perturbation. The competition between
these primary and secondary modes gives rise to a sequence of isochro-
nous bifurcations, on the considered rational surfaces, as the mode
amplitude changes. These bifurcations modify the number of island
chains formed by isochronous islands. As identified in Secs. VB–VE,
the changes in the island chains occur due to local bifurcations29 that
change fixed point stabilities and create new fixed points,3 changing
the number of island chains.

A. Islands created by resonant magnetic perturbations
Initially, we analyze the distribution of field lines across the z¼ 0

plane when the perturbation is generated only by RHWs (in this first
case, the perturbation due to the HCS is not considered) and then by
an HCS (in this second case, the perturbation due to the RHWs is not
considered).

Figure 4(a) shows the Poincar!e section associated with the first
case, considering Ih/Ip¼ 0.4% and Is¼ 0. Two primary magnetic
islands associated with the RHWs primary mode are formed at the
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q¼ 2 surface (r/a¼ 0.610). The toroidal correction applied to the axial
component of the equilibrium magnetic field causes smaller secondary
islands to appear on the neighboring rational surfaces: four magnetic
islands are located at the q¼ 4 surface (r/a¼ 0.925), while three islands
are observed at the q¼ 3 surface (r/a¼ 0.800).

When only the HCS is present, as shown in Fig. 4(b), eight pri-
mary magnetic islands are formed at the q¼ 4 surface (r/a¼ 0.925).
Secondary islands also form on different rational surfaces due to toroi-
dicity induced poloidal mode coupling. Note that two sets of isochro-
nous islands appear on both the q¼ 4 surface (r/a¼ 0.925—green and
magenta islands), associated with the HCS primary mode, and on the
q¼ 3 surface (r/a¼ 0.800—red and blue islands), associated with an
HCS secondary mode. In fact, as indicated in Fig. 4(b), field lines
located on the green islands do not intercept the magenta ones at the
q¼ 4 surface, while blue islands do not intercept the red ones at the
q¼ 3 surface.

When the superposition of perturbations due to RHWs and HCS
is considered, as shown in the Poincar!e section in Fig. 5, two main
magnetic islands are formed at the q¼ 2 surface (r/a¼ 0.610). Smaller
islands are formed on neighboring rational surfaces, indicating that the
trajectory of field lines is similar to the case without the HCS perturba-
tion, as shown in Fig. 4(a). The magnetic islands located around
r/a¼ 0.925 and r/a¼ 0.800, associated with safety factor values 4 and
3, respectively, are only slightly distorted compared to the Poincar!e
section in Fig. 4(a). However, as will be shown in the next figures, these
islands bifurcate, generating new islands if the amplitude Is is large
enough. In these two rational surfaces, we observe isochronous islands
when the perturbation is generated only by an HCS located at the
q¼ 4 surface (rs/a¼ 0.925), as shown in Fig. 4(b).

B. Bifurcations caused by plasma current perturbation
In this section, we consider the primary modes (mh,nh)¼ (2,1)

and (ms,ns)¼ (8,2) and present examples of topological bifurcations
that are generated when the current Is is increased and Ih is kept con-
stant. In all cases considered here, the perturbation is generated by
RHWs and HCS, with the phase angle (/p) equal to zero. The exam-
ples correspond to bifurcations observed at two different rational sur-
faces with q¼ 3 and q¼ 4.

When the Is/Ip is increased from 0.116% to 0.232%, while Ih/Ip
is kept constant at 0.4%, a bifurcation is observed at the q¼ 3 sur-
face (r/a¼ 0.800), as shown in the Poincar!e section in Fig. 6(a). In
this case, each of the three main magnetic islands (represented in
red), which also appear in Figs. 4(a) and 5, now contains two addi-
tional smaller isochronous islands (green and blue), with the mag-
netic topology resulting in a combination of secondary modes
associated with the RHWs (three red islands) and HCS [six iso-
chronous islands in blue and green, also seen in Fig. 4(b)]. Field
lines on the green region do not access or intercept the blue one.
The observed elongation and bifurcation of magnetic islands is
consistent with isochronous bifurcations observed experimentally7

and numerically investigated with resistive MHD simulations.5,6

Figure 6(b) shows an enlarged view of the Poincar!e section around
r/a¼ 0.800. When Is/Ip is increased to 4.65%, as shown in Fig. 6(c),
the green and blue islands become larger and, instead of the main
magnetic islands observed in Figs. 6(a) and 6(b), there is a thick
chaotic layer around r/a¼ 0.800, highlighting the predominant

FIG. 4. Poincar!e section of field lines for perturbation generated by (a) RHWs with (mh,nh)¼ (2,1) for Ih/Ip¼ 0.4% and (b) HCS with (ms,ns)¼ (8,2) for Is/Ip¼ 0.116%.

FIG. 5. Poincar!e section of field lines for RHWs with (mh,nh)¼ (2,1) and Ih/Ip
¼ 0.4% and plasma current perturbation modeled as an HCS with (ms,ns)¼ (8,2)
and Is/Ip¼ 0.116%.
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role of the HCS secondary mode (six isochronous islands) in shap-
ing the magnetic topology around this rational surface.

Figure 7 shows a series of Poincar!e sections of field lines around
the q¼ 4 surface (r/a¼ 0.925), considering that Is/Ip is modified in the
range from 0.291% to 0.407%, while the Ih/Ip is kept at 0.4% for all
cases. In Fig. 7(a), four magnetic islands (represented in magenta) are
located around r/a¼ 0.925, indicating that the RHW secondary mode
(four islands) is predominant on topology. The distortion of field lines
observed around r/a¼ 0.925 is similar to the modification of magnetic
islands around rational surfaces observed in resistive MHD simula-
tions (see Fig. 3 of Ref. 5).

When Is/Ip is increased to 0.314%, as shown in Fig. 7(b), a bifur-
cation is observed in the q¼ 4 surface: two small islands (green and
blue) are formed inside the main ones (magenta) around r/a¼ 0.925,
which is also the region where two sets of isochronous islands are
located when only the perturbation due to the HCS is considered, as
shown in Fig. 4(b). In Fig. 7(c), it is shown that, when Is/Ip is modified
to 0.320%, another bifurcation is observed: the secondary (green and
blue) islands are completely separated from the main islands
(magenta), and they are delimited by a magnetic surface (red) that
does not connect to the main islands. Thus, we have one chain with 4

islands and the other with 8, a total of 12 islands. However, when the
Is/Ip is increased to 0.407%, only two sets of isochronous islands are
observed around r/a¼ 0.925, represented in magenta (4 islands) and
red (4 islands) in Fig. 7(d). In this case, the influence of the HCS sec-
ondary mode, characterized by two sets of 4 isochronous islands, is
predominant on the magnetic topology [as observed in Fig. 4(b) for
Ih¼ 0], without the secondary islands created by the RHWs in
Fig. 4(a) for Is¼ 0.

Considering that a bifurcation is observed around the ratio-
nal surface with q¼ 3 when Is/Ip¼ 0.232% and that another set of
isochronous islands is observed around the surface with q¼ 4
when Is/Ip* 0.314%, our results are consistent with those
reported in Ref. 5, in which isochronous bifurcations are
observed on different rational surfaces as the perturbation
parameter was increased.

Figure 8 shows an enlarged view of the Poincar!e sections in Fig. 7
in the region 0.923+ rs/a+ 0.929 and 0.25 + h/(2p)+ 0.35, consider-
ing the same perturbation parameters of Fig. 7. The described bifurca-
tion process can be confirmed; in other words, Figs. 8(a)–8(d),
clarifying the observed local bifurcations, are magnifications of Figs.
7(a)–7(d) around a fixed point.

FIG. 6. Poincar!e sections for RHWs with (mh,nh)¼ (2,1) and Ih/Ip¼ 0.4%, and HCS with (ms,ns)¼ (8,2) and (a) Is/Ip¼ 0.232%, showing a region around rh/a¼ 0.610, associ-
ated with safety factor q(rh)¼ 2; (b) Is/Ip¼ 0.232%, showing a region around r/a¼ 0.800, associated with safety factor q(r)¼ 3; and (c) Is/Ip¼ 4.65%, showing a region around
r/a¼ 0.800.
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C. Bifurcation caused by plasma current perturbation
with finite phase angle

In Sec. VB, we analyzed the effect of increasing Is on the distribu-
tion of field lines, supposing that the phase angle in Eq. (12) was
/p ¼ 0. We now study the effect on the magnetic topology of a pertur-
bation created by an HCS, located at the surface r/a¼ 0.925 with /p
¼ p and (ms,ns)¼ (8,2), superposed to a perturbation created by a pair
of RHWs located at r¼ b with (mh,nh)¼ (2,1). While Ih/Ip is kept con-
stant at 0.4%, we change the parameter Is/Ip from 0.116% to 0.232%
and analyze the Poincar!e sections of field lines, as shown in Fig. 9.

Figure 9(a) shows that four secondary islands (associated with the
RHWs) are formed, when Is/Ip¼ 0.116%, at r/a¼ 0.925. When Is/Ip is
modified to 0.232%, a bifurcation is observed, as shown in Fig. 9(b):
small islands (represented in green and blue) are formed inside the
main magnetic islands (magenta). There are, however, two main dif-
ferences between the bifurcations observed in Figs. 7(b) (null phase
angle) and 9(b) (finite phase angle): first, the two magnetic islands rep-
resented as green and blue surfaces in Fig. 9(b), for finite phase angle,
appeared when the current Is was set at a value approximately equal to

74% of the one associated with Fig. 7(b); second, the small islands
(green and blue) in Fig. 7(b) are located outside the main magnetic
islands [represented in magenta in Fig. 7(b)], while in Fig. 9(b), for a
finite phase angle, they are formed inside the main islands.

This example shows that the phase angle between the two per-
turbing currents, which can be adjusted by modifying the RHW posi-
tion, alters the bifurcations in the plasma.

D. Islands created by reversed RHWs without plasma
current perturbation

The previous results were calculated considering that the RHWs
were placed outside the plasma at r¼ b with the current described by
Eq. (9). To investigate the effect of an HCS on field line topology when
the placement of electric wires around the external surface is modified,
the following current density for the RHWs is now considered:

~J h ¼ Ilhd r $ bð Þ d uh $ pð Þ $ d uh $ 0ð Þ
% &

~ehel: (26)

The current expressed in Eq. (26) has a reversed direction
in comparison to the one shown in Eq. (9). Considering that

FIG. 7. Poincar!e sections of field lines in the region around r/a¼ 0.925, for RHWs with (mh,nh)¼ (2,1) and Ih/Ip¼ 0.4%, and for HCS with (ms,ns)¼ (8,2) and Is/Ip equal to (a)
0.291%, (b) 0.314%, (c) 0.320%, and (d) 0.407%. The magenta islands correspond to those originally generated by the RHWs around r/a¼ 0.925, while the blue and green
islands are formed when the current associated with the HCS is increased.
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Ih/Ip¼ 0.4%, and for RHWs with (mh,nh)¼ (2,1), Fig. 10 shows the
Poincar!e section of field lines for the z¼ 0 plane, initially without the
effect of the HCS. In Fig. 10(a), two islands are formed around
r/a¼ 0.610, and smaller islands are generated around the radial posi-
tions with rational safety factor values due to the inclusion of toroidic-
ity correction on the axial component of the magnetic equilibrium
field. These islands are similar to the results shown in Fig. 4(a), with
the difference that the positioning of magnetic islands is shifted along
the angular direction due to the modification of electric wires on the
external wall. In Fig. 10(b), we show that four magnetic islands, repre-
sented in magenta, are formed around rs/a¼ 0.925. In the following

section, we analyze an isochronous bifurcation observed around this
region when the HCS is considered.

E. Bifurcation caused by plasma current perturbation
with reversed RHWs

The influence of two perturbations on the distribution of magnetic
field lines is analyzed in this section: the first one is caused by a pair of
RHWs with (mh,nh)¼ (2,1) whose current is described by Eq. (26),
while the second one is generated by a plasma current perturbation
modeled as an HCS with zero phase angle (/p ¼ 0) and (ms,ns)¼ (8,2).

Figure 11 shows the Poincar!e plot of field lines for two cases: in
the first one, shown in Fig. 11(a), Is/Ip is equal to 0.116%, while in the
second one, shown in Fig. 11(b), Is/Ip is equal to 0.174%. In Fig. 11(a),
the magnetic islands are distorted around r/a¼ 0.925 in comparison
to the Poincar!e section shown in Fig. 10(b), with the RHW secondary
mode shaping the distribution of magnetic islands around this rational
surface. When Is/Ip is increased to 0.174% as shown in Fig. 11(b), the
effect of the HCS secondary mode on magnetic topology is amplified,
and a new set of four red magnetic islands around r/a¼ 0.925 is
observed. This type of bifurcation, caused by the HCS, is similar to the
ones reported in numerical and experimental studies.5–7

VI. CONCLUSIONS
In plasmas confined in large aspect ratio tokamaks, represented

as a cylindrical geometry with toroidicity included as a first-order cor-
rection, we considered magnetic islands created by a pair of resonant
helical windings (RHWs), located on the external wall, and a helical
current sheet (HCS), representing a plasma current perturbation near
the plasma edge. Separately, these perturbations created resonant
islands on the plasma’s rational magnetic surfaces. When the two per-
turbations acted together, the resultant island’s configuration changed
through bifurcations as the current amplitudes were varied. In this
work, we investigated isochronous bifurcations on a given rational
magnetic surface for which the previous and final islands are isochro-
nous, i.e., have the same winding number.

Poincar!e sections of magnetic field lines were calculated by inte-
grating the field line equation, and topological bifurcations were
observed on sets of magnetic islands when one perturbing current was
modified. Isochronous bifurcations were triggered when the current
amplitude associated with the HCS was large enough while the current
on the RHWs was kept constant, reorganizing field lines on magnetic
islands near the radial position where the HCS is located. In these

FIG. 8. Poincar!e sections of field lines in the region 0.923+ r/a+ 0.929 and 0.20
+ h/(2p)+ 0.40, for RHWs with (mh,nh)¼ (2,1) and Ih/Ip¼ 0.4%, and for HCS with
(ms,ns)¼ (8,2) and Is/Ip equal to (a) 0.291%, (b) 0.314%, (c) 0.320%, and (d)
0.407%. The magenta islands correspond to those initially generated by the RHWs
around r/a¼ 0.925, while the blue and green islands are formed when the current
associated with the HCS is increased.

FIG. 9. Poincar!e sections of field lines in
the region around r/a¼ 0.925, for RHWs
with (mh,nh)¼ (2,1) and Ih/Ip¼ 0.4%, and
for HCS with (ms,ns)¼ (8,2), finite phase
angle (/p ¼ p) and Is/Ip equal to (a)
0.116% and (b) 0.232%. The magenta
islands correspond to those initially gener-
ated by the RHWs around r/a¼ 0.925,
while the blue and green islands are
formed when the current associated with
the HCS is increased.
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bifurcations, the number of island chains changes from the one deter-
mined by the RHW resonance to the other determined by the HCS
resonance.

Isochronous bifurcations were also observed when the current in
the HCS was increased and displaced 180( along the angular direction,
resulting in pairs of small magnetic islands appearing inside the main
magnetic islands where the HCS is located. These bifurcations also
appeared when the current on the RHWs was reversed; in this case,
sets of isochronous islands were observed around the surface where
the HCS is located.

The isochronous bifurcations presented in this work are similar
to the ones observed in visco-resistive MHD simulations of NSTX-U
plasmas and observed in DIII-D plasmas. In further research, our
results may yield additional insight into how plasma transport is
affected by isochronous bifurcations in these and other machines.
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APPENDIX: NUMERICAL PROCEDURES

In this section, we present the numerical procedure used to cal-
culate the Poincar!e maps shown in Sec. V. The displacement along
a magnetic field line was numerically calculated by solving Eq. (25)
with the Dormand and Prince method30 with order 5(4) and an
adaptive step. In order to calculate the Poincar!e map for the plasma
cross section z¼ 0, we choose a set of NIC initial conditions (r, h, z)
¼ (ri,hi,0), with i¼ 1, 2, …, NIC. Then, Eq. (25) is solved NIC times
from z¼ 0 to z¼ 2pR0Nt, where Nt is the number of turns along the

FIG. 10. Poincar!e sections of field lines
for reversed RHWs with (mh,nh)¼ (2,1)
and Ih/Ip¼ 0.4%, showing the region (a)
around rh/a¼ 0.610, associated with
safety factor q(rh)¼ 2, and (b) an
enlarged view around r/a¼ 0.925, associ-
ated with safety factor q(r)¼ 4. The
magenta islands correspond to the origi-
nally generated islands by the RHWs
around rs/a¼ 0.925.

FIG. 11. Poincar!e sections of field lines
for reversed RHWs with (mh,nh)¼ (2,1)
and Ih/Ip¼ 0.4%, and for HCS with (ms,
ns)¼ (8,2) and Is/Ip equal to (a) 0.116%
and (b) 0.174%.
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periodical length 2pR0. Each time the magnetic field line crosses the
z¼ 0 section, the corresponding position (r, h) is computed, and the
Poincar!e map is plotted with the set of Nt)NIC points.

As an example of this calculation, Fig. 12 shows the Poincar!e
map calculated with NIC¼ 22 and Nt¼ 2000 considering the super-
position of two perturbations: a pair of RHWs with (mh,nh)¼ (2,1)
for Ih/Ip¼ 0.2% and an HCS with (ms,ns)¼ (8,2) for Is/Ip¼ 0.058%.

As shown in Fig. 12, magnetic islands are formed around radial
positions with rational safety factor values. After a Poincar!e map
such as that in Fig. 12 was obtained, we identified isochronous
bifurcations (as those presented in Sec. V) by increasing the param-
eter Is/Ip and observing the distribution of magnetic islands around
rational surfaces while the parameter Ih/Ip is kept constant.

While the results presented in Sec. V were obtained for
Ih/Ip¼ 0.4%, similar isochronous bifurcations were observed for
Ih/Ip + 1.0%. However, Ih/Ip¼ 0.4% was chosen in this work
because it is close to values commonly observed in discharges, and
higher values of this parameter would result in chaotic regions,
which are not the focus of this study. In fact, for Ih/Ip¼ 0.4% and
/p ¼ 0 (with Is/Ip + 0.6%, as shown in Sec. V B), we can estimate

numerically, from Poincar!e maps, a stochastic parameter (g) similar
to the Chirikov parameter:31 considering the magnetic island chains
associated with q(r4)¼ 4 and q(r9/2)¼ 9/2, we estimate their half-
widths d4 and d9/2 and their radial positions r4 and r9/2, respectively.
We define

g ffi
d4 þ d9=2
r9=2 $ r4

: (A1)

Figure 13 shows this stochastic parameter estimated for Ih/
Ip¼ 0.4% and /p ¼ 0.

Since g < 1 in the range Is/Ip + 0.6%, neighboring separatrices
do not intercept for the magnetic islands chains associated with
q(r4)¼ 4 and q(r9/2)¼ 9/2.
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