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A B S T R A C T

In this work, we propose a parametric perturbation in the plasma production rate of the Rypdal model. This
low-dimensional Lorenz-like system is derived from a two-field model for transport in Helimak magnetically
confined plasmas. We analyze the stability of the equilibrium points and study the emergence of chaos in
the disturbed system. As a perturbation result, the attractor structure is modified, and shrimp-shaped domains
occur in the parameter plane, where there are periodic spirals immersed in the chaotic region, both behaviors
characterized by the largest Lyapunov exponent. Along these periodic domains, we identify the bistability of
attractors, period-doubling cascades, and a route to chaos via bifurcations and collisions of periodic orbits. By
the isospikes per period, we schematize the hierarchical organization of periodic attractors into the shrimp
spirals.
1. Introduction

Deterministic dynamical systems are widely used as mathematical
models in several areas of contemporary science, such as computa-
tional neurodynamics [1], epidemiological models [2,3], and confined
plasmas [4], either by means of continuous-time or discrete-time ap-
proaches. Investigations of nonlinear systems expand the comprehen-
sion of the modeled phenomena and the knowledge about chaotic
dynamics. Since Lorenz’s precursor work [5], a great diversity of au-
tonomous continuous-time nonlinear systems have been studied using
computer simulations. These systems, with just three first-order ordi-
nary differential equations, show rich dynamics, such as the Rössler
system [6], Rikitake’s geomagnetic model [7], and Chua’s circuit [8],
to name a few paradigmatic ones. Nowadays, variations of these models
including parametric perturbations have been proposed [9,10].

The parametric configuration plays a determining role in the evo-
lution of nonlinear dynamical systems. Understand the parameters
influence on the transitions between periodic and chaotic behavior is
indispensable to deepen the knowledge of these models, with applica-
tions to countless phenomena. As tools to characterize solutions of a
given system, it is usual to analyze the Lyapunov spectrum [11,12], the
period [13–15], or the number of isospikes [16,17]. These quantities
are typically represented in plane sections of parameter space if there
are two or more parameters, thus providing an optimal and simple
visualization of the dynamic behavior due to the parameter values. In
the numerical approach, Lyapunov exponents are broadly used, as they
allow an easy distinction between periodic or quasiperiodic behavior
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from chaotic dynamics. For a more detailed characterization of the
dynamics in continuous-time systems, the Lyapunov spectrum and the
isospike count can be analyzed together.

It is known that both continuous and discrete-time systems can
exhibit periodic regions in the form of shrimps immersed in chaotic
areas of the parameter plane [12,15,16,18,19]. Perhaps more fasci-
nating, these shrimp-shaped domains can be organized into spiral
structures [18,20–22], a phenomenon that has a close relationship with
the existence of homoclinic connections [23,24] involving saddle-foci
that satisfies the single Shilnikov criterion [18,25]. Barrio et al. [18]
demonstrate that a line passing through the superstable crosses, into
the spiral shrimp-shaped domains, delimits a topological change in the
chaotic attractors structure.

Periodic parametric perturbations in the diffusionless Lorenz equa-
tions, presenting similarities with the Rypdal model, as a chaos control
mechanism was extensively studied by Yang and Wei [26,27]. In this
work, we propose an exponential parametric disturbance on the Rypdal
model [28,29], resulting in a new unstable equilibrium point, causing a
significant enrichment of the dynamics and maintaining the symmetry
properties of the original system.

As primary motivation, we investigate the dynamics into the shrimp-
shaped domains constituting the spiral structure observed in a pa-
rameter plane of the disturbed model. We analyze the Lyapunov
exponents together with counting local maxima per period (isospikes)
and determine the coexistence regions of the periodic attractors in
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symmetric-pairs [30]. Additionally, to draw a general idea of the
process that leads to the chaos emergence in the disturbed model, we
obtain and study bifurcation diagrams along curves in the parameter
plane as well as show a schematic diagram of these routes to chaos.

This article is organized as follows: Section 2 deal with the original
Rypdal model. We determine the equilibrium points stability and ana-
lyze Lyapunov spectra together an isospikes count along the parameter
plane. In Section 3, we propose a parametric disturbance to the Rypdal
model and obtain the fixed points stability, as well as investigate
the disturbed system dynamics. We talk about the two distinct routes
to chaos in the parameter plane and bistability domains. Section 4
summarizes our main results.

2. Rypdal model

The Rypdal model has been proposed to describe the behavior
of magnetically confined plasmas in Helimaks [28]. It consists of a
bi-parametric system of three ordinary differential equations given by

̇ = −𝜈𝑥 − 𝑦,

�̇� = 𝑥(1 − 𝑧),

�̇� = 𝑥𝑦 + 𝑠,

(1)

where 𝑥 and 𝑦 are the potential and perturbed electron density am-
plitudes, respectively, and the variable 𝑧 quantifies the strength of the
pressure profile gradient that drives instability. It is related with the
anomalous flux due to the convection cells. This model is symmetric
under the transformation

𝑇 ∶ (𝑥, 𝑦, 𝑧) ↦ (−𝑥,−𝑦, 𝑧), (2)

i.e., the equations system are invariant under a 𝜋-rotation around the
𝑧-axis [31]. The parameter 𝜈 represents the momentum loss resulting
from collisions between ions and neutral particles, whereas 𝑠 is the
effective plasma production rate. In this study, we consider 𝑠 > 0. Since
𝜈 > 0, the system (1) is dissipative: given the flow 𝜙 = (�̇�, �̇�, �̇�), it is
verified that 𝛁 ⋅ 𝜙 = −𝜈 < 0.

2.1. Fixed points analysis

From the equilibrium condition �̇� = �̇� = �̇� = 0 applied to the
system (1), only two fixed points are found:

𝑁±
(

𝑥∗±, 𝑦
∗
∓, 𝑧

∗) = 𝑁±

(

±
√

𝑠
𝜈
,∓

√

𝑠𝜈, 1
)

. (3)

We evaluate the linear stability of these equilibria. It is determined
by the eigenvalues of the system’s Jacobian matrix J, calculated at 𝑁±.
We get

J||
|𝑁±

=
⎡

⎢

⎢

⎣

−𝜈 −1 0
0 0 ∓

√

𝑠∕𝜈
∓
√

𝑠𝜈 ±
√

𝑠∕𝜈 0

⎤

⎥

⎥

⎦

, (4)

whose characteristic polynomial is independent of the specific fixed
point, due to the symmetry (2), as follows:

𝑃 (𝜉) = 𝜉3 + 𝜈𝜉2 + 𝑠
𝜈
𝜉 + 2𝑠. (5)

Since 𝑠, 𝜈 > 0, result one real eigenvalue 𝜉1 < 0 and the others 𝜉2,3
as a complex conjugate pair with positive real part. Thus, relative to
𝑁± there is a one-dimensional stable and a two-dimensional unstable
invariant manifolds. Therefore, both equilibrium points are unstable,
being saddle-foci of (1,2)-type [20].

Given an initial condition 𝐶0(𝑥0, 𝑦0, 𝑧0) in the systems phase space,
the trajectory converges to an attractive orbit evolving in turns around
the unstable equilibria 𝑁±. Fig. 1 shows four attractors obtained from
𝐶0(0.01, 0.01, 1) for different parametric configurations. To reach them,
we numerically integrate the system (1) using the Fehlberg Runge–
Kutta 5(6) method [32] with a time step of 10−3. The first 5 × 107
2

Fig. 1. Rypdal model attractors around the unstable equilibria 𝑁± (red points). Used
the same initial condition 𝐶0(0.01, 0.01, 1) and the parameter 𝑠 = 1 in all panels.
Discarded a transient of 5×107 integration steps. Periodic attractors of: (a) period-1 for
𝜈 = 0.4678; (b) period-3 for 𝜈 = 0.7443. Chaotic attractors of: (c) Sprott B typical shape
for 𝜈 = 0.9812; (d) Burke-Shaw type obtained with 𝜈 = 1.40449. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

iterations were discarded as transient and the subsequent 5 × 105

trajectory points were used. In Figs. 1(a) and (b) we present two
periodic orbits. Regarding the similarity between system (1) and Sprott
B [33,34], evidenced by the transformations discussed in Section 2.2.1,
in Fig. 1(c) we show a typical Sprott B chaotic attractor. While Fig. 1(d)
displays a Burke-Shaw type [31,35] chaotic one. Just like the Sprott B
system, the Rypdal model does not present Lorenz-like attractors [34,
35].

2.2. Parameter plane 𝑠 × 𝜈

The parameters influence on the Rypdal model dynamics is evi-
denced by the Lyapunov exponents and isospikes diagram [16], both
computed along the 𝑠 × 𝜈 parameter plane shown in the top panels
Fig. 2. In each of the three, a color code represents the different
measurements taken. We evaluate the parameter ranges 𝑠 ∈ (0, 10] and
𝜈 ∈ (0, 3.2] discretized in a uniform grid of 1000 × 1000 points. The
Lyapunov spectrum was determined using the algorithm described by
Wolf et al. [36,37], with the exponents ordered 𝜆1 ≥ 𝜆2 > 𝜆3. Isospikes
were counted as the number 𝑝 of local maxima in the 𝑥 variable series
during a full lap in periodic solutions, which is referred to as 𝐼𝑝 along
this paper.

There is a technical consideration on the Lyapunov spectrum com-
putation, for which the Fehlberg method, or another similar low-cost
integration scheme, did not provide convergence, resulting in spurious
fluctuations. Considering this fact, to evolve the system (1), we imple-
ment two numerical integration stages. First, we adopt the Fehlberg
Runge–Kutta 5(6) method with a constant time step of 10−2 and discard
as transient 105 iterations. This stage reduces the computational cost for
orbit convergence. In sequence, we continue the integration with the
Prince-Dormand Runge–Kutta 8(7) method [38], maintaining the time
step and with a transient of 2 × 106 iterations. The Lyapunov spectrum
was computed over the subsequent 2×106 iterations. We take as initial
condition 𝐶0(0.01, 0.01, 1).

Fig. 2(a.1) shows the largest Lyapunov exponent when 𝜆1 > 0
(signature of chaotic dynamics) in shades from red to yellow. While
in periodic cases (𝜆1 = 0), the second exponent 𝜆2 ≤ 0 is shown in
shades from cyan to black. The central chaotic band is bordered by a
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Fig. 2. Top panels show the parameter plane 𝑠×𝜈 discretized in a uniform grid of 1000 × 1000 points. Three different measurements are color-coded, being: (a.1) largest Lyapunov
exponent 𝜆1 > 0 for chaotic solutions (gradient from red to yellow) and 𝜆2 ≤ 0 (from cyan to black) in the periodic cases; (a.2) isospikes in 𝑥 variable for periodic attractors,
chaotic bands are in black color, and isospike values besides the numeric legend are in gray color; (a.3) periodic attractors coexistence in dark blue and single solution in light
blue color. (b) Bifurcation diagram and Lyapunov spectrum along the dashed line 𝑠 = 1 (present in the upper panels). Local maxima of 𝑥 for attractors obtained from the initial
condition 𝐶0(0.01, 0.01, 1) (black dots) and 𝐶 ′

0(−0.01,−0.01, 1) (orange dots). Exponents: 𝜆1 (magenta line), 𝜆2 (blue line) and 𝜆3 (green line). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
𝑥

cubic relationship between the parameters 𝑠 and 𝜈, a fact discussed at
the end of this section (see Section 2.2.1). There are narrow periodic
windows throughout this wide chaotic range. Fig. 2(a.2) display the
isospikes counting, chaos is represented in black color (C), and isospike
values besides the numeric legend are in gray color (OI). On the right of
this figure, there is a bifurcation from 𝐼1 (white color) to 𝐼2 (red color)
and, on the other side of the white stripe, a isospike change from 𝐼1 to
𝐼3 (magenta). Following a vertical line from 𝑠 = 0 to 𝑠 = 10, a sequence
of different isospike values is observed in 𝜈 = 3.2.

Another characteristic of the Rypdal model, due to the system’s
symmetry transformation (2), is the occurrence of bistability for certain
parametric configurations, where the system exhibits a symmetric-pair
of attractive solutions [31,39]. In these cases, two distinct attractors
A ≠ A ′ coexist, such that the symmetry transformation (2) leads
𝑇 (A ) = A ′ and 𝑇 (A ′) = A . Fig. 2(a.3) distinguishes regions with
only one periodic attractor (light blue) from those with bistability (dark
blue). Regarding the attraction basin B of A (and B′ of A ′), there is
𝑇 (B) = B′ and vice-versa.

Fig. 2(b) presents a bifurcation diagram and the Lyapunov spectrum
along the horizontal dashed line 𝑠 = 1, marked in (a.1–3) panels. We
consider the local maxima (𝑥max) of 𝑥 variable time series and evolve
the system from the initial conditions 𝐶0 (black dots) and 𝑇 (𝐶0) (orange
dots). In this way, bistable 𝜈 intervals can be identified. The Lyapunov
spectrum coincides for A and A ′, being the magenta line for 𝜆 , blue
3

1

for 𝜆2 and green for 𝜆3. For 𝜈 values close to zero, the bifurcation
diagram shows a periodic orbit with just one spike per period (𝐼1
attractor). Subsequently, with 𝜈 ≈ 0.52, a pitchfork bifurcation takes to
the coexistence of two 𝐼1 symmetric attractors. Following this, a period-
doubling bifurcations cascade occurs, leading to a chaotic range. With
𝜈 ≈ 0.6, a sudden expansion of the chaotic attractor is due to an internal
crisis [40]. Along the chaotic region, the system exhibits an infinite
number of periodicity windows, some of which show bistability. For
values higher than 𝜈 ≈ 1.475, it is observed a crises sequence involving
period-doubling bifurcations and isospikes increment rule in which the
periodic symmetric-pair merges into one single attractor.

2.2.1. Rescaling variables
Before rescaling the system (1), we consider the linear substitution

of 𝑧 to (𝑧 − 1). The scale transformation involves the parameter 𝑠 and
also applies to time [39], being:

𝑅𝑠 ∶ (𝑥, 𝑦, 𝑧, 𝑡) ↦ (𝑠1∕3𝑥, 𝑠2∕3𝑦, 𝑠2∕3𝑧, 𝑠−1∕3𝑡). (6)

Thus, the following system is obtained:

̇ = −𝜈′𝑥 − 𝑦,

�̇� = −𝑥𝑧,

�̇� = 𝑥𝑦 + 1,

(7)

′ −1∕3
with only one control parameter 𝜈 = 𝜈𝑠 .
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This transformation does not change the system form. All attractors
along the curve 𝑠 = 𝐶𝜈3, with 𝐶 being a constant, exhibit the same
behavior in terms of stability and isospikes. This result explains the
curves observed in the plane 𝑠×𝜈 shown in Figs. 2(a.1–3). The similarity
between Eqs. (7) and the Sprott B system is notable [33]. Under the
appropriate linear transformations [34], a Sprott B is obtained from
the Rypdal model, for example, replacing 𝑥 to −𝑥 in Eqs. (7).

3. Modified rypdal model

In this section, we propose a parametric exponential disturbance in
the third equation of the Rypdal model. This perturbation acts as a
control on plasma generation and can be interpreted as the presence
of a channel that leads to a reduction in the plasma production rate.
Such control is proportional to the pressure profile gradient.

The proposal consists of replacing the solitary parameter 𝑠 according
to:

𝑠 ↦ 𝑠(1 − 𝜀𝑒𝛾𝑧), (8)

where an exponential response occurs depending on the variable 𝑧.
Being 0 < 𝛾 and 0 < 𝜀 ≪ 1. Such modification to the system (1), with
the previous replacement of 𝑧 to (𝑧 − 1), leads to

̇ = −𝜈𝑥 − 𝑦,

�̇� = −𝑥𝑧,

�̇� = 𝑥𝑦 + 𝑠(1 − 𝜀𝑒𝛾𝑧),

(9)

Just like the original model, the above system is dissipative: the flow
divergence is 𝛁 ⋅ 𝜙 = −(𝜈 + 𝑠𝜀𝛾𝑒𝛾𝑧) < 0. It is worth noting that the
symmetry under the transformation (2) is maintained.

3.1. Fixed points analysis

The equilibrium condition applied to the exponentially disturbed
Rypdal model (9) gives us three fixed points:

𝑂
(

0, 0,−1
𝛾
ln 𝜀

)

and 𝑁±

(

±
√

𝑠′
𝜈
,∓

√

𝑠′𝜈, 0

)

.

The 𝑁± equilibria are the same form as those obtained for the original
model, with 𝑠′ = 𝑠(1−𝜀), see Eq. (3). A new feature is the third point 𝑂,
which exists only in the disturbed model. This new fixed point affects
the system dynamics, a subject discussed throughout this section.

To analyze the stability of the equilibrium points found, we proceed
by determining the eigenvalues of the system (9) Jacobian matrix
evaluated at each one. For the point 𝑂, we get:

J||
|𝑂

=

⎡

⎢

⎢

⎢

⎣

−𝜈 −1 0
1
𝛾 ln 𝜀 0 0
0 0 −𝑠𝛾

⎤

⎥

⎥

⎥

⎦

, (10)

whose characteristic polynomial is

𝑃 (𝜁 ) =
(

𝜁2 + 𝜈𝜁 + 1
𝛾
ln 𝜀

)

(𝜁 + 𝑠𝛾). (11)

From which we obtain the eigenvalues

𝜁1 = −𝑠𝛾; 𝜁2,3 = − 𝜈
2
∓ 1

2

√

𝜈2 − 4
𝛾
ln 𝜀.

There is 𝜁1,2 < 0 and, since 𝜀 < 1, 𝜁3 > 0. Therefore, the point 𝑂 is
a (2,1)-type saddle point, i.e., with a 2D stable (W𝑠

𝑂) and 1D unstable
(W𝑢

𝑂) invariant manifolds.
For the other two points, the Jacobian matrix becomes

J||
|𝑁±

=

⎡

⎢

⎢

⎢

−𝜈 −1 0
0 0 ∓

√

𝑠′∕𝜈
√

′
√

′

⎤

⎥

⎥

⎥

. (12)
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⎣

∓ 𝑠 𝜈 ± 𝑠 ∕𝜈 𝑠𝜀𝛾
⎦

Fig. 3. Scheme of the trajectory evolution around the saddle-foci 𝑁± (red dots), with
incursions close to the saddle point 𝑂 (blue dot). Local representations of the stable
(W𝑠

𝑁±
and W𝑠

𝑂) and unstable (W𝑢
𝑁±

and W𝑢
𝑂) invariant manifolds. For simplicity, we

present a flat portrait of the unstable manifolds of both 𝑁±. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 4. Disturbed Rypdal model attractors around the unstable equilibria 𝑁± (red
points). Saddle point 𝑂 highlighted in blue. For all panels was used the initial condition
𝐶0(0.01, 0.01, 0.01), with the parameters 𝑠 = 1 and 𝜀 = 0.01. Discarded a transient
of 5 × 106 integration steps. Periodic attractors with isospikes count 𝑝 equals to:
(a) 1 for (𝜈, 𝛾) = (1.2441, 2.5881); (b) 2 for (𝜈, 𝛾) = (0.8250, 2.1811); and (c) 3 for
(𝜈, 𝛾) = (0.9140, 2.1421). (d) Chaotic Lorenz-like attractor for (𝜈, 𝛾) = (0.9818, 2.1115). (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

We have the same characteristic polynomial for both 𝑁±, as seen for
the unperturbed model in Section 2.1, there is

𝑃 (𝜉) = 𝜉3 + (𝑠𝜀𝛾 + 𝜈)𝜉2 +
(

𝑠𝜀𝛾𝜈 + 𝑠′

𝜈

)

𝜉 + 2𝑠′. (13)

Note that these polynomial coefficients are almost the same form as
those in Eq. (5). The distinction only due to the term 𝑠𝜀𝛾, arising from
the exponential perturbation in the 𝑧 variable. Given the parameter
ranges, there is always a real eigenvalue 𝜉1 < 0. The other two
can be real 𝜉 < 0 or a complex conjugate pair. By means of the
2,3
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Routh–Hurwitz criterion [41], we conclude that ℜ(𝜉2,3) < 0 iff

𝛾 >

√

(

𝜈3 + 𝑠′
)2 + 4𝑠′𝜈3 −

(

𝜈3 + 𝑠′
)

2𝑠𝜀𝜈2
, (14)

where the equilibrium points 𝑁± are stable.
A supercritical Andronov–Hopf (AH) bifurcation [42] occurs by

cross the hypersurface

𝜎 ∶ 𝜈2(𝑠𝜀𝛾)2 + (𝜈3 + 𝑠′)𝑠𝜀𝛾 − 𝑠′𝜈 = 0, (15)

in the parameter space. If the relation (14) is not fulfilled, then the
eigenvalues 𝜉2,3 are complex conjugates with real part greater than
zero. Exception for the equality between 𝛾 and the second member
expression that gives the AH. Consequently, 𝑁± are saddle-foci of
(1,2)-type, with a 1D stable (W𝑠

𝑁±
) and 2D unstable (W𝑢

𝑁±
) invariant

manifolds, as in the unperturbed model. In such parametric configura-
tions, the trajectories evolve around the equilibria 𝑁±, being influenced
by the manifolds of the saddle point 𝑂.

The trajectory stretches in Fig. 3 illustrate how the system evolution
occurs. We observe the spiral expansion around one of the saddle-
foci (whether 𝑁− or 𝑁+), moving on to orbit the other saddle-focus.
Eventually, the trajectory passes close to the 𝑂 saddle point and is
greatly influenced by its manifolds. In this circumstance, is carried
upward in the proximity of the stable manifold W𝑠 and redirected
5

𝑂

towards the spiral when approaching the unstable manifold W𝑢
𝑂. Fig. 4

shows one chaotic and three periodic attractors. All four were obtained
from the same initial condition 𝐶0 and different parameter values. The
system evolution can lead to the proximity of 𝑁− or 𝑁+, as in panels (c)
and (d). In the latter, the approach to the saddle point is also observed.
The periodic attractors are identified by the isospikes in the variable 𝑥:
(a) 𝐼1, (b) 𝐼2 and (c) 𝐼3. Due to the additional saddle point, the model
with perturbation now presents Lorenz-like chaotic attractors [34], as
shown in Fig. 4(d). The dynamics of the disturbed Rypdal model is
similar to that of the Lorenz system as it is governed by the equilibrium
points manifolds, which are in the same configuration in both systems.

3.2. Parameter plane 𝛾 × 𝜈

System (9) is rescalable by 𝑅𝑠, according to transformation (6),
maintaining the equation’s form and with the parameter 𝛾 ′ = 𝑠

2
3 𝛾.

In terms of dynamics, this is equivalent to assuming 𝑠 = 1. Given an
𝜀 value and a parameter 𝜈 interval, by means of the relation (14),
we find a range of 𝛾 that corresponds to stables 𝑁±. Nevertheless,
we aim to investigate the system behavior outside the parametric
configurations that lead to stable fixed points, i.e., beyond the border
obtained by (14). In particular, we use 𝜀 = 0.01. Thus, we focus the
study on a region where ℜ(𝜉 ) > 0 in the plane 𝛾 × 𝜈. Similarly to the
2,3
Fig. 5. Top panels show the parameter plane 𝛾×𝜈 discretized in a uniform grid of 1000 × 1000 points. Three different measurements are color-coded, being: (a.1) largest Lyapunov
exponent 𝜆1 > 0 for chaotic solutions (gradient from red to yellow) and 𝜆2 ≤ 0 (from cyan to black) in the periodic cases; (a.2) isospikes in 𝑥 variable for periodic attractors,
chaotic bands are in black color, and isospike values besides the numeric legend are in gray color; (a.3) periodic attractors coexistence in dark blue and single solution in light
blue color. The highlighted box is magnified in Fig. 7. (b) Bifurcation diagram and Lyapunov spectrum along the dashed curve present in the upper panels. The curve 𝛾(𝜈) passes
through the superstable points inside the shrimps and is given by Eq. (16). Local maxima of 𝑥 for attractors obtained from the initial condition 𝐶0(0.01, 0.01, 0.01) (black dots) and
𝐶 ′
0(−0.01,−0.01, 0.01) (orange dots). Exponents: 𝜆1 (magenta line), 𝜆2 (blue line) and 𝜆3 (green line). (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)
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analysis performed for the undisturbed model in Section 2.2, here we
evaluate the Lyapunov spectrum and isospikes counting.

To numerically evolve the system (9), was used the Fehlberg Runge–
Kutta 5(6) method with a constant time step of 10−2. We consider a
transient 5 × 106 iterations and compute the spectrum over the sub-
sequent 2 × 106 iterations. The initial condition 𝐶0(0.01, 0.01, 0.01) was
adopted. For the exponentially disturbed Rypdal model, the Lyapunov
exponents converge faster than for the undisturbed system without the
need for an intermediate greater precision numerical integration stage.
We also verify the occurrence of symmetric periodic attractor-pair
coexistence.

Fig. 5 top panels show the parameter plane 𝛾 × 𝜈 discretized in a
1000 × 1000 uniform grid, being the intervals 𝛾 ∈ (1.7, 2.6] and 𝜈 ∈
(0.7, 1.25]. We evaluate three different measurements (in colors): (a.1)
Lyapunov exponents (𝜆1 and 𝜆2); (a.2) isospikes in the 𝑥 variable time
series; and (a.3) coexistence of periodic attractors forming a symmetric-
pair. Fig. 5(a.1) shows spirals of connected shrimps immersed in the
chaotic region (𝜆1 > 0 from red to yellow color). These periodic
structures (𝜆1 = 0 and 𝜆2 < 0 from cyan to black color) appear in
an infinite number of spiral families, with a focal point in a central
Hub [30]. Such formations are typical of systems exhibiting homoclinic
connections in saddle-focus, fulfilling the Shilnikov condition [18,20].

Into the shrimp-shaped regions shown in Fig. 5(a.2), attractors with
different isospikes counting occur apart of the well-known period-
doubling bifurcation cascade [43]. For example, the change of 𝐼3
(magenta) to 𝐼5 (teal) in the periodic band surrounding the chaotic
area and from 𝐼2 (red) to 𝐼5 in the next big shrimp. These transitions
are related to the coexistence of two attractors forming a symmetric-
pair, a subject covered in Section 3.2.1. Connected shrimps form pairs
with same the 𝐼𝑝 strips. Each pair connects to the next one spiraling
towards the focal point, adding just one unit to the start-band isospikes
count. We refer to the start-band, the lowest 𝐼𝑝 strip within a periodic
structure, as 𝐼2 (red strip) in the first shrimp pair and 𝐼3 (magenta strip)
in the next pair entering the spiral. In Fig. 5(a.3), we identify periodic
regions with single attractors (light-blue color) and the bistability with
symmetric-pair solutions (dark-blue color). Along the period-doubling
bifurcation cascade, two different attractors, A and A ′, coexist, with
the symmetry 𝑇 (A ) = A ′. Following the other observed isospikes
sequence, the bands of single and symmetric-solutions are interspersed
(see Fig. 9).

The dashed line marked in Figs. 5(a.1–3) corresponds to the cubic
polynomial

𝛾(𝜈) = 2.53519 − 0.465368𝜈 + 0.0927489𝜈2 +

− 0.0592718𝜈3, (16)

which was adjusted to pass through the high stable crosses in shrimp
domains, i.e., through the crossing points of two local minima curves
of the second Lyapunov exponent. In the shrimp spiral, the period-
doubling bifurcation cascades occur only below the 𝛾(𝜈) curve. The
diagram in Fig. 5(b) shows the dynamic changes along 𝛾(𝜈), with
𝜈 ∈ (0.7, 1.25]. There are intervals with symmetric-pairs of attractors,
where the local 𝑥max of orbits from the initial condition 𝐶0 (black dots)
are distinguished from those of 𝑇 (𝐶0) (orange dots). Such regions are
delimited by a bifurcation on one side and the conjunction of 𝜆2 and
𝜆3 local minima on another side.

3.2.1. Bifurcation and reconnection process
To explain the relationship between bifurcations and the emergence

of bistability, as observed in Fig. 5(b), we present a sequence of periodic
attractors obtained along the interval 𝜈 ∈ (0.7, 0.755). Fig. 6(a) shows a
magnification of the bifurcation diagram in the aforementioned range.
Subintervals featuring symmetric-pair of attractors are highlighted in
a gray background. Furthermore, each subinterval is numbered and
associated with the periodic attractors illustrated in Fig. 6(b).

In the ranges identified by odd numbers in Fig. 6(a), the disturbed
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Rypdal model presents a single attractor, while in even ones, there is
Fig. 6. (a) Magnification of the bifurcation diagram shown in Fig. 5(b), with 𝜈 ∈
(0.7, 0.755). The subintervals where occur symmetric-pairs of attractors are highlighted
in gray background. (b) Sequence of periodic attractors examples found in the
corresponding numbered subintervals. From even to odd regions, a collision of the
symmetric-pair orbits generates a single attractor. There is 𝐼3 in 1⃝ and 2⃝ subintervals,
𝐼5 in 3⃝ and 4⃝, and 𝐼11 in 5⃝ and 6⃝.

bistability. The first subinterval has a periodic attractor of 3 isospikes.
At 𝜈 ≈ 0.713, the system undergoes a pitchfork bifurcation, delimiting
the border between 1⃝ and 2⃝ subintervals. After the bifurcation, a
𝐼3 symmetric-pair of periodic attractors occurs, until these two collide
in the vicinity of the 𝑂 saddle point at 𝜈 ≈ 0.733. This collision
entails a reconnection and results in a single 𝐼 periodic attractor in
5
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Fig. 7. Magnification of highlighted box in: (a) Fig. 5(a.2) of isospikes for 𝑥 variable;
(b) Fig. 5(a.3) of the periodic attractors coexistence forming symmetric-pairs. Vertical
dashed line in 𝜈 = 0.8278 and the approximately horizontal is 𝛾(𝜈) according to Eq. (16).

3⃝. Around 𝜈 ≈ 0.747, occurs another bifurcation, giving rise to a
pair of 𝐼5 periodic attractors coexisting along the range 4⃝, until the
reconnection at 𝜈 ≈ 0.751, leading to a single 𝐼11 attractor in 5⃝. In this
way, the cascade of bifurcations and reconnections occurs. Being with
a single attractor A , 𝑇 (A ) = A is verified, i.e., the single attractor is
symmetric under transformation (2). This internal symmetry is broken
at the bifurcation, leading to a symmetric-pair, which reconnects where
the local minima of 𝜆2 and 𝜆3 are together, meaning greater stability
during such reconnection.

Additionally the sequence of periodic attractors generated via bifur-
cations and reconnections, there are also period-doubling bifurcation
cascades. Both routes lead to chaos. Fig. 7 displays magnifications
of the highlighted boxes in Figs. 5(a.2–3). Panel Fig. 7(a) shows the
isospike diagram for the 𝑥 variable, complementing panel (b) for the
coexistence of periodic attractors in a symmetric-pair. The bistable 𝐼2
region (red) presents a bifurcation to 𝐼4 (blue) in the vertical direction:
next 𝐼 goes to 𝐼 (brown) and continues in a period-doubling cascade
7

4 8
Fig. 8. Local maxima of the 𝑥 variable and Lyapunov spectrum overlaid. Attractors
obtained from the initial conditions 𝐶0(0.01, 0.01, 0.01) (black dots) and 𝑇 (𝐶0) =
𝐶 ′
0(−0.01,−0.01, 0.01) (orange dots). Exponents: 𝜆1 (magenta), 𝜆2 (blue) and 𝜆3 (green).

Results along the two dashed lines in Figs. 7, being: (a) 𝛾(𝜇) (approximately horizontal
curve); (b) 𝜈 = 0.8278 (vertical one). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

maintaining bistability. Following the other direction, the same process
illustrated in Fig. 6 occurs. The 𝐼2 symmetric-pair reconnects, forming
a single 𝐼5 (teal) attractor, which subsequently bifurcates to a pair of
𝐼5 symmetric attractors until their reconnection, resulting in a single 𝐼9
region (yellow). Similarly, from 𝐼4 to 𝐼9 and then to 𝐼17 (violet color).
The bifurcation diagram along 𝛾(𝜈) shown in Fig. 8(a) corroborates
this analysis. Even so, regions resulting from this process present a
period-doubling direction, as seen from 𝐼5 to 𝐼10 (salmon color).

Fig. 8(b) displays a diagram of 𝑥 variable local maxima and Lya-
punov spectrum of orbits along 𝜈 = 0.8278 (Figs. 7 vertical dashed
line). The period-doubling cascade maintains the bistability, where
an attractor (black dots) results from the initial condition 𝐶0, while
another one (orange dots) is from 𝐶 ′

0 = 𝑇 (𝐶0). The bifurcation sequence
from both initial conditions leads to chaos, where a symmetric-pair of
chaotic attractors are found. Near 𝛾 ≈ 2.02, a sudden expansion of the
chaotic attractors occurs due to an internal crisis [40].

A detailed examination of the attractors structure, focused on the
reconnection phenomenon, reveals that the isospikes of the resulting
single attractor depend on the collision direction close to the 𝑂 sad-
dle point. From the reconnection of two 𝐼𝑝 periodic attractors of a
symmetric-pair, a single orbit 𝐼2𝑝−1 or 𝐼2𝑝+1 is obtained, as shown in
Fig. 6(b) from 𝐼3 to 𝐼5 and from 𝐼5 to 𝐼11. Subsequent reconnections
alternate, adding one unit to (or subtracting from) twice the previous
isospikes count. Following the sequence of reconnections and pitchfork
bifurcations from the shrimp start-band of 𝑝 isospikes to the adjacent
0
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Fig. 9. Schematic representation of the bifurcations and reconnection process
within the shrimp-shaped structure. Isospike counts into the period-doubling and
bifurcation-reconnection routes to chaos.

region of 𝑝1, the 𝑛th value is given by

𝑝𝑛
𝑛>1

=

⎧

⎪

⎨

⎪

⎩

2𝑛𝑝0 +
2𝑛 − (−1)𝑛

3
, if 𝑝1 = 2𝑝0 + 1

2𝑛𝑝0 −
2𝑛 − (−1)𝑛

3
, if 𝑝1 = 2𝑝0 − 1.

(17)

Fig. 9 illustrates the isospikes formation rules inside a shrimp,
combining period-doubling and the bifurcation-reconnection routes.
For simplicity, in this figure, we only use the isospike counts, omitting
the letter 𝐼 . Red arrows represent period-doubling bifurcation, which
occurs in bistable regions and takes from 𝐼𝑝 to 𝐼2𝑝 orbits. Blue ar-
rows represent global bifurcations where there are no changes in the
isospikes number, but a single 𝐼𝑝 attractor bifurcates to a symmetric-
pair. The symmetric pair merger scenarios are denoted by: Green arrow
if the reconnection of two 𝐼𝑝 attractors results in a single 𝐼2𝑝+1 attractor;
black arrow if the reconnection of two 𝐼𝑝 attractors leading to a single
one with 𝐼2𝑝−1. Additionally, period numbers in red indicate symmetric-
pair of attractors, while the ones in black represent single attractive
orbits.

3.3. Bistability of attractors in a symmetric-pair

Taking into account the coexistence of periodic attractors phe-
nomenon, in this subsection, we investigate bistability in the exponen-
tially disturbed Rypdal model. To this end, we select three parametric
configurations in which symmetric-pair of attractors occur. Therefore,
we evaluate the attraction basins over two sets of initial conditions:
(a) the first one with 𝑧0 = 0 and 𝑥0, 𝑦0 ∈ (−5, 5]; (b) the second with
𝑦0 = −𝜈𝑥0 and 𝑥0, 𝑧0 ∈ (−5, 5]. Both planes pass on the 𝑁± fixed points.
Fig. 10(a) is a schematic representation of the first plane (violet color)
crossing the 𝐼3 periodic attractors and passing on the two saddle-foci
(red dots). Fig. 10(b) illustrates the second plane (cyan), which also
crosses the attractors and, in addition to the 𝑁±, passes on the 𝑂 saddle
point (blue dot).

The adopted values for the parameters concern periodic attractors
with different isospike counts in the 𝑥 variable time series, being
8

indexed as:
1. (𝜈, 𝛾) = (0.730030, 2.2218268) with 𝐼3;
2. (𝜈, 𝛾) = (0.750050, 2.2133086) with 𝐼5;
3. (𝜈, 𝛾) = (0.753075, 2.2120188) with 𝐼11.

These parametric configurations correspond, in this order, to subin-
tervals 2⃝, 4⃝, and 6⃝ shown in Fig. 6. By combining the parametric
configuration index with those of the initial condition planes, we
identify the six panels showing the attraction basins in Figs. 10(a.1–3)
and Figs. 10(b.1–3).

The planes of initial conditions were discretized in a uniform grid of
1000 × 1000 points. For each point on this grid, we numerically evolve
the system, and after discarding a transient, the periodic attractors A
and A ′ = 𝑇 (A ) are distinguished by the local maxima in the 𝑥 variable
time series. Then, we identify in color the attraction basins B (black)
and B′ (orange), of A and A ′, respectively.

Figs. 10(a.1–3) emphasize the symmetry between the two basins,
where B′ = 𝑇 (B) with each one covering half of the plane. The same
is observed in panels (b.1–3), in which the change 𝑥0 ↦ −𝑥0 leads
from B to B′, and vice-versa. A notable aspect is the bands narrowing
with rising isospikes, then the structure becomes more intricate as the
symmetric-pair’s period increases. Due to the basins fractal-like shape,
there are initial conditions regions of great uncertainty as the attractor
will be obtained from the symmetric-pair, a fact that extends to the
entire plane with higher isospike values.

Along the bifurcation and reconnection cascade, a succession of
separation and fusion of attraction basins occurs. The bifurcation of a
single attractor in a symmetric-pair is related to the initial conditions
planes separation into two intricately arranged attraction basins, one
for each attractor of the pair. The subsequent reconnection, leading
from the symmetric-pair to a single attractor, merges the basins.

4. Conclusions

We propose an exponential parametric disturbance to the Rypdal
model, which describes the low-dimensional convection of confined
plasmas in the Helimak configuration. The included disturbance results
in a third unstable equilibrium point, in addition to the two already
present in the undisturbed system. By analyzing the linear stability
of these equilibria, we identify a condition for the Andronov–Hopf
bifurcation and a region in the parameter space where a saddle-foci
pair occurs. We also show two transformations applied to the model,
both valid for the systems with and without disturbance. The first
transformation is related to the system symmetry, the second is a
rescaling, where we reduce one dimension of the parameter space.

Evaluating the disturbed system dynamics in a parameter plane,
we identified shrimp spirals immersed in a chaotic region, common in
systems satisfying the Shilnikov criterion. Along these periodic struc-
tures, bistable bands are alternated with single attractor ones. In the
bistability areas, there are a symmetric-pair of attractors, according
to the systems symmetry. Into shrimp-shaped domains, two routes to
chaos are present, being: (i) a period-doubling cascade, which occurs in
the bistable bands; and (ii) a sequence of bifurcation and reconnection
processes. In the second route, the bifurcation leads from a single
periodic attractor to a symmetric-pair, maintaining the isospike count
and giving rise to a bistable region. Subsequently, the pair of attractors
collide, resulting in a single attractor band, where the number of
isospikes increases. The additional saddle point, due to the exponential
perturbation, is essential for this reconnection process. The attractors’
collision occurs in the vicinity of this equilibrium, being governed by
the corresponding manifolds.

By means of the combined informations about the coexistence of
symmetric attractors and isospikes counting, we schematize a new hi-
erarchical organization of periodic attractors within the shrimp-shaped
domains, where the isospikes number obeys a combination of two rules.

As a perspective for future development, we will study how the
process of symmetric-pair reconnection occurs in terms of the equilib-
rium points invariant manifolds. With special interest in the role of the
saddle point 𝑂 stable manifold for the merger of attractive orbits in a

single attractor.
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Fig. 10. Schematic representations of the planes (a) 𝑧0 = 0 and (b) 𝑦0 = −𝜈𝑥0 crossing the symmetric-pair of periodic attractors. Highlighted the 𝑁± saddle-foci (red dots) and 𝑂
saddle points. The six panels with attraction basins B (black color) and B′ (orange color) are identified according to the aforementioned planes, with parametric configurations
in: (a.1) and (b.1) (𝜈, 𝛾) = (0.730030, 2.2218268) for 𝐼3 attractors; (a.2) and (b.2) (𝜈, 𝛾) = (0.750050, 2.2133086) for 𝐼5 attractors; (a.3) and (b.3) (𝜈, 𝛾) = (0.753075, 2.2120188) for 𝐼11
attractors. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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