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Isochronous bifurcations in a two-parameter twist map
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Isochronous islands in phase space emerge in twist Hamiltonian systems as a response to multiple resonant
perturbations. According to the Poincaré-Birkhoff theorem, the number of islands depends on the system
characteristics and the perturbation. We analyze, for the two-parameter standard map, also called two-harmonic
standard map, how the island chains are modified as the perturbation amplitude increases. We identified three
routes for the transition from one chain, associated with one harmonic, to the chain associated with the
other harmonic, based on a combination of pitchfork and saddle-node bifurcations. These routes can present
intermediate island chains configurations. Otherwise, the destruction of the islands always occurs through the
pitchfork bifurcation.
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I. INTRODUCTION

Nonintegrable Hamiltonian systems appear in a vast num-
ber of physical applications, and their general analysis is
usually difficult due to the large dimensionality of the corre-
sponding phase space. Hence, numerical investigations often
use low-dimensional systems in discrete time, due to their in-
herent simplicity and fast computational simulations. Among
these, it stands out the standard map, also called Chirikov-
Taylor [1], which is by itself a simplified model of various
physical problems, like particle dynamics in accelerators [2],
charged particle confinement in mirror magnetic traps [1],
microwave ionization of Rydberg atoms [3], just to men-
tion some representative examples. Moreover, a wide class
of dynamical systems and maps can be locally reduced to
the standard map [4]. Finally, it is worth mentioning that the
standard map has been used to illustrate many key results
in the theory of quasi-integrable dynamical systems, like the
transition to global stochasticity [5,6].

For twist Hamiltonian systems, multiple resonant perturba-
tions with the same frequency generate sets of distinct chains
of islands, in the same region of phase space. These islands
are called isochronous and they present the same winding
number, i.e., they have the same average speed around an
invariant circle [7]. The number of island chains varies as a
function of the wave parameters and the amplitude of the res-
onant terms. According to the Poincaré-Birkhoff fixed point
theorem, any resonance with a rational winding number equal
to r/s produces an even number 2k of periodic orbits with
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period s, where k is a positive integer number [4]. Half of
these orbits is stable and half unstable. When k > 1, we have
isochronous islands, i.e., different islands with the same wind-
ing number. The set of isochronous islands surrounding the
same stable orbit forms an isochronous chain. In this sense,
k indicates the number of chains and s represents the number
of islands in each chain. Although the Poincaré-Birkhoff fixed
point theorem does not determine the value of k, we generally
find in the literature systems that present just one chain with s
islands. However, for some systems, more than one chain has
already been observed (see, for example, references [8,9]).

Isochronous island have been recognized in several areas
of physics, such as nonlinear oscillators [8], molecular physics
[10], electron beam interactions with electrostatic waves [11],
plasma physics [12–14], and periodic lattices [15]. For the
case of wave-particle interactions, isochronous island chains
were reported in a nearly integrable model [11] describing the
dynamics of relativistic charged particles moving in a uniform
magnetic field and kicked by standing electrostatic pulses.
Different island chains were identified for perturbation terms
with the same winding number that generate isochronous is-
lands in the same region of phase space.

Recently, for plasma confined in tokamaks, magnetic field
line configurations have been investigated with natural and
external modes with different wave numbers and the same
winding number, thus resonant at the same rational magnetic
surface. As the amplitude of an externally applied magnetic
field perturbation is increased, the topology of resonant helical
magnetic islands are altered through heteroclinic bifurcations
[13,14]. The heteroclinic bifurcation and the emergence of
new islands are a plasma response to nonaxisymmetric pertur-
bation [12,13,16]. As concluded by Wu and coworkers [12],
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the reported bifurcations in tokamaks are interesting, but a
dynamic explanation was not available yet. In addition to
these bifurcations having been observed in solutions of differ-
ential equations, they have also been identified in symplectic
maps [14].

With the aim of proposing a two-parameter map that can
have isochronous islands and bifurcations that change the
stability of fixed points, we propose the generalization of the
extended standard map (ESM) with the idea of providing a
simple map that represents the competition and coupling be-
tween two different modes. The extended standard map can be
obtained from the Frenkel-Kontorova model when the critical
behavior with a second harmonic of the external potential is
analyzed [17] or with the inclusion of a second harmonic with
half of the spatial period in the standard map (SM) [18]. The
majority of analysis of the ESM is about the breakup of the
invariant tori, especially the last irrational one with a golden
mean winding number. The main results about these analyses
can be found in Refs. [7,18,19]. Differently, in this survey, we
restrict our analysis to the resonant tori with a rational winding
number, i.e., the islands in the phase space.

From our results, we show that the generalized version of
ESM allows the study of competition between two arbitrary
resonant modes. As stated by the Poincaré-Birkhoff theorem,
for a perturbed system, there are an even number of fixed
points, where half of them are stable, and the other half are
unstable [4]. The stable points, named elliptic points, are
surrounded by resonant islands which are stable orbits in the
phase space [20]. In this paper, we defined the number of
distinct elliptic points as the mode of the system. Therefore,
based on the competition of resonant modes, we propose
the generalized ESM as a model to reproduce isochronous
bifurcations, i.e., the emergence of isochronous islands by bi-
furcations. From the phase-space analysis and from counting
the number of elliptic points, we can identify the transitions
from one mode to another, as well as the existence of pos-
sible intermediate modes. The observed transitions due to the
isochronous bifurcations are consequences of saddle-node and
pitchfork bifurcations.

This paper is organized as follows: The generalized ex-
tended standard map also called the two-harmonic standard
map, is presented in Sec. II. The analysis of isochronous
bifurcations is presented in Sec. III as well as the routes to
emergence and destruction of stable orbits. Our conclusions
are provided in the last section.

II. TWO-HARMONIC STANDARD MAP

The extended form of the standard map can be obtained
by the consideration of a one-dimensional lattice of particles,
where each one interacts elastically with the nearest neighbor
[17,21]. In the equilibrium and for a lattice periodicity equal
to one, Greene and coauthors obtained [17],

yn+1 = yn − K1

2π
sin(2πxn) − K2

4π
sin(4πxn),

xn+1 = xn + yn+1, (1)

an area-preserving twist map which would be called extended
standard map [7,18,22] or two-harmonic twist map [19,23].
The extended map was widely investigated and many of its

properties are already known and well established. Greene and
Mao, Ketoja and MacKay discussed, in two different papers,
the breakup of the golden torus in the extended map and
obtained its critical line in the parameter space [7,18]. Beasens
and MacKay continued to study and investigate the transition
of sequences of periodic orbits [19], while Ketoja analyzed the
breakup of tori with arbitrary frequency [22]. More recently,
transport analysis and statistical characterization were applied
to this map [23,24].

In this paper, we introduce a map that describes the
interaction between two arbitrary commensurate harmonic
modes. Unto that, we generalized the map (1), and the two-
dimensional map becomes

yn+1 = yn − K1

2π m1
sin(2π m1xn) − K2

2π m2
sin(2π m2xn),

xn+1 = xn + yn+1, (2)

where K1 and K2 are the amplitudes of the modes m1 and m2,
respectively. Both variables are taken mod 1, and we estab-
lish x ∈ [−0.5, 0.5] and y ∈ [0, 1]. In this paper, we consider
K1, K2 ∈ R and m1, m2 ∈ N. Since for K2 = 0 and m1 = 1 we
recover the Chirikov-Taylor map, we named the map (2) as
two-harmonic standard map.

Our main goal with this survey is to simulate the compe-
tition between two resonant modes. For this, we consider the
term defined by K1 and m1 as the first mode while the second
mode, described with the parameters K2 and m2, is the new
mode that is competing to become the predominant one. The
competition of modes only exists if the resonances present
the same winding number. As an example, we set m1 = 2,
m2 = 4, K1 = 0.1 and choose two values of K2 indicating
two different amplitudes for the second mode. To differentiate
between isochronous and nonisochronous islands, we present
resonant scenarios in different regions of the phase space.
First, we observe the islands with their centers in y = 0.5.
These islands present winding numbers ω = 1/2 and period 2.
The other studied region is y = 0, where the islands around the
elliptic points in this line have winding numbers and periods
equal to unity. The phase spaces are shown in Fig. 1.

For the first phase space in Fig. 1(a), K1 = 0.1 and K2 =
0.02. In this configuration, the first mode is predominant and,
since ω = 0.5, we observe a chain of islands of period 2.
Since the islands are nonisochronous, one initial condition in
one of the islands will visit both islands. With the increase
of the amplitude of the second mode, we have the scenario
presented in Fig. 1(b). In this case, K2 = 0.2 and we can
observe that two other islands emerge. As a result, we observe
two chains of islands of period 2. The islands, centered in
(x, y) = (0, 0.5), (x, y) = (0.5, 0.5), and the ones centered in
(x, y) = (±0.25, 0.5) are isochrnous of period 2. From this
scenario, we observe the transition from the mode m1 = 2
with two islands for a configuration of four islands repre-
senting the mode m2 = 4. But, since we are studying the line
y = 0.5, the islands have period 2, and as long as we observe
four islands in Fig. 1(b), we have two chains of elliptic points
of period 2.

A visually similar but completely different scenario is pre-
sented in Figs. 1(c) and 1(d). Differently from the scenario
shown in Fig. 1(a), we observe two isochronous islands in
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FIG. 1. Phase spaces for the two-harmonic standard map with
m1 = 2, m2 = 4, K1 = 0.1 and two configurations with different
values of K2. The phase space in (a), with K2 = 0.02, represents the
case where the first mode is predominant with two nonisochronous
islands. In this case, we observe one chain of islands with period 2.
For (b), we have the predominance of the second mode, K2 = 0.2
and we observe two chains of isochronous islands. Two chains of
isochronous islands can also be observed in (c), where each chain is
composed by one island of period 1, for K2 = 0.02. If we set K2 =
0.2, then we have the phase space in (d), where four isochronous
islands of period 1 are in y = 0. The apparent separatrices (thicker
lines) for all phase spaces are actually thin chaotic regions.

Fig. 1(c), i.e., two islands of period 1. These islands present
the same period 1 but are not connected, as we can observe
by their visual difference and different colors. Increasing the
amplitude of the second mode, we have the scenario presented
in Fig. 1(d). In this case, we also observe the emergence of the
4-mode configurations with four islands, but they are of period
one. The new two islands have their centers in x = ±0.25
and we present them with different colors. Here we have four
isochronous islands of period 1, i.e., four different elliptic
points. As for Figs. 1(a) and 1(b), K2 = 0.02 and K2 = 0.2
for Figs. 1(c) and 1(d), respectively.

From Fig. 1, we conclude there is a transition between
the two modes represented by the two harmonics of the map
(2). There should be a critical value where the second mode
emerges and becomes prevalent in the phase space. To analyze
the transitions from mode m1 to mode m2, we calculate the
number of different elliptic points at y = 0 for different values
of K1,2 and m1,2. In Fig. 2 we present three parameter spaces
K1 × K2 for three different combinations of m1 and m2: (a)
m1 = 2 and m2 = 3, (b) m1 = 1 and m2 = 4, and (c) m1 = 3
and m2 = 5. Each color represents the number of elliptic
points indicated by the number in the box in each colored
region.

Each parameter space in Fig. 2 shows different struc-
tures and arrangements of the colored regions. In Fig. 2(a),
we present the parameter space for the competition between
modes m1 = 2 and m2 = 3, which we will indicate as 2 → 3.

FIG. 2. Parameter space K1 × K2 for the quantity of elliptic
points in y = 0 for (a) (m1, m2) = (2, 3), (b) (m1, m2) = (1, 4),
(c) (m1, m2) = (3, 5). The quantity of elliptic points related to every
region is indicated by the numbers.

We observe this transition for a specific region in the pa-
rameter space indicated by the boundary between the regions
numbered by 2 and 3 when the value of K2 is increasing.
However, we can observe other transitions, such as from mode
2 to 1, from 1 to 2, from 3 to 2, and from 2 to 0. Each
transition is indicated by the boundary between the two re-
spective numbered colored regions. For K1 > 2, we conclude
the transition 2 → 3 is not possible, instead, we observe the
transition 2 → 1 and 1 → 2. The destruction of the islands is
the same for every value of K1: the two remaining islands are
destroyed simultaneously.

From Fig. 2(b), we observe how many elliptic points we
can have when modes 1 and 4 are competing. It is a more
complex scenario if we compare it to the parameter space of
Fig. 2(a). As a first big difference, we observe the transition
1 → 4 is not direct, there is the intermediate mode 2. Thus, the
transition is 1 → 2 → 4. However, as presented in the first
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FIG. 3. Phase spaces for the transition 2 → 3. For all spaces, m1 = 2, m2 = 3, K1 = 0.01 and (a) K2 = 0.005, (b) K2 = 0.01, (c) K2 = 0.05.
In (a) we have the predominance of the first mode, m1 = 2, while in (b) we are in the imminence of the pitchfork bifurcation. For the phase
space in (c), after the bifurcation, we observe the prevalence of the second mode m2 = 3. The thicker line separatrices are thin chaotic
layers.

parameter space, the transition between the two competing
modes does not happen for any value of K1 and K2, it hap-
pens only if K1 < 2. We observe other transitions, as 4 → 3,
1 → 0, 3 → 2, and so on. Another difference, the destruction
of the islands is not the same in the entire space. We observe
two transitions: 1 → 0 and 2 → 0.

Last, analyzing the parameter space in Fig. 2(c), we ob-
serve a directed transition between the competing modes
3 and 5. As in the parameter space in Fig. 2(a), there is
only one route to the destruction of the islands, the transi-
tion 2 → 0. However, differently from the other cases, the
mode m1 = 3 does not return to be prevalent once it loses
to the second mode, i.e., starting from a different mode and
increasing the value of K2, we do not observe the emer-
gence of three islands of period one in the phase space.
The parameter spaces for all combinations of m1 and m2,
with m1 ∈ [1, 5] and m2 ∈ [m1 + 1, 6] can be checked in the
Supplemental Material [25].

Along with the parameter spaces, we also plot the bifurca-
tion curves computed numerically. They are indicated by the
colored lines Li in Fig. 2. These bifurcation curves indicate
the parameter for which there is an increase or decrease in
the quantity of elliptic points. Comparing all the parameter
spaces, there is a common bifurcation curve for all of them:
the line K2 = 4 − K1. In order to understand this line, we
perform an analytical analysis of the bifurcation of fixed
points at the line y = 0. The fixed point (x∗, y∗) occurs for
y = 0 and for a value of x such that (K1/m1) sin(2π m1x) +
(K2/m2) sin(2π m2x) = 0. Thus, we obtain the trivial solution
(x∗, y∗) = (0, 0).

The type of the bifurcation that happens at each fixed point
is obtained by the computation of the eigenvalues λ of the
Jacobian matrix of the map (2) calculated in (x∗, y∗). From
this, we obtain,

λ = 1
2 {2 − K1 cos(2πm1x) − K2 cos(2πm2x)

±
√

[K1 cos(2πm1x) + K2 cos(2πm2x) − 2]2 − 4}. (3)

From Eq. (3), we conclude that the point (x∗, y∗) = (0, 0)
is elliptic (λ ∈ C \ R) for 0 < K1 + K2 < 4 and hyperbolic

(λ ∈ R \ {−1, 1}) for K1 + K2 < 0 and for K1 + K2 > 4. The
parabolic value λ = −1 is obtained for K1 + K2 = 4. The
point (x∗, y∗) = (0, 0) is common for all combinations of m1

and m2. Thus, the line K2 = 4 − K1 is present in all parameter
spaces as the ones shown in Fig. 2. The computation of other
fixed points depends on the values of K1 and K2 as the values
of m1 and m2. Other fixed points will be analyzed in the next
sections.

III. ISOCHRONOUS BIFURCATIONS

In the previous section, we study some aspects on the bi-
furcation of fixed points, as the change in the quantity of such
points. We obtained few results which cannot explain com-
pletely the bifurcation routes in the system. Now, we analyze
the bifurcation of the fixed points and the change in islands
topology numerically, investigating the phase space. We ana-
lyze the phase spaces for every combination of m1 ∈ [1, 5] and
m2 ∈ [m1 + 1, 6] and we have obtained three different routes
for the transition m1 → m2 which we describe below. In all
phase spaces, the red thicker lines indicate chaotic regions.
Since the parameters values are small, the chaotic regions are
very thin and resemble the shape of a separatrix curve. For
this reason, we emphasize the nonintegrable characteristic of
the system by highlighting the chaotic trajectories in the phase
space by a thicker line.

A. Route 1: Pitchfork bifurcation

The first route represents a scenario where the transition
from mode m1 to mode m2 occurs with no intermediate modes
and by a pitchfork bifurcation. Therefore, a certain number
of fixed points change their stability and twice as many fixed
points emerge with the opposite stability. This route can be
observed in the directed transition 2 → 3, present in the pa-
rameter space of Fig. 2(a), as we can observe in the phase
spaces of Fig. 3.

From the sequence of phase spaces shown in Fig. 3, we
observe the elliptic point at (x, y) = (−0.5, 0) passes through
a pitchfork bifurcation, becoming hyperbolic. The imminence
of the bifurcation can be seen in Fig. 3(b), where the innermost
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FIG. 4. Phases spaces for the transition 3 → 5. For (a) K2 = 0.01 we observe three islands, representing the mode m = 3. When K2 =
0.016, the bifurcation is about to happen, as we can observe in (b). After the emergence of two elliptic points and, consequently, two hyperbolic
points, the width of the islands increases, and we have the scenario shown in (c), for K2 = 0.05. For all phase spaces K1 = 0.01 and the thicker
lines are very thin chaotic layers.

island is deformed. Along with the change of stability, two
elliptic points emerge and the mode m2 = 3 becomes predom-
inant, as in Fig. 3(c). The same route is observed in Fig. 1
where the two hyperbolic points at x = ±0.25 are replaced
with two elliptic points and two hyperbolic points emerge
aside. We also observe this route for the transitions 1 → 2,
2 → 4, 3 → 4, 3 → 6, 4 → 5, 4 → 6, and 5 → 6.

B. Route 2: Saddle-node–tangent bifurcation

The second observable route is composed only by a saddle-
node–tangent bifurcation. As Route 1, there is no intermediate
mode and the change from mode m1 to mode m2 occurs
directly by the creation of elliptic and hyperbolic points by
the same amount (saddle-node bifurcation). We illustrate this
route by the transition from mode m = 3 to m = 5, as shown
by the sequence of phase spaces in Fig. 4.

For K1 = 0.01 and K2 = 0.01, m1 = 3 and m2 = 5, we
have the phase space in Fig. 4(a) where we observe three
islands. If the parameter K2 slightly increases, then we have
the phase space in Fig. 4(b), where the islands centered in x ≈
±0.04 are deformed, and the bifurcation is about to happen.
The bifurcation in this scenario is the emergence of elliptic

and hyperbolic points. In this case, two elliptic points and two
hyperbolic points emerge simultaneously in the phase space,
leading to a direct transition from mode 3 to 5. In Fig. 4(c),
for K2 = 0.05, we observe five distinct islands related to the
predominant mode m2 = 5. This route was also identified for
the transitions 1 → 3, 1 → 5, and 2 → 6.

C. Route 3: Intermediate mode with saddle-node
and pitchfork bifurcation

Last, we have the route related to the parameter space in
Fig. 2(b) where there is an intermediate mode in the transition.
Analyzing Fig. 2(b), we choose K1 = 0.01, m1 = 1, m2 = 4
and three different values of K2 to exemplify the route with
intermediate mode. The phase spaces related to Route 3 are
shown in Fig. 5.

For the first phase space in Fig. 5(a) we chose K2 = 0.005
and we observe one island, related to the predominant mode
m1 = 1. When K2 = 0.02, we observe two islands centered
in x = 0 and in x = 0.5, as we see in Fig. 5(b). The first
bifurcation related to this intermediate transition is a pitchfork
bifurcation, where the hyperbolic point at x = 0.5 becomes
elliptic and two other hyperbolic points emerge. The transition

FIG. 5. Transition from m1 = 1 to m2 = 4 with intermediate mode. The amplitude of the first mode is, for all phase spaces, K1 = 0.01 and
it is predominant when K2 = 0.005 in (a). The intermediate mode is visible when (b) K2 = 0.02, where two isochronous islands are present in
the phase space. For (c) K2 = 0.06, the second mode is predominant and we observe four islands.
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FIG. 6. Destruction route for the islands of the standard map with two modes. The islands become elongated in the y direction as K2

increases, as we observe in (a) for K2 = 1.5. Eventually, the elliptic points in the center of islands go through a pitchfork bifurcation and
become hyperbolic points, as shown in (b) for K2 = 4.0 and the inset magnification. After the bifurcation, two islands emerge in the place, as
shown in (c) for K2 = 4.5. For all phase spaces m1 = 2, m2 = 3 and K1 = 0.1.

2 → 4 occurs following two saddle-node bifurcations, as we
can observe in Fig. 5(c) for K2 = 0.06. In this scenario, inside
the big island centered in x = 0 of Fig. 5(b), two other islands
emerge, along with two hyperbolic points, resulting in four
elliptic points. This route was also observed for the transitions
1 → 6 and 2 → 5.

D. Destruction route of the islands

In previous sections, we analyze the bifurcations that led to
the emergence of new islands. Now, we describe the destruc-
tion of the islands, a transition related to the boundary between
the colored and the black regions on the parameter spaces of
Fig. 2. From our analysis, we are able to conclude that all
the islands pass through a pitchfork bifurcation and become
islands of period two, with their centers at an equidistant
distance from y = 0. The destruction route is shown in Fig. 6
for K1 = 0.1, m1 = 2, m2 = 3 and three different values of K2.

In Fig. 6(a), for K2 = 1.5, we observe the three islands
related to the prevalent mode m2 = 3. Visually, the island
in the center is different from the other two. As the value
of K2 increases, all three islands become elongated in the y
direction. If K2 continues to increase, then the width of the
island in the x direction shrinks and a pitchfork bifurcation
occurs, where the stability of the elliptic point changes and a

TABLE I. Transitions in third column for each combination of
m1 and m2 in which the route that leads from one mode to the
other is only one pitchfork bifurcation. The letter P denotes pitchfork
bifurcation.

Route 1: m1
P−→ m2

m1 m2 Transitions

1 2 1 → 2 → 1 → 0
2 3 2 → 3 → 2 → 0
2 4 2 → 4 → 3 → 2 → 0
3 4 3 → 4 → 3 → 1 → 0
3 6 3 → 6 → 3 → 0
4 5 4 → 5 → 4 → 2 → 0
4 6 4 → 6 → 4 → 0
5 6 5 → 6 → 5 → 3 → 1 → 0

hyperbolic point emerges. We observe the bifurcation at the
phase space in Fig. 6(b). For K2 = 4.0, the two islands with
the center in x ≈ ±0.35 are elongated in the y direction, but
their centers are elliptic points. In contrast, the elliptic point
centered in x = 0 bifurcates, one hyperbolic point emerges in
its place, along with two new elliptic points, as we can observe
in the magnification in the inset. For greater values of K2,
the two remaining elliptic points also bifurcate, and the final
state is shown in Fig. 6(c), where instead of three islands with
period one with the center in y = 0, we observe three islands
of period two with their centers at an equidistant distance from
y = 0. Therefore, in the parameter spaces in Fig. 2, the black
points do not indicate necessarily the nonexistence of islands
in the phase space, but rather that there are no elliptic points
in y = 0.

E. Transition routes

Observing the destruction route in Fig. 6, we conclude that
different islands can disappear for different parameter values.
Just as observed in Fig. 2(b) where there is an intermediate
mode, there may be one or more intermediate modes in the
destruction routes. In Tables I–III, we summarize all the ob-
served transitions for every combination of m1 ∈ [1, 5] and
m2 ∈ [m1 + 1, 6] in the three routes from mode m1 to m2 and
for the destruction routes from m2 to no elliptic points at y = 0.
We remember that the decrease in the number of elliptic points
always happens through the pitchfork bifurcation.

Table I presents the transitions that occur when the
transition from mode m1 to m2 occurs through Route 1, i.e.,

TABLE II. For the combinations of modes m1 and m2 shown in
the first and second columns, we indicate the transitions that occur.
In this case, Route 2, only on saddle-node (SN) bifurcation happens
to take the system from mode m1 to mode m2.

Route 2: m1
SN−→ m2

m1 m2 Transitions
1 3 1 → 3 → 2 → 0
1 5 1 → 5 → 4 → 2 → 0
2 6 2 → 6 → 4 → 0
3 5 3 → 5 → 4 → 2 → 0
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TABLE III. In Route 3, we observe intermediate modes. Above,
we present all the modes for the combinations of m1 and m2 shown in
the first two columns. In this scenario, the route is composed of one
pitchfork (P) bifurcation, and it is followed by subsequent saddle-
nodes (SN) bifurcations until the system assumes the mode m2.

Route 3: m1
P + SN−−−→ m2

m1 m2 Transitions

1 4 1 → 2 → 4 → 3 → 1 → 0
1 6 1 → 2 → 4 → 6 → 5 → 3 → 2 → 0
2 5 2 → 3 → 5 → 4 → 2 → 0

from only one pitchfork bifurcation. In Table II, we have the
transition related to Route 2. The transition from mode m1 to
m2 occurs by the saddle-node bifurcation without intermediate
mode. Last, in Table III, we present the transition related to
Route 3, where intermediate modes are identified.

The destruction of elliptic points in y = 0 always occurs
by pitchfork bifurcations. Observing all the transitions in
Tables I–III from mode m2 to zero elliptic points in y = 0,
we cannot identify a general pattern or specific sequence. We
intend to investigate deeply the breakup of these islands in
future research.

IV. CONCLUSIONS

To propose a simple system that exhibits isochronous
bifurcations, we define the two-harmonic standard map, a
two-dimensional map with two parameters where two differ-
ent arbitrary resonant modes compete. From the phase-space
analysis, we identified the emergence of new islands as the
amplitude of the second mode increases. The new islands can
appear within or outside the original set of islands.

From our observations of the phase space, the emergence
of new islands and the transition from the first mode m1 to
the second mode m2 can happen in three ways. The first way,

that we named Route 1, is through pitchfork bifurcation. In
this case, several fixed points change their stability and twice
as many fixed points emerge with the opposite stability. In
the example presented, one elliptic point becomes hyperbolic
and two new elliptic points emerge. Route 2 is similar to
Route 1, with the difference that, in this case, the bifurcation
is a saddle-node bifurcation. In this scenario, as the amplitude
of the second mode increases, hyperbolic and elliptic points
are created in the bifurcation point. Last, we identified Route 3
where intermediate modes exist. For the last route, we observe
one pitchfork bifurcation and then sequential saddle-node bi-
furcations until the system reaches the second mode. With this
analysis, we can affirm that the two-harmonic standard maps
can simulate different types of isochronous bifurcations.

Differently from the emergence of islands, our observa-
tions showed that the destruction of islands always occurs
through the same bifurcation type, the pitchfork bifurcation.
For the destruction, the width of the island in the x direction
shrinks while the length in the y direction increases. Then, the
elliptic point goes through a pitchfork bifurcation, becomes
hyperbolic, and two islands emerge, leading to a scenario
where there are no elliptic points in y = 0.

The codes and data are available online in the Oscillations
Control Group Data Repository [26].
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