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Abstract
Cancer is a group of diseases in which cells grow uncontrollably and can spread into other tissues. Various studies consider 
the interactions between cancer cells and the immune system as well as different types of treatment. Mathematical models 
have been used to study the growth of cancerous cells. We study a fractional order model that describes some aspects of 
the interactions among host, effector immune, and cancer cells. A drug treatment is considered to analyse the cancerous 
cells proliferation. Due to the chemotherapy, we split the fractional equation of the cancerous cells into drug sensitivity and 
resistance. We show that not only the chemotherapy but also the drug resistance plays an important role in the growth rate 
of cancer cells.
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1 Introduction

A tumour is an abnormal growth of cells in the body [1]. 
Depending on the type, the tumours can be benign or malig‑
nant [2]. A benign tumour does not invade nearby tissues and 
organs, and it does not spread to other regions of the body 

[3]. The malignant tumours are cancerous that not only grow 
uncontrollably, but also can spread to distant regions [4–9].

Procedures for cancer treatment depend on the type and 
stage of the tumours. Various methods of treatment for 
cancer have been available, such as surgery [10], radiation 
therapy [11], chemotherapy [12], immunotherapy [13, 14], 
and photodynamic therapy [15]. Combinations of treatments 
have been used in many patients, for instance combining 
immunotherapy and targeted therapies [16] and surgery with 
chemotherapy and radiation therapy [17].

It has been reported cancer resistance to chemotherapy 
[18]. The drug resistance is a serious challenge in the cancer 
treatment [19]. Shanker et al. [20] published a review article 
about the most common mechanisms related to drug resist‑
ance in lung cancer. The reduction in the effectiveness of 
chemotherapeutic agents was identified in various types of 
tumours, such as colon [21], pancreatic [22], and breast [23].

Mathematical models have been proposed to understand 
the dynamical behaviour of cancer cell proliferation [24]. 
Borges et al. [25] investigated a model for tumour growth 
under continuous and pulsed chemotherapy. Iarosz et al. 
[26] proposed a mathematical model of brain tumour with 
chemotherapy treatment. They found conditions for the inhi‑
bition of cancerous cell with a minimal effect on the neu‑
rons. A mathematical model of cancer treatment by immuno‑
therapy was introduced by Nani and Freedman [27]. Mixed 
chemotherapy and immunotherapy were considered in a 
model developed by Pillis et al. [28]. It was shown that the 
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combination of therapies is able to eliminate cancer [29]. It 
has been developed and analysed cancer models that exhibit 
rich dynamic behaviour [30]. Recently, Sayari et al. [31] 
proposed a machine learning classification to identify fluc‑
tuations related to the growth rate of cancer cells.

Fractional differential equations have been used to model 
the dynamical behaviour of processes related to cell popula‑
tion [32], as well as interactions between cancer and normal 
cells [33, 34]. Kumar et al. [35] investigated the dynamic 
behaviour of tumour and normal cells for different fractional 
order values. Farayola et al. [36] reported numerical simula‑
tion of a fractional order cancer model with radiotherapy. 
A model for cancer treatment based on chemotherapeutic 
and immunotherapeutic drug concentrations was proposed 
by Hassani et al. [37]. Gabrick et al. [34] studied the effects 
of fractional operators in the dynamics of a cancer model.

We consider a fractional cancer model based on the 
Lotka‑Volterra equations [38, 39]. The Lotka‑Volterra equa‑
tions have been used in predator–prey relationship. It was 
initially proposed to explore the dynamic behaviour between 
herbivorous animals and plants, as well as to analyse preda‑
tory fish. Without predator, the quantity of prey grows 
exponentially. The predator population can increase due to 
the prey consumption. Depending on the parameters, the 
predator and prey populations can oscillate [40]. Competi‑
tion between healthy and cancerous cells can be described 
by the Lotka‑Volterra equations [41]. Logistic growth has 
been included in the competitive Lotka‑Volterra model to 
mimic the interactions among healthy cells, cancerous cells, 
and chemotherapeutic agents. We focus on a fractional can‑
cer model due to the fact that captures nonlocal relations in 
space and time by means of power‑law memory kernels [42]. 
In this work, we modify the fractional cancer model by split‑
ting the equation of the cancerous cells into drug sensitivity 
and resistance [43]. We show that the drug resistance plays 
a crucial role in the growth rate of cancer cells.

The paper is organised as follows. In Section 2, we intro‑
duce the cancer model with fractional order derivatives. Sec‑
tion 3 shows our results about chemotherapy treatment and 
resistant cancerous cells. Finally, in the last section, we draw 
the conclusions.

2  Fractional Tumour‑Immune Model

We include cancer drug resistance in a model based on 
Lotka‑Volterra equations [44] that describes the interac‑
tions among host, effector immune, and cancerous cells 
[45]. Figure 1 exhibits a schematic representation of the 
interactions among the cells. The host cells do not interact 
with the effector immune cells. The cancerous cells interact 
with the host and effector immune cells. The chemotherapy 
drugs attack all cells, except the resistant cancer cells. Due 

to the chemotherapeutic agents, the sensitive cancerous cells 
convert to resistant cancerous cells by means of mutations.

As proposed in [39], these interactions can be described 
by the following set of normalised equations:

where x and y are the normalised population of host and 
effector immune cells, respectively. The normalised variable 
zs corresponds to the sensitive tumour cell, zr is the resistant, 
and F(x) is defined as

The chemotherapeutic agent concentration is denoted by 
q. We have a fractional operator, and D� is the Caputo frac‑
tional differential operator and defined by

where Γ() is the gamma function and � ∈ [0, 1] [46].
The first term in Eq. (1) is a logistic function, the second 

term is the inhibition of the host cells by the tumour cells, 
and the third term describes the chemotherapy on the host 
cells. In Eq. (2), the first term (Michaelis‑Menten term) is 
associated with the immunatory system stimulated by the 

(1)D�x = �1x(1 − x) − �1x(zs + zr) −
a1xq

b1 + x
,

(2)D�y =
�2y(zs + zr)

1 + (zs + zr)
− �2y(zs + zr) − �1y −

a2yq

b2 + y
,

(3)

D�zs = zs[1 − (zs + zr)] − xzs − �3yzs − uF[q]zs −
a3zsq

b3 + zs
,

(4)D�zr = zr[1 − (zr + zs)] − xzr − �3yzr + uF[q]zs,

(5)D�q = Φ − �q,

(6)F(x) =

{

0, x ≤ 0,

1, x > 0.

(7)D� f (t) =
1

Γ(1 − �) ∫
t

0

1

(t − t�)�
df

dt�
dt�,

Fig. 1  Schematic representation of the model
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tumour cells, the second term is the inactivation of the effec‑
tor immune cells by the tumour cells, the third term cor‑
responds to the natural die, and the fourth term describes 
the chemotherapy. In Eqs. (3) and (4), the first term is a 
logistic function, the second term represents the competi‑
tion between host and tumour cells, and the third term cor‑
responds to the death of the tumour by the effector immune 
cells. The term associated with the chemotherapy agent 
does not appear in Eq. (4). Equation (5) corresponds to the 
chemotherapy. The model parameters [39, 43] are described 
in Table 1.

Figure 2 displays the time evolution of x(t), y(t), and 
zs(t) for q = 0 , � = 1 , (a) �1 = 04 , and (b) �1 = 0.5 . Without 
chemotherapeutic agents, zr is equal to zero over time. In 
Fig. 2a, the normalised population of cells exhibit periodic 
behaviour after a transient time. Depending on the param‑
eter values, it is possible to observe aperiodic behaviour, as 
shown in Fig. 2b.

3  Chemotherapy Treatment

Anticancer drugs can be put into the body by means of 
different protocols. One type of protocol is the continu‑
ous injection or infusion [47]. Dixon et al. [48] analysed 

continuous chemotherapy in responsive metastatic breast 
cancer. Tuettenberg et al. [49] demonstrated that continuous 
low‑dose chemotherapy with temozolomide is a promising 
treatment option for patients with glioblastoma.

Figure 3 shows the normalised population of sensitive 
( zs ) and resistant ( zr ) cancer cells as a function of the time 
for Φ = 150 and �1 = 0.5 . In the panels a and b, we consider 
� = 1 . For u = 0 (blue line), there is no mutation to resistant 
cells ( zr = 0 ), and zs exhibits an oscillatory behaviour. Con‑
sidering u = 10−3 (red line), zr increases as a consequence 
of the drug resistance and zs transforms into zr , going to 
a value equal to zero. For � = 0.9 , as shown in the panels 
c and d, zs goes to a constant value, and zr remains equal 
to zero for u = 0 (blue line). When u is equal to 10−3 , the 
sensitive cancerous cells are killed by the chemotherapeutic 
agents while the normalised population of resistant cancer‑
ous cells increases. Our model exhibits a similar behaviour 
which was recently reported by Rabé et al. [50]. Due to the 
chemotherapy and mutation, the sensitive cancerous cells 
are suppressed, while the resistant cells can survive. Accord‑
ing to Fig. 3b and d, zr can display oscillatory behaviour by 
varying some parameters. By varying the parameters, it is 
possible to identify periodic and aperiodic behaviours.

Table 1  Parameter values and description [39, 43]

Parameter Values Description

�1 0.3–1.0 Proliferation rate
�2 4.5 Proliferation rate
�1 1.5 Loss influence
�2 0.2 Loss influence
�3 2.5 Loss influence
Φ 0–500 Infusion rate of chemotherapy
� 0.3 Washout rate of chemotherapy
�1 0.5 Death rate
u 0.01–0.0001 Mutation rate
a1 = a2 = a3 0.0001 Interaction coefficients
b1 = b2 = b3 1 Holling type 2

Fig. 2  Time evolution of x(t), y(t), and z
s
(t) for � = 0 and � = 1 . We 

consider �1 = 0.4 and �1 = 0.5 in the panels a and b, respectively

Fig. 3  Time evolution of z
s
(t) and z

r
(t) for Φ = 150 , �1 = 0.5 , u = 0 (blue 

line), u = 10−3 (red line), and � = 1 in a and b, and � = 0.9 in c and d 

Fig. 4  Parameter space Φ × u with �1 = 0.5 for a � = 1 and b � = 0.9 . 
The colour bar indicates the maximum value of z

s
+ z

r
 in a time interval
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In Fig. 4, we plot the parameter space Φ × u with �1 = 0.5 
for � = 1 and � = 0.9 in the panels a and b, respectively. The 
colour bar represents the maximum value of zs + zr in the 
time interval between 0 and 720. The best situation is denoted 
by the black region, in which zs + zr < 0.16 . In the yellow 
region, it is possible to observe values of zs + zr greater than 
0.64. Figure 4a displays a large yellow region and a small 
black region, whereas there are no yellow and orange regions 
in Fig. 4b. Increasing u, even increasing Φ , the regions with 
high values of zs + zr appear due to the drug resistance.

We compute the parameter space, Φ × � , for �1 = 0.5 , 
as shown in Fig. 5. The colour bar indicates the values of 
zs + zr . In the panels a and b, we consider u = 10−3 and 
u = 10−2 , respectively. Increasing u, the black region disap‑
pears and the yellow region increases for larger Φ values. 
We verify that zs + zr depends not not only u and Φ , but 
also � . Therefore, � plays an important role in our model for 
continuous chemotherapy treatment.

4  Conclusions

Drug resistance has been a challenge to the effectiveness 
of cancer therapy. Many mechanisms can promote the 
drug resistance in cancerous cells, such as DNA damage 
repair, drug inactivation, and drug target alteration [51]. 
Advances in the understanding of resistant cells can pro‑
vide novel strategies for cancer treatments.

We analyse the effects of drug resistance in a tumour‑
immune model. We propose a mathematical model 
governed by differential equations of fractional order, 
namely noninteger order differential equations. The model 

describes the interactions between host, effector immune, 
and cancer cells, as well as chemotherapeutic agents. We 
extend the tumour‑immune model splitting the equation of 
the cancerous cells into two equations: an equation for the 
sensitive cells and another for the resistant ones.

Due to the chemotherapy, sensitive cancer cells ( zs ) can 
suffer mutation and transform into resistant ones ( zr ). We 
compute the maximum number of cancerous cells ( zs + zr ) 
in a time interval. In a continuous drug delivery, the maxi‑
mum zs + zr values depend on the chemotherapy dose ( Φ ) 
and the mutation rate (u). The efficiency of the treatment 
changes according to Φ and u.

In this work, we show that the order of the equation 
differential plays a crucial role in modelling a tumour‑
immune system with drug resistance. The dynamical 
behaviour is changed according to the order. We verify 
that the size of the parameter space region in which the 
cancer is suppressed depends on the order value.
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