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One of the main consequences of the complex hierarchical structure of chaotic regions and stability 
islands in the phase space of a typical nonlinear Hamiltonian system is the phenomenon of stickiness. The 
chaotic orbits that approach an island are trapped in its neighborhood for arbitrarily long times, in which 
the orbits behave similarly as quasiperiodic orbits. In this paper, we characterize the boundary between 
chaos and regular motion in the phase space of the standard map for distinct parameter values. The 
orbits are distinguished between regular and chaotic employing a recently proposed method of weighted 
Birkhoff averages. We quantify the dimension of the boundaries of the islands using the uncertainty 
exponent. In our simulations, we show that the dimension of the island’s boundary depends on the scale 
of the initial condition uncertainty and the level of the hierarchical structure. We also show that the 
trapping in the vicinity of the islands causes an obstruction in the predictability of the final state of an 
orbit. We present how this loss of predictability results in larger dimensions at the inner levels of the 
islands.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

The motion of a two-dimensional integrable Hamiltonian sys-
tem takes place on periodic and quasiperiodic invariant tori. If a 
weak perturbation is added to such a system, the Kolmogorov-
Arnold-Moser (KAM) theorem [1] states that sufficiently irrational 
tori survive the perturbation (KAM tori), while the rational ones 
are destroyed. In the vicinity of the original location of the de-
stroyed rational tori, there exists a set of elliptic and hyperbolic 
points, as stated by the Poincaré-Birkhoff theorem [1], and chaotic 
motion appears in these regions. When the perturbation strength 
increases, the KAM tori are also destroyed and their remnants form 
an invariant Cantor-like set, also known as cantori [2,3].

Among the chaotic sea are found several islands of stability, 
making the phase space of a typical nonlinear Hamiltonian sys-
tem neither integrable nor uniformly hyperbolic, where regular 
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and chaotic behavior coexist. Due to the presence of the islands, 
the chaotic sea constitutes a fat fractal [4] and its exact boundary 
is difficult to determine due to the infinite hierarchical island-
around-island structure embedded in it [5]. A direct consequence 
of this complex connection between regular and chaotic motion is 
the phenomenon known as stickiness [6–15]. The stickiness affects 
chaotic orbits that come close to an island. These orbits may spend 
an arbitrarily long but finite time in its neighborhood in which the 
orbit will present a similar behavior as a quasiperiodic orbit, until 
eventually it escapes. Before the orbit escapes to the chaotic sea, 
it remains trapped inside a region bounded by cantori [5,16] and 
once inside, the orbit may enter an inner cantorus, and so on to ar-
bitrarily inner levels in the island-around-island hierarchy, and as 
a consequence the cantori act as partial barriers to the transport 
of chaotic orbits in phase space.

The importance of the phenomenon of stickiness was first 
noted by Contopoulos [6]. The stickiness has a large effect on 
global properties of the system, such as decay of correlations 
[7–9] and transport [10]. Altmann et al. [11,12] described that the 
stickiness for a two-dimensional Hamiltonian system with non-
hierarchical borders between regular and chaotic regions is due 
to a family of marginally unstable periodic orbits. Cristadoro and 
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Ketzmerick [13] described the generation of stickiness in two-
dimensional Hamiltonian systems with a mixed phase space where 
they conjectured a universal power law decay of correlations. Con-
topoulos and Harsoula [14,15] demonstrated that in addition to 
the stickiness due to cantori that surround the islands of sta-
bility, there is another due to the unstable asymptotic curves 
of the unstable periodic orbits and they also related the escape 
time through a cantorus with the largest eigenvalue of the unsta-
ble periodic orbit, the size of the gaps of the cantorus and with 
the distance of the initial condition from the cantorus. Several 
methods have been proposed to identify stick orbits, such as the 
finite-time Lyapunov exponents [17,18], recurrence time statistics 
[11,12,19,20] and the finite-time rotation numbers [21,22].

The coexistence of regular and chaotic behavior on an arbi-
trarily small scale makes the task of distinguishing between these 
two regimes a non-trivial one. The standard test for chaos is the 
Lyapunov exponent method, where for two-dimensional Hamilto-
nian systems there are two exponents and they obey λ1 = −λ2. 
For periodic and quasiperiodic orbits, the Lyapunov exponent is 
zero while for the chaotic ones, λ1 > 0. All stable, regular orbits 
have Lyapunov exponents equal to zero for infinite times. How-
ever, in the numerical simulations this limit is never reached and 
the Lyapunov exponent for different orbits shows distinct numeri-
cal convergence toward zero [23]. Although widely used, the Lya-
punov exponent method has an extremely slow convergence rate 
of T −1, where T is the orbit length [24]. Other methods have been 
proposed to efficiently distinguish between chaos and regularity, 
namely Fast Lyapunov Indicator, the 0–1 test, Mean Exponential 
Growth Factor of Nearby Orbits, among others. For a detailed dis-
cussion of these and other methods, see [25–27].

Recently, it was proposed a new method based on the ergodic 
partition theory for the calculation of observable time averages in 
phase space [28,29]. Even though this method also suffers from 
slow convergence due to their dependency on the use of Birkhoff 
averages, Das et al. were able to improve this method by combin-
ing it with their method of weighted Birkhoff averages [24,30–32]. 
In Ref. [24] the authors compare this new method with the 0–1
test and the Lyapunov exponents method and show that it has a 
better accuracy to distinguish between chaos and regularity and in 
the computation time.

In this paper, we aim to characterize the geometry of the 
boundary between chaotic and regular motion in the phase space 
of the standard map [33] for different levels in the hierarchical 
structure of islands and cantori. We use the weighted Birkhoff av-
erage method to test whether an orbit is regular or chaotic and we 
use the uncertainty fraction method [34–36] to obtain an effective 
fractal dimension [37,38] of the island’s boundary. We find that 
the dimension depends on the scale of the initial condition uncer-
tainty and on the position in phase space. We also point out that 
inner levels in the hierarchical structure show larger dimensions, 
due to the longer trapping time in the cantori.

This paper is organized as follows. In Section 2 we introduce 
the standard map and we briefly comment on some of its fea-
tures when the non-linearity parameter is varied. In Section 3 we 
present the weighted Birkhoff method and in Section 4 we discuss 
the uncertainty fraction method. In Section 5 we obtain the effec-
tive dimension of the boundary of the islands for two values of 
the standard map non-linearity parameter and we show that we 
can associate an effective dimension with different scales of the 
initial condition uncertainty. We also show that the time a chaotic 
orbit spends in the vicinity of an island influences the effective 
dimension of the boundary. The last section contains our final re-
marks.
2

2. The standard map

To illustrate the effects of the complex hierarchical structure of 
chaotic regions and islands of stability, we use the paradigmatic 
standard map (or Chirikov-Taylor map) [33]. Besides its simplic-
ity of being a two-dimensional Hamiltonian map, it has a very 
rich dynamics. The presence of embedded islands in the chaotic 
sea prevents the distribution of the finite Lyapunov exponent from 
having a single mode, in fact, it has a bimodal distribution in the 
presence of stickiness [17]. The trajectories cross the neighbor-
hood of the islands through hyperbolic and non-hyperbolic regions 
that play an important role in the appearing of the stickiness phe-
nomenon [39].

The dynamics of the standard map are given by the following 
equations

xt+1 = xt + yt+1 mod 2π,

yt+1 = yt − k sin xt mod 2π,
(1)

where xt and yt are the two canonical dynamical variables, the po-
sition and the momentum, at discrete times t = 0, 1, 2, . . . , T and 
k is the non-linearity parameter which controls the degree of non-
integrability in the system. The standard map is the discrete form 
of the canonical equations for the kicked rotor described by the 
Hamiltonian

H(x, y, t) = y2

2
− k cos x

∞∑
n=−∞

δ(t − n). (2)

The dynamics takes place on a cylinder by taking x mod 2π or on 
a torus by taking x and y mod 2π . In this paper, we will consider 
the latter.

If k = 0 the dynamics of the map is regular, the system is in-
tegrable, the momentum yt is constant and every orbit lies on 
rotational invariant torus. As k increases, some of the irrational 
tori remain as invariant curves, as stated by the KAM theorem, 
and for appropriate initial conditions is possible to observe chaotic 
behavior. For the critical value k = kc ≈ 0.971635 [40] the last ro-
tational torus is destroyed, leading to global stochasticity and one 
large chaotic orbit fills a significant portion of the phase space. For 
k not too large, several islands are still present in the chaotic sea 
and as k increases even further, the size of these islands decreases, 
until for sufficiently large values of k, the chaotic sea fills nearly 
the entire phase space [41]. In Fig. 1 is depicted this behavior for 
four different values of k.

3. The weighted Birkhoff average

In Refs. [24,30–32] the authors present a new method based 
on a weighted Birkhoff average for identifying chaotic orbits, is-
land chains and rotational invariant tori. The Birkhoff average of a 
function h(z) along the trajectory of a map zt+1 = f t(z0) is

B(h)(z0) = 1

T

T −1∑
t=0

h ◦ f t(z0). (3)

The Birkhoff ergodic theorem [42] states that time averages of a 
function h along a trajectory f T (z0), i.e., B(h)(z0), converge to the 
space average

1

T

T −1∑
t=0

h ◦ f t(z0) →
∫

h dμ

as T → ∞, where μ is an invariant probability measure. The 
Birkhoff average, however, does not have a fast convergence. For 



M.R. Sales, M. Mugnaine, R.L. Viana et al. Physics Letters A 431 (2022) 127991

Fig. 1. Phase space of the standard map with 70 randomly chosen initial conditions for (a) k = 0.9, (b) k = 1.5, (c) k = 4.0, (d) k = 6.908745.
a quasiperiodic orbit, the convergence rate of (3) is of the order 
T −1, because of the edge effects for the finite orbit segment. For 
the chaotic case the convergence rate is observed to be T −1/2 [28].

The slow convergence is due to the lack of smoothness at the 
two ends of the orbit [24,31,32]. Therefore, instead of weighting 
the terms h ◦ f t(z0) in the average equally, they proposed very 
small weights to the terms when t is near 0 or T and defined the 
weighted Birkhoff average of a function h(z) as

WB(h)(z0) =
T −1∑
t=0

wt,T h ◦ f t(z0), (4)

where

wt,T = 1

S
g

(
t

T

)
, S =

T −1∑
t=0

g

(
t

T

)
, (5)

with

g(t) =
{

e−[t(1−t)]−1
if t ∈ (0,1),

0 otherwise,

being an exponential bump function that converges to zero with 
infinite smoothness at t = 0 and t = 1. Because of that, the weight 
function vanishes at the ends of the orbit segment, and thus pre-
serves the smoothness of the original orbit [24,31,32].

It was shown in [32] that if g(t) is a bump function infinitely 
differentiable, if the function h and the map f are also infinitely 
differentiable and f t(z0) is a quasiperiodic orbit with Diophantine 
rotation vector, then (4) has a super-fast (super polynomial) con-
vergence to the space average (see Theorems 1.1 and 3.1 in [32]), 
namely∣∣∣∣WB(h)(z0) −

∫
h dμ

∣∣∣∣ ≤ Cm T −m.

For chaotic orbits, however, this method does not give any im-
provement in the convergence. Even though the constant Cm de-
pends on the function h, the speed and the accuracy of the con-
vergence to the phase space average are largely independent of the 
choice of h [30].

In order to classify an orbit as chaotic or regular, we com-
pare the value of WB(h)(z0) along the first T iterates with 
WB(h)( f T (z0)) along the second T iterates. In the limit T → ∞
these values should be equal [24] and we can measure the con-
vergence rate by computing the number of zeros after the decimal 
point by defining

dig = − log10

∣∣∣WB(h)(z0) − WB(h)( f T (z0))

∣∣∣. (6)

If dig is large, the convergence is fast and the orbit is regular. If 
dig is small, the orbit is chaotic. However, we cannot compare 
3

Fig. 2. (Color online.) The number of zeros dig after the decimal point for a 
750 × 750 grid of uniformly distributed orbits of the standard map with (a) k = 0.9, 
(b) k = 1.5, (c) k = 4.0 and (d) k = 6.908745. WBT was computed using T = 106

iterates and h(z) = cos x. The values of dig are indicated in the color bar.

the small values of dig and say that an orbit with dig = 1 is 
“more chaotic” than an orbit with dig = 3, for example, because 
the weighted Birkhoff average method does not improve the con-
vergence of such orbits. The total number of iterates needed to 
compute (6) is 2T .

In Fig. 2 are shown the values of dig for a grid of 750 × 750
initial conditions for four different values of k of the standard 
map with T = 106 and h(z) = cos x. A magnification of Figs. 2(c) 
and 2(d) are shown in Fig. 3 together with the histograms of dig. 
We see, as has been stated, that the smaller the parameter k, the 
greater the fraction of regular orbits. These orbits correspond to 
the distribution centered around dig ∼ 14 whilst the chaotic ones 
are centered around dig ∼ 3.5.

Although they occur less often, there are also orbits with in-
termediate values of dig. These are orbits trapped in the neigh-
borhood of the island chains that experience weak chaos, also 
known as stickiness. Thus, we have to define a cutoff value for 
dig to distinguish between chaos and regularity. Meiss and Sander 
also addressed this problem in [43] to establish a cutoff value for 
dig. Based in our analysis of the histograms of dig, such the ones 
shown in Fig. 3, we choose the cutoff for dig = 11.25 to detect the 
regular orbits. Because the number of orbits that have interme-
diate values of dig is small compared to regular and chaotic ones 
(see Figs. 3(b) and 3(d)), no significant changes will occur for small 
changes in the cutoff value and it will remain fixed for all our fur-
ther analyses.

The specific choice of the function h(z) is quite arbitrary, given 
that it satisfies the requirements of Theorems 1.1 and 3.1 in 
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Fig. 3. (Color online.) (a) and (c) are magnifications of Figs. 2(c) and 2(d), respec-
tively and (b) and (d) are their respective histograms. The color palette of the 
histograms matches the color bar of Fig. 2.

Ref. [32]. We use h(z) = cos x, the same function used in Ref. [24]
to compare the weighted Birkhoff average method with the Lya-
punov exponents method and the 0–1 test. However, other func-
tions also have been used. In Ref. [30] the authors used h(z) =
sin(x + y) to demonstrate the method for the standard map and 
in Ref. [43], Meiss and Sander used the frequency map of a three-
dimensional analog of the standard map as the function h.

4. Uncertainty fraction method

In this section we will discuss the uncertainty fraction method 
[34,35,44,45] used in the characterization of the boundary between 
chaotic and regular behavior in phase space.

To outline the method we consider a phase space region, as 
the one shown in Fig. 3(a), for example, and consider a large 
number of random initial conditions (x0, y0). For each initial con-
dition (x0, y0) we evaluate dig by means of (6) with T = 106 and 
h(z) = cos x. We then test whether dig is larger or not than the 
cutoff value. If so, we say the initial condition (x0, y0) is inside of 
an island, if not so, the pair lies on the chaotic sea. Each initial 
condition is then perturbed in the x direction by ±ε to produce 
two new initial conditions (x0 ± ε, y0). We evaluate dig for these 
new pairs of initial conditions and test again whether dig is larger 
or not than the cutoff value. If either of the two perturbed initial 
conditions has a different result, we say the original pair (x0, y0)

is ε-uncertain. The uncertainty fraction f (ε) is the ratio between 
the number of ε-uncertain pairs and the total number of them.

We repeat these computations ten times with 5 × 104 pairs of 
initial conditions for each value of ε , which is varied from 10−2

to 10−8. If the boundary is smooth, f (ε) ∼ ε . This, however, is 
not the case for several nonlinear systems [46]. In these cases, the 
uncertainty fraction f (ε) is expected to scale with ε as a power 
law, namely

f (ε) ∼ εα, (7)

with α being the uncertainty exponent [34–36].
It is possible to express the uncertainty exponent in terms of 

the capacity definition of dimension by letting D be the dimen-
sionality of the phase space and N(δ) be the minimum number of 
D-dimensional boxes of length δ required to cover the boundary. 
Then, the capacity definition of dimension is
4

Fig. 4. (Color online.) Log-log plot of f (ε) versus ε for the region specified in 
Fig. 3(a) with k = 4.0. We observe a power law dependence with exponent α =
0.371 ± 0.009. Hence d = 1.629 ± 0.009.

d = lim
δ→0

ln N(δ)

ln 1/δ
. (8)

This definition simply points out that N(δ) scales as δ−d , that is

N(δ) ∼ δ−d. (9)

If we set δ ≡ ε , then the volume of the uncertain region on the 
phase space will be N(ε)εD , where εD is the volume of the boxes. 
With (9), the uncertain phase space volume is estimate to be 
N(ε)εD ∼ εD−d . Thus, the uncertainty exponent is [35]

α = D − d. (10)

In our case, the phase space has D = 2, such that α = 2 − d. 
A smooth boundary, for which d = 1, has α = 1, whereas a fractal 
boundary is characterized by 0 < α < 1 [34–36]. It is understood 
that fractal boundaries represent an obstruction to the predictabil-
ity of the final state of nonlinear systems [34] and f (ε) can be 
considered as a measure of this unpredictability when the initial 
condition is given with an uncertainty of size ε . Therefore for frac-
tal boundaries, in order to reduce the uncertainty of the final state, 
it may be necessary a considerable reduction in the initial condi-
tion uncertainty ε . A similar analysis of the dimension d was done 
in Ref. [44] for the parameter space of conservative systems.

5. Discussion

In Fig. 4 is shown the logarithmic plot of f (ε) versus ε for the 
standard map (1) with k = 4.0 for the same region in Fig. 3(a). 
The power law dependence is evident and we find that α =
0.371 ± 0.009. Thus, from (10), the dimension of the boundary is 
d = 1.629 ± 0.009. Hence, if we want to improve by a factor of 
2 the ability to predict whether the initial condition is regular or 
chaotic, it is necessary to increase the accuracy in the measure-
ment of the initial condition by a factor of 21/α = 21/0.371 ≈ 6.5.

For k = 4.0 we see that the dimension of the boundary is con-
stant over the specified range of the initial condition uncertainty 
ε . However, this is not always the case. Zaslavsky et al. showed 
in [47] that for a specific parameter of the standard map, namely 
k = 6.908745, there is a self-similar hierarchy of sub islands. We 
characterize the boundary of these sub islands and investigate the 
sensibility to the initial condition uncertainty ε . We demonstrate 
that in this case more than one dimension can be found, i.e., we 
can associate different effective dimensions with different ranges 
of ε .

In order to determine the self-similar structure, we consider a 
750 × 750 grid of initial conditions for each of the regions speci-
fied in Table 1 and count the time required for an orbit to escape 
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Fig. 5. (Color online.) Trapping time for a 750 × 750 grid of uniformly distributed initial conditions for the standard map with k = 6.908745. Figures (b)–(e) display magnifi-
cations around the indicated islands and the positions in phase space are specified in Table 1. The color bar is in logarithmic scale.
Table 1
Phase space regions shown in Fig. 5 given by {x, y | x0 ≥ x ≥
x1, y0 ≥ y ≥ y1}.

Fig. 5 x0 x1 y0 y1

(a) 0.83 1.47 −0.6 0.6
(b) 1.22 1.43 −0.05 0.05
(c) 1.2650 1.2794 −0.019 −0.009
(d) 1.2705 1.2725 −0.01103 −0.01046
(e) 1.27222 1.27234 −0.01089 −0.01079

the region with limits given by the first row of Table 1. The trap-
ping time T trap for the five regions in Table 1 is shown in Fig. 5. 
The regular orbits remain for all time inside the region (gray color) 
and the not-trapped chaotic orbits leave the box after a few itera-
tions (black color). The intermediate values of T trap correspond to 
trapped orbits and the magnifications in Figs. 5(b)–(e) show the 
stickiness structures and the self-similar hierarchy of sub islands. 
The sequence of self-similar islands generated by k = 6.908745 is 
1-3-8-8-8, which means that the central island (1) is surrounded 
by three other islands (3) and each one of these islands are sur-
rounded by eight islands (8) and so on. We will label this sequence 
as (p, q) where p represents the order of generation and q is the 
number of islands of the pth generation. For Fig. 5(c), for example, 
we have (p, q) = (2, 8).

To investigate the sensibility to the initial condition uncertainty 
ε of the sub islands generated for k = 6.908745 we proceed in the 
same way as for k = 4.0. We compute the uncertainty fraction for 
the sequence of sub islands shown in Fig. 5 using 5 × 104 pairs of 
random initial conditions for each value of ε , which is varied from 
10−2 to 10−8 for (a)–(c) and from 10−3 to 10−8 for (d) and (e). 
For each ε-uncertain pair (xunc, yunc) we also count the trapping 
time T trap. We repeat these computations twenty-five times for (a) 
and (b) and ten times for (c)–(e). The logarithmic plots of f (ε)

are shown in Fig. 6. The power law dependence is again evident, 
however now we can associate different exponents with different 
intervals of ε (except for Fig. 6(e)) and we evaluate the mean trap-
ping time 〈T trap〉 for each one of these intervals. The exponents, 
the dimensions and the mean trapping times 〈Tesc〉 are presented 
in Table 2.

Figs. 6(a)–(d) show a very similar behavior of f (ε). There are 
two decay rates in these cases, given by the exponents α1 and α2, 
where α1 > α2. In Fig. 6(e) for 10−3 � ε � 10−5, we see that f (ε)

does not obey a power law and this is due to the fact that the 
size of the island is comparable to this scale of ε and because of 
that, several false positive ε-uncertain pairs are found, causing the 
deviation from the power law. In fact, this argument is valid for all 
deviations from the power law behavior for large values of ε , as in 
Fig. 6(c) for 10−2 � ε � 10−3, for example.

The existence of different exponents for different ranges of ε
implies the existence of an effective fractal dimension [37,38] that 
depends on the scale of the initial condition uncertainty. In other 
5

words, at scale ε1 the system behaves as if the fractal dimension 
is d(ε1) = d1, at scale ε2, the system behaves as if d(ε2) = d2, etc. 
Thus, at different scales ε i , the island boundary exhibits an effec-
tive fractal dimension d(ε i) = di , which differs from the asymptotic 
value obtained when ε → 0. For the specified interval of ε , what 
we see is a smaller dimension for large values of ε , until it sud-
denly becomes larger for small ε .

We can relate the initial condition uncertainty ε to the resolu-
tion of a measuring device, and since fractal boundaries represent 
an obstruction to predictability, we can argue that if we want 
to improve the ability to predict whether the initial condition is 
regular or chaotic, we may need to increase the accuracy of the 
experiment by a larger factor depending on the resolution scale. 
For example, consider the island in Fig. 5(b). If the apparatus has 
an accuracy of 10−4 and we want to improve by a factor of 2 the 
ability to predict if the initial condition is regular or chaotic, we 
need to increase the accuracy by a factor of 21/0.611 ≈ 3.1. On the 
other hand, if the apparatus has a resolution of 10−7, the improve-
ment in the accuracy has to be a factor of 21/0.31 ≈ 9.4. Therefore, 
at realistic length scales, the uncertainty of the measurement is not 
determined by the asymptotic fractal dimension, but rather by the 
effective fractal dimension, as was previously reported in Ref. [38].

In [37,38,48] the authors showed that the dimension of the sta-
ble and unstable manifolds depends on the position in the phase 
space. We observe similar behavior for the dimension of the is-
land’s boundary. By applying the uncertainty fraction method for 
the region around the main island in Fig. 5(a), that is, the phase 
space region that contains only the island that is surrounded by 
the period-3 islands, we observe a dimension of d = 1.013 ± 0.009
(not shown), which is clearly different from the dimension of the 
period-3 islands, shown in Fig. 6(b). Moreover, the order of gen-
eration of the island chains also influences the dimension of the 
boundary. We can see from Fig. 6 and from Table 2 that as we go 
deep into the self-similar structure, i.e., increase p, the dimension 
for large values of ε , d1, increases whereas the second dimension 
remains constant (within the uncertainty). Besides, there is a ten-
dency of d1 towards d2 for increasing p, until p = 4 is reached and 
only one dimension is present for the specified interval of ε .

The order of generation of the island chains is directly related 
to the dimension of the boundary between regular and chaotic be-
havior due to the complex hierarchical structure of island chains 
and cantori. The farther inward we go into this structure, the 
longer the trajectories stay inside cantori, leading to very long 
trapping times, as shown in Fig. 5. These extremely long times 
impose difficulty in the prediction of the final state, hence the 
dimension of the inner levels is larger [37]. A similar result was 
found in [48] for the dynamics of a two-dimensional advection of 
a flow. Beyond that, we can see from Table 2 that the dimension 
and the mean trapping time for the second power law regime do 
not change significantly. We argue that this is so because at that 
scale of ε we are actually measuring an inner, finer level of the 
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Fig. 6. (Color online.) Log-log plot of f (ε) versus ε for the regions shown in Fig. 5 and specified in Table 1 with k = 6.908745. The dashed lines indicate the slopes of f (ε).

Table 2
The uncertainty exponent α, the dimension d and the mean trapping time 〈T trap〉 of the phase space regions shown in Fig. 5.

Fig. 5 α1 d1 〈T (1)
trap〉 α2 d2 〈T (2)

trap〉
(a) 0.74 ± 0.01 1.26 ± 0.01 2.8 × 104 0.29 ± 0.06 1.71 ± 0.06 1.2 × 106

(b) 0.611 ± 0.005 1.389 ± 0.005 1.5 × 105 0.31 ± 0.03 1.69 ± 0.03 1.6 × 106

(c) 0.561 ± 0.008 1.439 ± 0.008 5.3 × 105 0.29 ± 0.02 1.71 ± 0.02 1.6 × 106

(d) 0.448 ± 0.004 1.552 ± 0.004 1.9 × 106 0.307 ± 0.004 1.693 ± 0.004 2.7 × 106

(e) 0.284 ± 0.002 1.716 ± 0.002 7.3 × 106 – – –
self-similar hierarchy. Followed by that, we expect that decreasing 
even more the uncertainty in the initial conditions, more power 
law regimes with different exponents will be found. Even though 
our results were obtained for the standard map, we expect similar 
results for any typical nonlinear Hamiltonian system with a hier-
archical phase space.

6. Conclusions

The stickiness phenomenon in nonlinear Hamiltonian systems is 
typically caused by the existence of a hierarchical island-around-
island structure embedded in the chaotic sea, as in the standard 
map. We chose two values for the non-linearity parameter k to 
characterize the boundary between the chaotic sea and the islands, 
namely k = 4.0 and k = 6.908745.

In order to distinguish between the regular and chaotic be-
havior, we used the newly proposed method of weighted Birkhoff 
averages to compute time averages in phase space. Through the 
calculation of the quantity dig we are able to accurately test 
whether an initial condition (x0, y0) was inside of an island or in 
the chaotic sea. The characterization of the boundaries was made 
with the uncertainty fraction method, with which we obtained the 
dimension of the island’s boundary for distinct values of k.

In our simulations, we verified that the boundary between the 
chaotic sea and the islands is indeed fractal, i.e., the uncertainty 
exponent lies in the interval (0, 1), hence a reduction in the un-
certainty of the initial conditions will not result in a proportional 
reduction in the fraction f (ε) of ε-uncertainty pairs (x0, y0). We 
also showed that the uncertainty of the measurement is not de-
termined by the asymptotic fractal dimension, but rather by the 
effective fractal dimension and this effective dimension depends 
on the interval of the initial condition uncertainty ε , implying that 
in order to obtain the desired reduction in f (ε), it is necessary 
to improve the accuracy in the measurement by a different factor, 
depending on the scale of the original resolution.

We showed that the dimension of the main island for k =
6.908745 is different from the dimension of the period-3 satellite 
islands. Furthermore, the dimension d1 ≈ 1.2, obtained in Fig. 6(a), 
is the dimension of the whole region depicted in Fig. 5(a), i.e., the 
main island and the three satellite islands contribute to it, but in-
dividually they show distinct dimensions. In addition, the order of 
generation of the islands chains, or the level in the hierarchical 
6

structure, also affects the dimension. The farther inward we go into 
the structure, the larger is the dimension of the boundary, because 
the orbits that are trapped in the cantori take an arbitrarily long 
time to escape to the chaotic sea, and this leads to an obstruc-
tion in the predictability of the final state (whether it is chaotic 
or regular) of the orbit. Therefore, the uncertainty of orbits with 
long trapping times is greater due to the complexity of the island 
boundary, which imply a larger effective dimension [37].

At last, we showed that the dimension and the mean trapping 
time for the second power law regime are approximately constant. 
This reflects the fact that, for the parameter k = 6.908745 and the 
specified interval of ε , there are two length scales in the phase 
space. That is, the second power law regime is in fact measuring a 
finer level in the hierarchical structure. We used the standard map 
as a representative example, however, we claim that our results 
are still valid for a wide class of nonlinear Hamiltonian systems. 
One interesting point we plan to investigate in the future is the 
connection between the uncertainty fraction and the recurrence 
probability.
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[28] Z. Levnajić, I. Mezić, Ergodic theory and visualization. i. Mesochronic plots 
for visualization of ergodic partition and invariant sets, Chaos 20 (3) (2010) 
033114.
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