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The dynamics of wave-particle interactions in magnetized plasmas restricts the wave amplitude to

moderate values for particle beam acceleration from rest energy. We analyze how a perturbing

invariant robust barrier modifies the phase space of the system and enlarges the wave amplitude

interval for particle acceleration. For low values of the wave amplitude, the acceleration becomes

effective for particles with initial energy close to the rest energy. For higher values of the wave

amplitude, the robust barrier controls chaos in the system and restores the acceleration process. We

also determine the best position for the perturbing barrier in phase space in order to increase the

final energy of the particles. Published by AIP Publishing. https://doi.org/10.1063/1.5017508

I. INTRODUCTION

Wave-particle interactions are generally a nonlinear pro-

cess1–4 that may present regular and chaotic behavior in their

phase space.1,2 The predominant behavior depends on the

parameters of the system, especially the amplitude of the

wave that perturbs the particles. Chaotic trajectories are use-

ful for particle heating,5 whereas regular resonant islands are

responsible for particle acceleration.2,4,6–9 Both types of tra-

jectories present many applications in different areas of

Physics such as plasma physics,2 accelerator physics,2,10,11

fusion science,12,13 and astrophysics.2

The recent development of applications with increasingly

fast particles requires the study of mechanisms to improve

particle acceleration. In the resonant islands, the amount of

energy transferred from the wave to the particles is propor-

tional to the wave amplitude.8 To increase the energy trans-

fer, one could simply increase the wave amplitude. However,

this strategy has a limit since the system becomes chaotic as

we raise the wave amplitude.

Control of chaos is a challenge in several areas,14–23 and

different methods have been developed to address the prob-

lem.16,24–29 For Hamiltonian systems, there are global meth-

ods that control chaos in the entire phase space.9,29–32 These

methods create invariant tori in the whole phase space that

reduce the chaotic regions whereas preserving the original

structure. For wave-particle interactions as the ones we inves-

tigate in this paper, the addition of multiple invariant tori to

the system has been verified experimentally in Ref. 32.

An alternative to global methods is the implementation

of a single invariant barrier in phase space. In some cases,

the barrier acts only locally, not affecting regions far from it

in phase space.21,33–35 In other methods, the barrier is created

in such a way that it is able to alter the structures of phase

space in regions far from it.36–39

Some methods of control of chaos have already been

used to control chaotic transport in plasmas confined by

magnetic fields,21,30,31 to control chaotic transport in turbu-

lent electric fields,34 and to regularize particle dynamics in

wave-particle interactions.9,32,35 In Ref. 9, we used a global

method to control chaos in the system while preserving the

main structures in phase space. Nonetheless, the global

method used in Ref. 9 was not intended for particle accelera-

tion from low initial energies.

In this paper, we present an alternative method. We ana-

lyze the alterations in phase space caused by a single perturb-

ing invariant robust barrier with the purpose of controlling

chaos and improving particle acceleration from low initial

energies in plasma based accelerators. The perturbing invariant

curve, generated by an external perturbation, is introduced as a

robust torus.37–39 It means that the perturbation caused by the

wave vanishes at the exact position of the perturbing robust

barrier (PRB), irrespective of the wave parameters. Therefore,

the robust barrier is not affected by the wave parameters,

in contrast with the KAM tori (Kolmogorov-Arnold-Moser

tori), which are destroyed by increasing wave amplitudes. For

continuity reasons, the perturbation caused by the wave is

reduced around the robust barrier. On the other hand, the bar-

rier amplifies the action of the wave on the particles for regions

far from it in phase space.

An invariant robust barrier is generally used to separate

two regions in phase space. In plasma physics, a robust barrier

is used to control the transport, to improve plasma confinement,

and to prevent the plasma from reaching and damaging the

tokamak walls.37–39 In Ref. 40, electrodes were placed at the

plasma edge to modify the plasma electric field and create a

robust transport barrier in tokamaks. References 41 and 42 also

present a model that produces effects similar to a robust barrier.

This model is used to describe the plasma response to a reso-

nant magnetic perturbation generated by an external current.

Most of the papers analyze the local effects of a perturbing

robust barrier, such as the regularization of phase space,39 the

reduction in islands size,39 and the reorganization of resonant

islands36–38 around the barrier. In this work, we approach the

effects caused by the perturbing barrier on regions far from it

in phase space. We show that depending on its position, the

barrier may alter the position of periodic points, increase or

reduce the islands size, and greatly improve the process of par-

ticle acceleration in plasmas.

We analyze a relativistic low density beam confined by

a uniform magnetic field, and interacting with a stationary
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electrostatic wave that propagates perpendicularly to the

magnetic field. In Ref. 8, we showed that the main resonance

of this system may present a triangular shape according to

the parameters of the wave. In this scenario, the final energy

of particles is maximum, whereas its initial energy is mini-

mum and close to their rest energy. Nonetheless, we observe

that this optimum condition for particle acceleration only

occurs for a limited interval in the wave amplitude. When

the wave amplitude is low, the initial energy of particles

is far from their rest energy. For higher values of the wave

amplitude, chaotic trajectories destroy the resonant islands

used for particle acceleration.

To overcome these problems, we modify the phase space

of the system using a perturbing invariant robust barrier. We

show that, when properly located, the perturbing barrier pre-

serves the main structures in phase space, but alters the reso-

nant islands in such a way that improves particle acceleration.

We calculate analytically the position of the barrier, as a func-

tion of the wave parameters, that makes it possible to acceler-

ate particles from their rest energy. We also obtain the values

of parameters for which the islands of the main resonance dis-

appear from phase space. From these results, we define an

interval for the allowed positions of the perturbing barrier.

We determine the best position for the perturbing barrier

in phase space, and we show that it is a very efficient method

to improve particle acceleration in plasmas. For both low

and high wave amplitudes, it reduces the initial energy of

particles to their rest energy, and increases their final energy.

For high values of the wave amplitude, the perturbation con-

trols chaos in the system and restores resonant islands used

for particle acceleration. Therefore, in the perturbed system,

we are able to achieve the optimum condition and regularly

accelerate particles from their rest energy for a much larger

interval in the wave amplitude.

The paper is organized as follows: We present the original

system in Sec. II, and we discuss its drawbacks for particle

acceleration. In Sec. III, we alter the phase space of the system

with a perturbing robust barrier. We calculate an interval for

the allowed positions of the perturbing barrier, and we deter-

mine its best position in phase space, such that the initial

energy of particles is minimum, whereas their final energy is

maximum. In Sec. IV, we build the phase space of the per-

turbed system, and we discuss how it is compared to the origi-

nal system. For low wave amplitudes, the barrier reduces the

initial energy of particles to their rest energy, and slightly

increases their final energy. When the wave amplitude is high,

the perturbation controls chaos and restores the process of par-

ticle acceleration. In Sec. V, we present our conclusions.

II. ORIGINAL SYSTEM

We analyze a relativistic low density beam confined by

an external uniform magnetic field B ¼ B0ẑ with vector

potential A ¼ B0xŷ. The particles in the accelerator interact

with a stationary electrostatic wave given as a series of peri-

odic pulses propagating perpendicularly to B with period T,

wave vector k ¼ kx̂, and amplitude e=2. Following Refs.

8 and 9, the dimensionless Hamiltonian that describes the

dynamics transverse to the magnetic field is given by

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

x þ ðpy � xÞ2
q

þ e
2

cos ðkxÞ
Xþ1

n¼�1
dðt� nTÞ: (1)

Since _py ¼ �@H=@y ¼ 0, py is a conserved quantity.

For simplicity, we assume, with no loss of generality, py¼ 0.

We point out that this condition is not a physical constraint.

Although py is conserved and we assume it to be zero, dy/dt
is not null and the particles describe a two-dimensional

movement in the xOy plane.

With the assumption that py¼ 0, Hamiltonian (1) becomes

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

x þ x2

q
þ e

2
cos ðkxÞ

Xþ1
n¼�1

dðt� nTÞ: (2)

Working with the action-angle variables ðI; hÞ of the unper-

turbed integrable system, we rewrite Hamiltonian (2) as8,9

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2I
p

þ e
2

cos k
ffiffiffiffiffi
2I
p

sin h
� � Xþ1

n¼�1
dðt� nTÞ; (3)

where x ¼
ffiffiffiffiffi
2I
p

sin h and px ¼
ffiffiffiffiffi
2I
p

cos h.

From Hamiltonians (2) and (3), we obtain a map that

describes the time evolution of the system between two con-

secutive wave pulses. In Hamiltonian (2), the perturbative

term associated with the wave is a function of the x variable.

Therefore, only the momentum px undergoes an abrupt change

across a wave pulse. We use this property to integrate the

Hamilton’s equations, and obtain the time evolution of ðx; pxÞ
across a wave pulse8,9

xþn ¼ xn; (4a)

pþx;n ¼ px;n þ
ek
2

sin ðkxnÞ; (4b)

where (xn, px,n) are the values of (x, px) immediately before

the nth wave pulse centered at t¼ nT, and ðxþn ; pþx;nÞ are the

values of the variables immediately after the nth wave pulse.

Between two consecutive wave pulses, the system is

integrable and Hamiltonian (3) becomes independent of the

h variable. For this reason, we use Hamiltonian (3) to calcu-

late the exact time evolution of ðI; hÞ between two wave

pulses8,9

Inþ1 ¼ Iþn ; (5a)

hnþ1 ¼ hþn þ
Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2Iþn
p mod 2pð Þ; (5b)

where ðInþ1; hnþ1Þ are the values of (I, h) immediately before

the ðnþ 1Þth wave pulse centered at t ¼ ðnþ 1ÞT.

Putting expressions (4) and (5) together, we obtain an

exact and explicit map that describes the time evolution of

the system in the (I, h) variables8,9

Inþ1¼
1

2
2In sin2hnþ

ffiffiffiffiffiffi
2In

p
coshnþ

ek
2

sinðk
ffiffiffiffiffiffi
2In

p
sinhnÞ

� �2
( )

;

(6a)

hnþ1 ¼ arctan
2
ffiffiffiffiffiffi
2In

p
sin hn

2
ffiffiffiffiffiffi
2In

p
cos hn þ ek sin k

ffiffiffiffiffiffi
2In

p
sin hn

� �
" #

þ Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Inþ1

p mod 2pð Þ; (6b)
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with h defined in the interval ½0; 2p� [since hþn from expres-

sion (5b) equals arctanðxþn =pþx;nÞ, and we calculate the indi-

vidual values of ðxþn ; pþx;nÞ from expressions (4), we are able

to determine in which quadrant arctanðxþn =pþx;nÞ lies and, con-

sequently, define h between ½0; 2p�].
Using the canonical transformation I ¼ ðx2 þ p2

xÞ=2 and

h ¼ arctanðx=pxÞ, we can write map (6) in the Cartesian coor-

dinates (x, px). However, the use of action-angle variables

is more convenient because the action I is conserved in the

absence of the perturbation caused by the wave. Moreover,

action-angle variables are appropriate to the study of resonan-

ces and the associated process of particle acceleration that we

investigate in this paper.

Figure 1 shows the phase space of the system built

from map (6) for different values of e. In both panels, T
¼ 2pð1þ 1=15Þ and k¼ 4. In Fig. 1(a), the wave amplitude

e is small and the phase space is regular, presenting invariant

tori and resonant islands. Increasing the value of e as in

Fig. 1(b), the phase space is dominated by chaos and only a

few resonant islands remain.

The system described by Hamiltonian (3) presents an

infinite number of resonances in different positions along its

phase space,43 as can be seen in Fig. 1(a). In the main reso-

nance of the system [the (1,1) resonance], the wave frequency

equals the unperturbed system frequency, i.e., each wave

pulse corresponds to a full particle turn in the plane perpen-

dicular to the magnetic field. When the wave period is slightly

larger than the cyclotronic period Tc ¼ 2p as in Fig. 1, the

main resonance is close to the axis I¼ 0.

Figure 2 shows an amplification of Fig. 1 in the main reso-

nance region. In the resonant islands, the wave transfers a great

amount of energy to the particles and they are regularly accel-

erated.2,4,6–9 Since the main resonance is close to the axis

I¼ 0, which corresponds to the rest energy of the particles, the

initial energy of particles in these islands may be very low.

In Ref. 8, we showed that the main resonance may pre-

sent a triangular shape according to the parameters of the

wave. We obtained an expression that determines the param-

eter values for which the hyperbolic points of the main reso-

nance move down to I¼ 0. When the hyperbolic points are

located on I¼ 0, the islands of the main resonance achieve

their maximum size.8 Therefore, the initial energy of the

particles is close to their rest energy, whereas their final

energy is maximum. This is the optimum condition for parti-

cle acceleration from low initial energies.

Nonetheless, the condition for optimum acceleration can

only be achieved for a limited interval in the wave amplitude

e. For small values of e as in Fig. 2(a), the hyperbolic points

of the main resonance are not located on the axis I¼ 0, the

islands present a small size, and the acceleration process is

not efficient. Increasing the value of e, the hyperbolic points

move down to I¼ 0, and the island size increases. At some

point, the system becomes chaotic for high wave amplitudes,

and the islands of the main resonance are destroyed by

chaos, as can be seen in Fig. 2(b). The islands that remain in

this figure are too distorted and they are not suitable for regu-

lar particle acceleration.

III. IMPROVING PARTICLE ACCELERATION

The purpose of our work is to overcome the problems

described in Sec. II and achieve the condition for optimum

acceleration. To do so, we should reduce the initial energy of

the particles to their rest energy, and control chaos in the sys-

tem to prevent it from destroying resonant islands. In this

paper, we discuss a method to accomplish that and improve

particle acceleration: the addition of a perturbing invariant

robust barrier to the system.

The perturbing barrier is a robust invariant curve in

phase space generated by an external perturbation. The bar-

rier does not alter the main structures of phase space, but it

reduces the perturbation caused by the wave and controls

chaos in a region around it.37–39 On the other hand, the bar-

rier amplifies the action of the wave on the particles for

regions far from it in phase space.

FIG. 1. Phase space of the original system for T ¼ 2pð1þ 1=15Þ, k¼ 4, and (a) e ¼ 0:01; (b) e ¼ 0:20. The arrows indicate the position where the perturbing

robust barrier will be placed.
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Such perturbing robust barriers have been investigated

theoretically for fusion devices. References 37–39 show that

the barrier controls the transport, improves plasma confine-

ment, and prevents the plasma from reaching and damaging

the tokamak walls. The presence of transport barriers was

also observed experimentally in tokamaks. In Ref. 40, the bar-

rier was created by alterations in the plasma electric field pro-

duced by electrodes placed at the plasma edge. References 41

and 42 describe the plasma response to a resonant magnetic

perturbation generated by an external current, which produces

effects similar to a robust barrier.

For wave-particle interactions, the creation of multiple

barriers in phase space has already been achieved experimen-

tally32 with the purpose of controlling chaos in the particles

dynamics. In this paper, we consider a single perturbing robust

barrier in phase space, and we investigate theoretically how

this robust barrier can be used to improve particle acceleration

in plasma based accelerators.

For low density beams, wave-particle interactions are

described by Hamiltonian (3). The exact physical configura-

tion of the barrier depends on the external perturbation used

to generate it in the experiment. However, the addition of a

typical perturbing robust barrier to the system, as the ones

observed in the experiments described by Refs. 40–42, pro-

duces a Hamiltonian in the form of (7) for wave-particle

interactions

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2I
p

þ e
2
ðI � IPRBÞ2 cos k

ffiffiffiffiffi
2I
p

sin h
� �

�
Xþ1

n¼�1
dðt� nTÞ; (7)

where IPRB indicates the position of the perturbing robust

barrier in phase space. For trajectories with I close to IPRB,

the effective amplitude of the wave is reduced, and for I
¼ IPRB, the perturbation vanishes.

The strategy we used in Sec. II allowed us to obtain an

exact and explicit map for the original system. This strategy

could be applied to the original system because the perturba-

tive term in Hamiltonian (2), as well as the integrable term

in Hamiltonian (3), depends only on one of the two canonical

variables. When we add a perturbing robust barrier to the

system, the Hamiltonian in Cartesian coordinates equivalent

to Hamiltonian (7) does not have this property. Thus, the

strategy we used for the original system cannot be applied to

the perturbed system.

Instead, we integrate Hamiltonian (7) assuming that

h! hn and I ! Inþ1 across a wave pulse

Iþn ¼ In þ
ek
2
ðInþ1 � IPRBÞ2

ffiffiffiffiffiffiffiffiffiffiffi
2Inþ1

p
� cos hn sin k

ffiffiffiffiffiffiffiffiffiffiffi
2Inþ1

p
sin hn

� �
; (8a)

hþn ¼ hn �
ek
2

ðInþ1 � IPRBÞ2ffiffiffiffiffiffiffiffiffiffiffi
2Inþ1

p sin hn sin k
ffiffiffiffiffiffiffiffiffiffiffi
2Inþ1

p
sin hn

� �

þ eðInþ1 � IPRBÞ cos k
ffiffiffiffiffiffiffiffiffiffiffi
2Inþ1

p
sin hn

� �
: (8b)

Between two consecutive wave pulses, the perturbed

Hamiltonian (7) is integrable and equal to the original

Hamiltonian (3). Thus, the changes in the ðI; hÞ variables

between two pulses for the perturbed system are also given

by expressions (5).

Using expressions (8) and (5), we obtain a map that

describes the time evolution of the perturbed system

Inþ1 ¼ In þ
ek
2
ðInþ1 � IPRBÞ2

�
ffiffiffiffiffiffiffiffiffiffiffi
2Inþ1

p
cos hn sin k

ffiffiffiffiffiffiffiffiffiffiffi
2Inþ1

p
sin hn

� �
; (9a)

hnþ1 ¼ hn �
ek
2

ðInþ1 � IPRBÞ2ffiffiffiffiffiffiffiffiffiffiffi
2Inþ1

p sin hn sin k
ffiffiffiffiffiffiffiffiffiffiffi
2Inþ1

p
sin hn

� �

þ eðInþ1 � IPRBÞ cos k
ffiffiffiffiffiffiffiffiffiffiffi
2Inþ1

p
sin hn

� �
þ Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2Inþ1

p mod 2pð Þ: (9b)

The assumption that h! hn and I ! Inþ1 across a wave

pulse is necessary to guarantee the symplectic character of

the Hamiltonian system. Nonetheless, the map we obtain is

implicit in the action variable I. Unlike map (6), map (9) for

FIG. 2. Amplification of Fig. 1 in the main resonance region.
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the perturbed system is approximate, linear in e, and valid

only for eI � 1.

From map (9), we determine a relation for the parame-

ters of the system that brings the periodic points of the main

resonance down to the axis I¼ 0. For these periodic points,

hnþ1 ¼ hn þ 2p. We replace this result in the second equa-

tion of map (9), and then we calculate the limit Inþ1 ! 0,

obtaining the following expression:

sin hn ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ek2I2
PRB

ðT � eIPRB � 2pÞ
s

: (10)

For the hyperbolic points of the main resonance, hn

¼ p=2; 3p=2; sin hn ¼ 61, and expression (10) yields

ðIPRBÞhp ¼
�eþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � 2ek2ð2p� TÞ

p
ek2

: (11)

Whenever IPRB � ðIPRBÞhp, the hyperbolic points of the

main resonance are located over the axis I¼ 0, meaning

that it is possible to accelerate particles from their rest

energy.

It is important to notice that the periodic points in hn

¼ p=2; 3p=2 are hyperbolic for43

k < ðkÞib ¼
pffiffiffiffiffiffiffiffiffi
2I1;1

p ; (12)

where I1;1 is the position of the elliptic points in hn ¼ 0; p
with respect to the action variable. When k ¼ ðkÞib, the hyper-

bolic points undergo an isochronous bifurcation and become

elliptic, as we describe in Ref. 43. Therefore, condition (11) is

only valid for values of k that satisfy Eq. (12).

In the main resonance, the elliptic points are located on

hn ¼ 0; p, such that sin hn ¼ 0, and from expression (10), we

obtain

ðIPRBÞep ¼
T � 2p

e
: (13)

When IPRB ¼ ðIPRBÞep, the elliptic points touch the axis I¼ 0.

For IPRB > ðIPRBÞep, the resonant islands are no longer pre-

sent in the phase space. Therefore, to accelerate particles in

the main resonance of the system, it is necessary that IPRB

< ðIPRBÞep.

Besides condition (13) that brings the elliptic points

down to the axis I¼ 0, the islands of the main resonance

also disappear from phase space when the elliptic points

undergo a period doubling bifurcation. In this type of bifur-

cation, the elliptic points lose stability, becoming hyper-

bolic. Each primary resonant island is replaced by a pair of

smaller secondary islands that are not suitable for particle

acceleration.

The periodic points of the main resonance located on

h ¼ 0; p are elliptic as long as the eigenvalues of the

Jacobian matrix calculated in these periodic points are com-

plex conjugates. It means that the periodic points on h ¼ 0; p
are elliptic for values of IPRB in the interval

IPRB > ðIPRBÞpdb ¼ I1;1� 2 ek2I1;1
T

ð1þ 2I1;1Þ3=2
� e

 !" #�1=2

;

(14a)

IPRB < ðIPRBÞpdb ¼ I1;1þ 2 ek2I1;1
T

ð1þ 2I1;1Þ3=2
� e

 !" #�1=2

;

(14b)

with

IPRB � 0; (15a)

e
T
<

1

ð1þ 2I1;1Þ3=2
: (15b)

In a first order approximation, the position I1;1 of the

elliptic points can be calculated analytically as43

I1;1 �
T2

8p2
� 1

2
: (16)

Expression (16) implies that the islands of the main reso-

nance are only present in the phase space for T > 2p, since

the action I is a positive quantity.

Replacing the value of I1;1 from expression (16) in (14),

we have

IPRB > ðIPRBÞpdb ¼
T2

8p2
� 1

2

� 2 ek2 T2

8p2
� 1

2

	 

8p3

T2
� e

	 
" #�1=2

;

(17a)

IPRB < ðIPRBÞpdb ¼
T2

8p2
� 1

2

þ 2 ek2 T2

8p2
� 1

2

	 

8p3

T2
� e

	 
" #�1=2

;

(17b)

whereas condition (15) becomes

IPRB � 0; (18a)

eT2 < 8p3: (18b)

In Fig. 3, we represent expressions (11), (13), and (17)

in a graphic of IPRB � e for T ¼ 2pð1þ 1=15Þ and k¼ 4.

According to expression (11), the solid green curve repre-

sents the values of IPRB for which the hyperbolic points in

h ¼ p=2; 3p=2 reach the axis I¼ 0. Thus, to accelerate par-

ticles from their rest energy, the position IPRB of the perturb-

ing barrier must be above this curve.

The red dotted-dashed curve was built from expression

(13). Over the curve, the elliptic points on h ¼ 0; p are located

on the axis I¼ 0. Above the curve, the islands of the main res-

onance disappear from the phase space. The blue dashed curve

represents expressions (17) for which the periodic points on

h ¼ 0; p undergo a period doubling bifurcation. Under the
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curve, these points are elliptic. Above the curve, they are

hyperbolic and the primary resonant islands no longer exist.

Therefore, particle acceleration in the islands of the main

resonance is only possible under the red dotted-dashed and

the blue dashed curves. Furthermore, if one wants to acceler-

ate particles from their rest energy, the values of e and IPRB

must be above the solid green curve and inside the hatched

area in Fig. 3.

IV. RESULTS AND DISCUSSION

In the original system, only the hyperbolic points move

down to I¼ 0, whereas the elliptic points remain essentially

in the same position.8 When we add a perturbing robust

barrier to the system, the elliptic points also move down,

reducing the islands size and, thus, the final energy of the par-

ticles. To keep the final energy to a maximum, the position

IPRB of the perturbing barrier should be as low as possible.

The best position for the perturbing barrier is exactly over the

solid green curve in Fig. 3, i.e., IPRB ¼ ðIPRBÞhp, such that the

initial energy of the particles is close to their rest energy and

their final energy is maximum.

In Fig. 4, we show the phase space of the perturbed sys-

tem for the same parameters used in Fig. 1. The arrows in

the figures indicate the position IPRB of the perturbing robust

barrier. We choose IPRB ¼ ðIPRBÞhp to obtain the optimum

condition for particle acceleration.

It is important to notice that the perturbing robust barrier

alters the action of the wave on the particles for the whole

phase space. In the original system, the amplitude of the wave

is constant and equal to e=2. With the perturbing barrier,

the wave presents an effective amplitude eðI � IPRBÞ2=2 that

varies in the phase space. For regions with ðI � IPRBÞ > 1, the

effective wave amplitude is higher than the original wave

amplitude e=2, which increases the resonant island size in such

regions of phase space. On the other hand, when ðI � IPRBÞ
< 1, the effective wave amplitude is lower than the original

wave amplitude, and the chaotic regions are reduced in the

phase space.

In Fig. 4(a), the perturbing barrier is placed far from the

main resonance. The effective wave amplitude is higher than

the original wave amplitude in the region I< 1.0, and it

increases the island size in this region when compared to Fig.

1(a). The presence of the barrier also produces chaotic trajec-

tories around the resonant islands in the region 0:35 < I
< 0:90. Since the effective wave amplitude is small, the cha-

otic trajectories are confined and they do not reach the islands

of the main resonance, which are located in a stable region.

Increasing the wave amplitude to e ¼ 0:20, the phase

space of the original system in Fig. 1(b) is covered by a chaotic

FIG. 3. Above the solid green curve, the hyperbolic points in h ¼ p=2; 3p=2

are located on the axis I¼ 0. On the red dotted-dashed curve, the elliptic

points in h ¼ 0; p move down to I¼ 0. On the blue dashed curve, the elliptic

points in h ¼ 0; p undergo a period doubling bifurcation. Thus, regular par-

ticle acceleration from their rest energy is only possible for values of e
and IPRB within the hatched area. Other parameters in this figure are T
¼ 2pð1þ 1=15Þ and k¼ 4.

FIG. 4. Phase space of the perturbed system for T ¼ 2pð1þ 1=15Þ, k¼ 4, (a) e ¼ 0:01, and IPRB ¼ 2:227; (b) e ¼ 0:20, and IPRB ¼ 0:453. The arrows indicate

the position of the perturbing robust barrier (PRB).
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sea that distorts and destroys the islands of the main resonance.

When we add a perturbing barrier as in Fig. 4(b), it reduces the

effective wave amplitude in the region I< 1.453, thus control-

ling chaos in the system. The perturbing barrier regularizes the

phase space and restores the islands of the main resonance,

which can be used for particle acceleration once more.

Figure 5 shows an amplification of Fig. 4 in the main res-

onance region. In Fig. 2(a), the resonant islands of the original

system present a usual shape, with the elliptic and hyperbolic

points approximately in the same position with respect to the

action variable. The separatrix does not touch the axis I¼ 0,

and it is not possible to accelerate particles from their rest

energy. In Fig. 5(a), the perturbing barrier increases the effec-

tive wave amplitude in the main resonance region, and the

islands of the perturbed system acquire a triangular shape.

The perturbing barrier brings the hyperbolic points down to

the axis I¼ 0, and the initial energy of the particles is close to

their rest energy.

We obtain the dimensionless momentum from the canon-

ical transformation px ¼
ffiffiffiffiffi
2I
p

cos h, whereas the dimension-

less velocity is given by8 ðvxÞdl ¼ pxð1þ p2
xÞ
�1=2

. The one-

dimensional velocity in the x direction is calculated in units

of c as vx ¼ cðvxÞdl, with c the speed of light. In the original

system, for e ¼ 0:01 the initial velocity of the particles is

vx;i ’ 0:239c, and their final velocity is vx;f ’ 0:423c. In the

perturbed system, the initial velocity is vx;i ’ 0:064c, and the

final velocity is vx;f ’ 0:453c. It means that the perturbing

barrier reduces the initial velocity of the particles approxi-

mately 73%, and it increases their final velocity approxi-

mately 7%.

In Fig. 2(b), e ¼ 0:20 and the hyperbolic points of the

main resonance are located over the axis I¼ 0. However, the

external trajectories of the resonant islands were destroyed

by chaos, and the internal trajectories that remain are too dis-

torted and not suitable for particle acceleration. In this sce-

nario, the initial velocity of the particles is vx;i ’ 0:235c,

whereas their final velocity is vx;f ’ 0:414c.

When we add a perturbing robust barrier to the system as

in Fig. 5(b), it reduces the effective wave amplitude in the

main resonance region, controlling chaos and restoring regu-

lar trajectories. The barrier recovers the islands of the main

resonance, and it also brings the hyperbolic points down to

the axis I¼ 0. For e ¼ 0:20, the initial velocity of the particles

is vx;i ’ 0:0046c, and their final velocity is vx;f ’ 0:427c.

In the perturbed system, the initial velocity of the particles

is approximately 98% lower than in the original system, and

their final velocity is approximately 3% higher.

From these results, we conclude that a properly located

perturbing robust barrier is a very efficient method to improve

particle acceleration. The perturbing barrier increases the wave

amplitude interval for which we can achieve the optimum con-

dition for particle acceleration. For low amplitude waves as in

Fig. 5(a), the barrier drastically reduces the initial velocity we

should provide to the particles in the beginning of the accelera-

tion process, and it slightly increases the final velocity of par-

ticles. With the perturbing barrier, the final velocity reaches its

maximum values for low amplitude waves, meaning that it is

possible to accelerate particles to high final velocities even for

low amplitude waves that require less energy to be produced.

For high amplitude waves as in Fig. 5(b), the perturbing

barrier controls chaos in the system, and restores the accelera-

tion process. However, the final velocity of particles decreases

with the wave amplitude in the perturbed system. If we con-

tinue raising the wave amplitude, the acceleration process will

no longer be effective. According to expression (13), for suffi-

ciently high wave amplitudes, the perturbing barrier brings the

elliptic points of the resonance down to I¼ 0, and the islands

used for particle acceleration disappear from phase space.

In the main resonance of the system, the final velocity

reached by the particles is lower than 0:5c. Even though we

concentrate our analysis in this region of phase space, the use

of a relativistic Hamiltonian is necessary to properly repro-

duce all the dynamical features of the system. If the relativis-

tic effects are ignored, the islands of the main resonance are

replaced by invariant tori in which the particles cannot be

accelerated by the wave. For wave-particle interactions as the

one we analyze in this paper, the role of nonlinearities arising

from relativistic mass correction is determinant to the dynam-

ical characteristics of the system. Furthermore, the perturbing

robust barrier may be placed in regions of relativistic veloci-

ties, such as in Figs. 4(a) and 5(a), where the perturbing bar-

rier is in a region of velocities on the order of 0:9c.

FIG. 5. Amplification of Fig. 4 in the main resonance region.
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V. CONCLUSIONS

We analyzed a relativistic low density beam confined by

a uniform magnetic field in the axial direction, and perturbed

by a stationary electrostatic wave propagating perpendicu-

larly to the magnetic field. In this system, resonant islands are

used for particle acceleration since the wave transfers a great

amount of energy to the particles in these trajectories. In a

previous work, we demonstrated that, according to the param-

eters of the wave, the islands of the main resonance may pre-

sent a triangular shape, with the hyperbolic points located

over the axis I¼ 0, which corresponds to the rest energy of

the particles. When the hyperbolic points are located over

I¼ 0, the initial energy of the particles is minimum and it is

close to their rest energy. Moreover, the islands reach their

maximum size, and the final energy of the particles is maxi-

mum. This is the optimum condition for particle acceleration

from low initial energies in plasmas.

In this paper, we showed that the optimum condition for

particle acceleration is not reached for small values of the

wave amplitude. In this case, the islands of the main reso-

nance are not triangular shaped, and it is not possible to

accelerate particles from their rest energy. Increasing the

wave amplitude, the hyperbolic points move down to I¼ 0.

However, the system becomes chaotic for high values of the

wave amplitude. Resonant islands are partially destroyed and

what remains is too distorted and not suitable for particle

acceleration.

To overcome these problems, we introduced a perturb-

ing robust barrier in the system. An external perturbation

generates a robust invariant barrier that preserves the main

structures of phase space. The barrier reduces the perturba-

tion caused by the wave around it, and at the same time, it

amplifies the action of the wave on particles for regions far

from it in phase space.

For the perturbed system, we obtained the position of

the robust barrier that brings the hyperbolic points down to

the axis I¼ 0. We also calculated the position of the barrier

for which the resonant islands are no longer present in the

phase space, either because the elliptic points move down to

I¼ 0, or because they lose stability through a period dou-

bling bifurcation. From these results, we obtained an interval

for the position of the perturbing barrier that allows us to

accelerate particles from their rest energy in the main reso-

nance of the system.

We also determined the best position for the perturbing

barrier inside this interval. We showed that, with the barrier,

it is possible to achieve the optimum condition for particle

acceleration for a much larger interval in the wave ampli-

tude. For low values of the wave amplitude, the perturbing

barrier brings the hyperbolic points down to I¼ 0, and par-

ticles can be accelerated from their rest energy. When the

wave amplitude is high, the perturbation controls chaos in

the system and restores the islands of the main resonance

used for particle acceleration from rest energy. In both cases,

the perturbation slightly increases the final energy of the

particles.

From these results, we conclude that the perturbing

robust barrier is an efficient method to improve particle beam

acceleration in plasma based accelerators. It reduces the ini-

tial energy of the particles to their rest energy, increases the

final energy of the particles, and controls chaos around it in

phase space.

In this paper, we focused our analysis in the main reso-

nance of the system, for which the initial energy of particles

is close to their rest energy. Nonetheless, the perturbing

robust barrier can be used likewise to improve particle accel-

eration in the other resonances the system presents, including

resonances where the velocity of the particles is close to the

speed of light. We also point out that the procedure we pre-

sented, use of a perturbing barrier to control chaos and

improve particle acceleration, could similarly be applied to

other systems to improve applications of interest. In the case

of fusion devices, for example, the perturbing barrier is use-

ful to control particle transport and prevent the plasma from

reaching and damaging the tokamak walls.
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