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Abstract-The modulation of the logistic map by a sequence of periodic kicks brings up a 
three-parameter kicked logistic map (klm) with new distinct dynamic features. Thus, its parameter 
space structure exhibits highly interleaved sets with different attractors, and complex basins of 
attraction are created. Additional roots to chaos and abrupt attractor changes are identified in the 
parameter space. The observed intermittency route to chaos is distinct to those typical of spatially 
discontinuous unidimensional maps, with a characteristic power-law dependence of the average 
laminar length on the control parameters. This behaviour is verified for both the internal and the 
transfer crisis-induced intermittency. 

1. INTRODUCTION 

Periodic and chaotic non-linear dissipative systems can show peculiar response behaviour to 
applied forces of various types [l-4]. Thus, for relevant control parameter sets of these 
systems, striking changes in their dynamics are induced even for weak perturbations [5, 61. 
Some of these alterations identified in the modified bifurcation diagrams are: control of 
chaos, new roads to chaos, abrupt attractor changes and new types of crisis. These features 
have been found in numerical experiments performed with several dynamical systems 
modelled either with differential or difference equations modulated by random as well as 
periodic forcing. Furthermore, these properties have also been observed experimentally in 
several dissipative dynamical systems in many scientific disciplines [2-41. 

In dynamics, problems described by non-linear differential equations are often reduced 
to discrete maps by considering their PoincarC sections. In particular, unidimensional 
maps have been the subject of increasing interest, both due to their intrinsic mathematical 
richness and to the large number of dynamical systems that experimentally display 
transitions into chaos through the universal bifurcation scenario 12, 3, 71. The most known 
and extensively studied of these maps is the logistic map. 

In the last years, studies of the effect of forcing on systems simulated by the logistic map 
have been reported [8-111. Thus, a new type of crisis, associated with the hysteresis 
followed from the coexistence of two attractors, was found in this map with a periodic 
modulation [ll]. The effect of additive and multiplicative noise on the first bifurcations of 
the logistic model was analytically and numerically studied [lo]. Periodic entrainment of 
chaotic trajectories was discussed in [9]. For additive periodic forcing two non-complemen- 
tary attractors were found [8]. However, since most of these interesting results have been 
obtained by changing single parameters, this subject is still far from being fully explored. In 
particular, it seems worthwhile to look for new dynamic properties regarding relevant 
parameter sets for which this system behaves similarly concerning one or several properties 
of interest, such as, for example, periodicity of attractors and basins of attraction. Thus, 
new fundamental dynamic properties may be recognized and interpreted performing the 
analysis in the parameter space, as it has been recently done for other systems [12, 131. 
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The aim of the present paper is to numerically study the main topological changes of the 
logistic map attractors caused by a sequence of constant kicks. Examples of structures 
formed by the domain of the chaotic and periodic attractors in the space of the control 
parameters (the kick amplitude and the control parameter of the logistic map) are 
presented for given kick periods. These pictures reveal highly interleaved regions cor- 
responding to parameter sets for which finite attractors exist. Another remarkable 
alteration induced by the kicks appears in the intermittency route to chaos (characterized 
by dynamical intermittent changes between laminar periods and chaotic bursts). For the 
kicked logistic map (klm), i.e., the perturbed map considered in this paper, besides the 
interior crises [14], transfer crises [ll] have also been observed. For this transfer crisis, a 
power dependence of the average length of the laminar phase on the control parameters is 
numerically obtained, in contrast to the spatially discontinuous maps [17-191. Other 
dynamic properties of this kicked logistic map, such as suppression of chaos, periodic 
entrainment, routes to chaos and bifurcation diagrams, were considered elsewhere [IS, 161. 

Section 2 presents attractor regions in the parameter space of the kicked logistic map for 
different kick periods. Section 3 presents examples of interior and transfer crises and 
describes numerical experiments that determine the scaling of the average laminar length 
with control parameters. Finally, discussion is given in Section 4. 

2. STRUCTURE OF THE PARAMETER SPACE 

In this paper we consider the following kicked logistic map, which corresponds to the 
logistic map perturbed by a sequence of kicks with a constant amplitude q and a period t: 

X II+1 = bX,*O - x,1> + q4,$ (1) 

where 6,., = 1 if n/t is an integer and 0 if not. This system has finite attractors 
corresponding to periodic or chaotic oscillations in the interval 

0-c x, < 1. (2) 

To investigate numerically the control of the logistic map oscillations through a sequence 
of constant kicks, the quantification of chaos and order is obtained by computing the 
Lyapunov exponent, A, for the kicked logistic map trajectories. This is computed from the 
following expression obtained from equation (1): 

A = limli+$ lnlb(1 - 2X,,)] (3) 
II 1 

where X, is obtained from equation (1). 
The order (i.e. predictability) is indicated by A < 0, and the chaos (i.e., sensitive 

dependence on initial conditions) is indicated by A > 0. 
In this section we consider sets of parameters, b, q, and t, for which the klm trajectories 

are periodic or chaotic. In order to observe the sensitive dependence of the attractor on the 
control parameter, much attention was paid to obtain high-precision figures. Thus, before 
applying equation (3) to compute A, 1000 iterations are performed in order to allow 
transients to die away; after that satisfactory convergence of A is achieved by setting 
N = 3000. However, for parameters near critical values, as those corresponding to abrupt 
attractor changes or bifurcations, longer transients were considered (N 3 100000). 

Figures 1 and 2 show typical attractor regions in the b x q space for odd (t = 5) and 
even (t = 2) kick periods, respectively. In these figures black and white pixels represent, 
respectively, parameters for which the klm trajectories are chaotic and periodic, while gray 
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Fig. 1. Attractor regions in the parameter space for kick period t = 5 with black and white pixels representing 
chaotic and non chaotic attractors. Gray pixels represent points without limited attractor. 
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Fig. 2. Attractor regions in the parameter space for kick period t = 2 with black and white pixels representing 
chaotic and non chaotic attractors. Gray pixels represent points without limited attractor. 

pixels represent points without any limited attractor (i.e., X, + ~0, as y1-+ c*)). The 
computed regions are complex and highly interleaved. The figures obtained for other 
periods t present patterns similar to those two shown in Figs 1 and 2. Regarding the 
observed similarities in their main characteristic shapes and structures, the computed 
figures can be classified in two groups, one of them with odd t and the other with even t. 
These similarities persist even for high t values, for which the chaotic regions are less 
dense. 

In these figures, finite attractors appear for b, 4 values with pixels under the line 
described by the equation 

b/4 + q = 1. (4) 
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On the other hand, for parameters represented by pixels in the area above this line, most 
of these displayed pixels indicate the existence of infinite attractors. However, this region 
also contains finite attractors, dependent on the initial value X0, indicated by rarefied 
chrsters of black and white points. 

The dependence of the parameter space structures on the initial value X0 is illustrated in 
Figs 3 and 4 that show magnifications of two areas indicated in Fig. 1, one above (A) and 
the other under (B) the line defined by equation (4). These figures were computed for the 
same parameters but for two different initial conditions. Figures 3(A) and 4(B) show 
significant differences, while Figs 3(B) and 4(B) (for the chosen X0) are exactly the same. 
For the former case, by fixing b or q, one would get broken bifurcation diagrams [16]. 
However, besides the initial condition, these conclusions depend also on the chosen control 
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Fig. 3. Magnifications of the two regions indicated by the up (A) and down (B) squares in Fig. 1, for X0 = 0.2 
and t = 5. 
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Fig. 4. Magnifications of the two regions indicated by the up (A) and down (B) squares in Fig. 1, for X0 = 0.3 
and t=5. 

parameters. Moreover, for any b, 4 values with pixels in the area above the line described 
by equation (4), there is no finite attractor if X,, during the transient, assumes any value 
in the following interval: 

1/2[1 + ~/l + b/4(9 - l)] > X, > 1/2[1 - j/l + b/4(q - l)] (5) 

It is seen from Fig. 5(B) that there is a period-two stable attractor for q < qC2. In fact, 
there are two coexisting attractors for these values of t, b, and q with different basins of 
attraction {X,} . That is, the chaotic band and the stable periodic orbit coexist together for 
4 < qc3. Thus, whether the chaotic band or the periodic orbit is realized directly depends 
on the choice of an intial value X0 in the proper basin of attraction. This sudden transfer 
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Fig, 5. (A) Bifurcation diagram with kick period t = 2, b = 3.42 and X0 = 0.2. Three critical perturbation 
amplitude values are indicated. (B) Bifurcation diagram for the same control parameters and another initial 

condition X,J = 0.45. 
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of orbit has been called transfer crisis in [ll]. The main difference between the interior and 
transfer crisis is whether there is a stable fixed point or not beyond the repeller. That is, 
the transfer crisis is associated with the coexistence of peroidic and chaotic attractors. 

Figure 6(A) shows, for t = 2 and q = 0.12, another sudden transition at b, = 3.208093. 
In this interior crisis there is a transition from a chaotic to a stable period-six attractor that 
can be already recognized in the laminar phase (Fig. 6(B)). In addition, Fig. 6(B) shows a 
chaotic orbit with laminar phases similar to unstable orbits, with period two and four, 
indicated in the boxes. For b > b,, the emerging period-six orbit exhibits a sequence of 
bifurcations before the system enters into chaos. However, this sequence is different from 
the Feigenbaum pitchfork bifurcation scheme. In contrast to this scenario, intersecting 
periodic orbits are additionally observed in the corresponding region of the analysed 
bifurcation diagram. This kind of crossover has also been observed for spatially discontinu- 
ous maps [22] and coupled maps [21]. 

Thus, this condition is satisfied for all points in the parameter space corresponding to 
finite attractors shown in the previous figures. 

Besides the transitions into chaos via the Feigenbaum scenario, analyses of bifurcation 
diagrams of spatially discontinuous unidimensional dissipative maps showed other roads to 
chaos [17-191. For the investigated klm map, although the Feigenbaum scenario persists in 
considerable parameter ranges, it can be strongly modified depending on the kick period 
and amplitude variations. So, as one can notice from Figs 1 to 4, new roads can be 
identified by analysing, in the parameter space, the modification of the attractor periods 
and the entrances into chaos associated with specific control parameter variations. 

Afterwards, to investigate the evolution of the attractor by increasing only one 
parameter, magnifications of bifurcation diagrams in proper parameter sets were also 
examined. 

The observed attractor period, p, is always a multiple of the perturbation period, t, For 
increasing control parameter, b or q, these attractors exhibit a sequence of peroidic orbits 
with periods 2”p (m = 0, 1, 2, . . .), which appears through pitchfork bifurcations of the 
orbits with period 2(“-l)p. Thereafter, for further increasing control parameter the 
attractor undergoes a cascade to chaos with the same Feigenbaum constants as those of the 
non-perturbed logistic map [2]. 

As for discontinuous unidimensional maps [17-191, inverse cascades have also been 
observed increasing q in the klm bifurcation diagrams. Contrasting with some periodic 
orbits of the former maps, for the observed klm orbits the periods p’ decrease only 
geometrically, i.e., p’ = 2 (m-k)Nt, where k represents the number of times that the system 
suffered inverse cascades. Moreover, there are no windows with discontinuous p-bifurca- 
tions whose periods increase arithmetically, as for those discontinuous maps [17]. After all, 
inverse cascades were only observed, for fixed t and b, in the bifurcation diagrams with 4 
as the growing parameter. 

Abrupt disappearance of finite attractors and abrupt entrances into chaos were also 
observed in the growing q bifurcation diagrams. Thus, in these investigated diagrams, the 
mentioned period p attractors can proceed away from chaos, besides following a sequence 
of period-doubling bifurcations. In this last case, the attractor period p can also be odd. 

3. CRISIS-INDUCED INTERMITTENCY 

For a low-dimensional dynamic system intermittency is the occurrence of the alternating 
bursts of almost regular (so-called laminar) periods and chaotic bursts in its long-time 
behaviour, for a small range of a control parameter. For these systems, different types of 
intermittency were studied by Pomeau and Maneville [20]. Concomitantly, crisis-induced 
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Fig. 6. (A) Bifurcation diagram with kick period t = 2 and q = 0.12. b, = 3.208093. (B) Temporal evolution of the 
kicked logistic map for t = 2, q = 0.12 and b = 3.208. The two boxes show unstable period-two and period-four 

oscillations. 
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intermittency [14] has received considerable attention as an example of type-1 intermittency 
[23] and one of the typical routes to chaos. 

In the logistic map an interior crisis occurs whenever a chaotic attractor collides with an 
unstable fixed point in a tangent bifurcation [14]. In the bifurcation diagram, this crisis is 
characterized by a transition from narrow bands to a wide band and vice versa at critical 
values, b,, of the control parameter. Moreover, this attractor-merging crisis induces 
characteristic temporal behaviour typical of type-1 intermittency transitions. In this case, 
for the varying control parameter near this critical value, the chaotic motion is character- 
ized by intervals of approximately periodic behaviour, the so-called laminar phase, similar 
to the resultant periodic attractor. This motion is interrupted by finite-duration chaotic 
bursts occurring at irregular times, but one can define a time. (1)) for the laminar phase 
between the bursts. As the control parameter approaches its critical value (in the chaotic 
region), this mean time approaches infinity, and the attractor orbit thus becomes always 
laminar so that the motion is periodic. On the other hand, as the control parameter 
proceeds away from its critical value, the bursts become so frequent that the laminar phase 
can no longer be distinguished [24]. 

This temporal behaviour is not observed in asymmetric logistic maps, for which the 
periods doubling bifurcations appear discontinuously like tangent bifurcations but do not 
present intermittency [17]. Contrary to the spatial asymmetry introduced in these maps, the 
modulation of the logistic map by additive periodic forcing does not remove the interior 
crises yet. Thus, for a fixed perturbing period t in the klm, there are sudden transitions 
(similar to those observed in the logistic map) from a periodic to a chaotic attractor at the 
critical parameter, b, or qc, when only one of the two control parameters, b or 4, is 
varied. One example of this transition can be seen in Fig. 5(A) at q = qcl. 

For the klm orbits, {X}, besides the previous mentioned crisis, there are other types of 
interior crises that induce intermittency. Thus, bifurcation diagrams for this map are 
plotted in Fig. 5 with the initial conditions X0 = 0.2 (A) and X0 = 0.45 (B), t = 2, and 
b = 3.42. There are three discontinuous changes of orbits, indicated in Fig. 5(A), at 
qcl z 0.0568, qa z 0.0843, and qc3 5 0.1068. As it can be seen in this figure, the X values 
computed in the laminar phase, for q < qc2, are not equivalent to those computed for the 
merging period-two attractor. That is, the chaotic orbit, during the laminar phase, does not 
stay in the same region of the periodic attractor. Therefore, contrasting to the interior crisis 
observed at qcl s 0.0568 (similar to that observed in the logistic map), no chaotic attractor 
colliding with an unstable fixed point (in a tangent bifurcation) can be associated with this 
new type of crisis. Additionally, similar transitions are seen in other windows. The other 
transition at q = qc3 occurs between a period-two and chaotic attractors. In this case, after 
the transition, an orbit typically spends in the chaotic region long stretches of time moving 
chaotically in the region of the old period-two attractors. 

The type-1 intermittency transition to chaos displays, near critical parameters, a 
characteristic power-law dependence of y on the control parameter [23]. Thus, considering 
a control parameter, g, the scaling of the average time of the laminar phases is given by 

(I) - (g - SY (6) 
for g just past g,, where y is the critical exponent of the crisis and g represents b or q. 

The average laminar length was computed for several klm orbits, merging t,o a period-six 
attractor, for some regions of the space parameter showed in Fig. 2 (t = 2). Thus, by 
iterating the klm for different fixed values of b or q, one obtains Fig. 7, which shows the 
computed logarithm of y versus the logarithm of the distance E = lg - g,l. Since five orders 
of magnitude of the control parameters were analysed, the power law of equation (6) is 
well verified for the investigated intermittency. Thus, the results show no logarithmic 
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Fig. 7. The average laminar length (I) for different values of the parameters q and b, indicated in the box, and 
t = 2. 

dependence of y on any control parameter, as it was observed for spatially discontinuous 
maps [17]. Moreover, in this figure, the squares and diamonds represent intermittency 
transitions induced by transfer crises as shown in Fig. 5(A). For these transitions, the 
average laminar length does not change much with the parameter q. In these cases, the 
average laminar lengths are lower than those computed for the other transitions to 
period-six attractors induced by interior crisis. 

Thus, the results show no logarithmic dependence of y on any control parameter, as it 
was observed for spatially discontinuous maps [17]. 

4. CONCLUSIONS 

The modulation of the logistic map by a sequence of periodic kicks introduces new 
distinct dynamic features described by the kicked logistic map (klm). In this work, some of 
these characteristics were investigated by determining, in the three-dimensional parameter 
space, sets of parameters, b, q, and t, for which the klm finite attractors exist and behave 
similarly with respect to their periodicity. These sets constitute complex and highly 
interleaved structures in the parameter space, some of them presented in this paper. 
Nevertheless, regarding the observed similarities in their main characteristic shapes and 
structures, the computed figures can be classified in two groups, one of them with odd kick 
period t and the other with even t. Furthermore, complex basins of attraction are created 
in the parameter range for which finite attractors may not exist. 

Although the Feigenbaum scenario persists in considerable parameter ranges, it can be 
strongly modified depending on the kick period and amplitude variations. So, as one can 
notice from the figures presented in this work, new roads can be identified by analysing, in 
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the parameter space, the modification of the attractor periods and the entrances into chaos 
associated with specific control parameter variations. 

As for discontinuous unidimensional maps [17-191, inverse cascades have also been 
observed increasing 4 in the klm bifurcation diagrams. Contrasting with some periodic 
orbits of the former maps, with discontinuous p-bifurcations whose periods increase 
arithmetically 1171, for the observed klm orbits the periods p decrease only geometrically. 
After all, inverse cascades were only observed, for fixed t and b, in the bifurcation 
diagrams with 4 as the growing parameter. 

Abrupt disappearance of finite attractors and abrupt entrances into chaos [25] were also 
observed in the growing 9 bifurcation diagrams. Thus, in these investigated diagrams, the 
mentioned period p attractors can proceed away from chaos, besides following a sequence 
of period-doubling bifurcations. Contrary to the spatial asymmetry introduced in these 
maps, the modulation of the logistic map by additive periodic forcing does not remove 
these interior crises yet. 

For the klm orbits, besides the mentioned interior crisis, there are transfer crises that 
also induce intermittency. Contrasting with the interior crisis (similar to that observed in 
the logistic map), no chaotic attractor colliding with an unstable fixed point (in a tangent 
bifurcation) can be associated with this crisis. The main difference between the interior and 
transfer crisis is whether there is a stable fixed point or not beyond the repeller. That is, 
the transfer crisis is associated with the coexistence of periodic and chaotic attractors. Thus, 
whether the chaotic band or the periodic orbit is realized directly depends on the choice of 
an initial value X0 in the proper basin of attraction. This dependence on X0 explains the 
hysteresis observed in the numerical experiences. 

The dependence of the average length of the laminar phase with the control parameters 
is similar to that observed to the logistic map, but distinct to those typical of spatially 
discontinuous unidimensional maps. This was numerically observed for the intermittency 
induced by internal and transfer crisis. 

The results reported in this paper may be useful to interpret results which have been 
obtained in experiences of control through impulsive perturbations [2-4, 261. 
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