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Abstract. The dynamt alterationsof an electonic circuit in a chaotc regime, descibed by the Double Scroll

attracor, subjecied to sinusotal perturbaion are numercally investigated. Paramegr diagramsof the circuit
phaselocking oscillations in terms of the driving amplitude and frequency are computed. These diagrams have
highly interleaved andcomplex structures,part of themCanbr-like fractals. However, a Canbor-like fractal struc-
ture is also obseved. In addtion, the power spectum analysis is usedto find and chamactkrize three ways of
phasetocking the Double Scroll circuit, andto determinehow this processdependonthe driving patameters. Fur-
themore, thedynamtsof bifurcaion phenomenaaschaotc attracor entrainment Arnold’s tonguescoexistence
of attraciors,andhysteresk are idenifiedin the parameér space.
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1. Introduction

Periodic-oscillatingnon-linearsystemsave importantapplicationsin ary situationwhenever
predictability of complex dynamicalsystemss required.Besides,in mary situationscontrol-
ling chaotic systens by periodic forcing is useful asin the applicationsreportedin [1-5].
Thus,deternining the convenient driving parangters (usuallyamplitudesand frequencies)s
relevant to improve thedesiredcontrol or oscillation phase-lockingn the consideredystems.
Furthermore,investigatingthe dependencef this effect, or other bifurcation phenomena
commonly obsened in such driven systens, on the requiredcontrol driving parangters,is
alsocornvenient.

Electronic non-linearcircuits are particularly useful to investigatethesenon-linearphe-
nomend6], as the mentionedoscillation phase-lockingln fact,thesesystemsare experimen-
tally easyto build, usually with very low noiselevels, and their characteristicdynanics are
well modeledby differential equations.Examplesof experimentswith a non-linearcircuit
perturbedby periodicforcescanbe seenin [7-9].

The bestknown non-linearelectroniccircuit isthe Matsumotas circuit [6] (alsoknown as
Chuas circuit). This is asimple non-linearcircuit with a piecevise-linearresistor

Several bifurcation phenomenand phase-lockingoropertiesare obsered in experiments
with theoriginal Matsumotos circuit or with slightly modified versionsof this circuit[10, 11].
In particular we mentionheresomeof the reportedfeatureghatarenumericallyinvestigated
in this work. Adding one inductor and one voltage sourceto this circuit, it is possibleto
induce period-doublingbifurcations, period-addingand the Farey sequenceguasi-periodic
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andchaoticbehaior, coexistenceof multiple attractorsand hysteresig12, 13]. The sameis
obsened if thecircuit isdriven by acurrentsourcejn additionwith thefrequeng entrainment
of chaosalso reportedin this case[14]. For this last kind of driving force,the appearance
of Arnold’s tonguesand period-addinglaw in the driving parameter spaceis numerically
obsenred [10].

In this paperwe considerthe Matsumotas electroniccircuit in a chaoticregime described
by the Double Scroll attractor a very known attractorin the literature[6]. Therefore,in this
casethis circuit is calledDoubleScroll circuit [16].

We investigatednumerically phase-lockingand bifurcation phenonenawhenthe Double
Scroll circuit wasdriven by a sinusoidal perturbation.The considereddriving was different
from thoseusedin otherworks. Namely thevoltagesourcewas appliedto thelinearresistorin
serieswith theinductor With this perturbationwe obsered, bothnumerically andexperimen-
tally [17], al phenonenapreviously mentioned.However, in this work, we addressednore
generalquestionsconcerningthe representatiorof thesephenonenain the driving control
paraneter space.Thus,we identified regionsin this spacewith pointsrepresentinghe sarre
kind of attractorbehaior (periodic, quasi-periodic,or chaotic),or attractorswith the same
period.

Generally the analysisof thesestructuresin the parameter diagrans, can reveal if the
applicationof a chosenperiodic perturbationto a given systemis a good method to obtain
chaossuppressionOne questionis to determne ary possiblerelation betweenthe driving
amplitudeandfrequeng appliedto this systemand theresultingphase-lockd frequeng.

Particularly for small frequencieghereis the phenomenorof frequeng entrainmentof
chaotic motion [14, 17]. However, for further smallerfrequenciesor amost constantper
turbations,we obsened anothernew phenomenonthe chaotic attractorcyclically visiting
chaoticandperiodic regions connectedy a period-doublingroadto chaos.In fact, this kind
of trajectoryreproducedhe roadto createthe Double Scroll attractor by varying one of the
control paraneters[17].

Besidesthe previously mentioned phenonena, theseparaneter diagrans shav also the
periodattractor preseration for large rangesof driving frequeng and anplitude, asit canbe
experimentallyreproduced17].

In Section 2 we presentthe driven Double Scroll circuit. In Section 3 we presentthe
algorithm usedto computethe driving-parameteispacediagrams.We use power spectrum
analysisto shawv, in Section4, that therearethreedifferentways of phase-lockinghe con-
sideredoscillations.In Section5 we analyze for low frequenciesthe periodic entrainmentof
chaosthe Arnold’s tonguesand their period-addinglaw in the driving-paraneter space,and
the coexistenceof differentattractors.For some of thesephenonena,we shav alsoevidences
of fractal structuresn the parameterspaceWe presenthe conclusiongn Section®6.

2. DrivenDouble Scroll Cir cuit

The Double Scroll circuit is shown in Figure 1 with its threeeneigetic conponentsitwo ca-
pacitors,C; andC,, and oneinductot L. It hasalsotwo resistors,R andr, and thenon-linear
resistor Ry, whosecharacteristiccurve canbe seenin Figure?2.

The R\ characteristicurve is representetyy

iNrR(Ver) = moVe1 + 0.5(my1 — mo)|Ver + Byl + 0.5(mg — m1)|Ver — B, (1)
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Figure 1. The Double Scroll circuit. Although,in this work, we consider only numercal results, the electonic
value componens usedfor therealzaton of arealexpetimentare: C1 = 0.0052uF, C2 = 0.056 uF, R = 147022,
L=92mH,andr = 10Q.

where mg, m1, and B, areindicatedin Figure 2. V1 is the voltage acrossthe non-linear

resistor
The driving force applied acrossheresistorr (Figure 1) is representethy

q(t) = Vsinr f1), (2)
where V is theamplitudeand f is thefrequeng.

We cansimulatethecircuit of Figure 1 by applyingKirchoff’s laws. So, theresultingstate
equationsare

dVey 1 .
= = (Vea— Ver) — ing(Ve
175 R( c2 — Ve1) — inr(Ver)
Cdvcz—l(v Veo) +i
2=q — g Ve Ve tic
di,
L=t = Ve —qlt 3
q c2—q(1), (3)

where V1 and V¢, arethe voltage acrossthe capacitorsC, and Co, respectiely, andi; is
the eectric currentacrossthe inductor L. To avoid numerical problens we do not usethe
actualcomponentvaluesin Equations(3), but a rescaledsetof parametersgivenin terms of
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Figure 2. The charactristic curve of thenondinearresistor Ry, where B, = 1.0,mg = —0.5, andmq = —0.8.

the actualvalues.Thus,in this work, the parametersusedin Equations(3) for the nunerical
simulationof thecircuit in Figure 1 are

~ —-100, — =10, = =60 = =06 )

andthe normalizedinitial conditionsare
V,1(0) = 0.15264 V., = —-0.02281 i,(0) =0.38127 (5)

Forthe parametesmulation valuesgiven by Equation(4), and for a vanishingperturbing
amplitude V. = 0, the circuit behaves chaotically As the circuit is dissipatve its dynanic
variables(V¢1, Vo, and i) evolve on a chaoticattractornaned Double Scroll that canbe
seenin Figure3.

All resultsshavn in this paperare dueto humericalsimulations.However, we aso built
the circuit of Figure 1 and obsened the bifurcation phenonenahere discussedFor further
detailsaboutthis experimentwe referto [18].
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Figure 3. The chaoic Double Scroll attracior for V = 0 and other parameers given by Equaions(4) and (5).

3. Parameter SpaceDiagrams

We choseto investigatethe behaior of the driven Double Scroll systemin the Poincaré
sectionon the plane V-, = —1.5. Thus,insteadof dealingwith the trajectorieswe analyzed
the mappingdeternined by their intersectionson the Poincarésection. We obtaineda good
convergencewhenthe transientlengthwasn = 100, where n is the numberof timesthe
trajectorycrosseghe Poincarésection.

For obtainingthe paraneterspacediagrans two methodswere considered.

The mostknown tool for constructinga paraneter spacediagramistheLyapune spectrum
formed by the three Lyapunw exponentsi,,. For the consideredsystem the natureof the
attractorcanbe characterizedby the valuesof thesethreeLyapunw exponentsi(i1, A2, A3).
Thus, a chaoticoscillation, for which A; >0, A, = 0, A3 <0, is representeds (+, 0, —).
Moreover, (0, 0, —) standgfor a quasi-periodianovement onatorus7?, (0, —, —) represents
alimit cycle,and(—, —, —) represents fixed point.

We obtainedthe Lyapunw exponentsby applying the Eckmann—Rielle algorithm[19, 20]
with atransient: = 100,andatime stepd: = 0.005duringaintegrationtime: = 3882which
correspondgo n ~ 700. The Gram-Schmidt orthonornaization is applied eachGS = 10
steps.

Due to the non-eact computationof theseexponentswe consideran exponentnull if its
value is within theintenal [—e¢, ¢], where ¢ = 0.02, if we considerthe previous parameters
of the dgorithm. However, suchparametergorce us to wait a large CPU time to obtaineach
Lyapunw spectrumwith the desiredaccurag.
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Figure 4. Paramedr spacediagram(f x V) obtained from the Lyapunw specta, indicaing the behaior of
the driven Double Scroll systemthroughdifferentlevel of gray Letter c indicateschaoticoscillations,letterp
indicates periodic osdllations, |etter g indicates quasi-periodic osdllations, and letter n indicates trajectories that
go to infinity. We used a400 x 400grid of points.

So, we deternminedthat similar results,but not so faithful, canbe obtainedif we consider
dr = 0.04,r = 1040which correspondo n ~ 260,andGS = 15. The toleranceconsidered
is still ¢ = 0.02. With theseconsiderationsn mind we obtainedthe paraneter spacediagram
shavn in Figure 4, where400vauesof thefrequeny and anplitude were considered.

In this figurewe canseefor which valueof f or V we have chaog(blackregion indicated
by ¢), limit cycles(cleargray region indicatedby p), or tori 72 (dark gray region indicated
by ¢g). We alsofound unboundedrajectories(the white region indicatedby the lettern) due
to exterior crises[21]. In this figure, the minimum value of f is closeto the value of the
characteristidrequeng f. ~ 0.29 for the unperturbedsystem(V = 0), correspondingo
f. =~ 5.40kHz.

The use of the Eckmann—Rielle algorithm has basically three main problems:the large
amountof CPU time required,the uncapabilityof detectingweak chaos(the toroidal chaos
thatis dueto the breakdavn of a two-frequeng torusthroughthe Curry—Yorke scenarig20]
for which the lagestLyapunw exponentis too small, and the impossibility of determining
the period of the periodicorbits.

Thereis an additional problemwith the Eckmann—Rielle algorithm.It worksvery well for
autononoussystens; however, whenwe have anon-autonorauscase(aswhenthesinusoidal
perturbationis introducedinto the Double Scroll systen), the choiceof ¢, n, GS, and dr for
a specific f and V may not be convenientfor anotherset of theseparaneters.Hence, for
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Figure 5. Pamameter spacediagram indicaing the peiiod, indicaied by numbes, of orhits of the driven Double
Scroll systemA 400 x 400grid of pointsis consderedin thisfigure.

computing a paraneter spacefor which alargerangeof f andV must be consideredtheuse
of anotheralgorithm may be morecorvenient.

So, we realizedthat in our casean agorithm that identifies only the periodic regions
would be appropriatefor our understandingf the driven Double Scroll system This canbe
confirmed by the factthatsmall quasi-periodiaegions of the paraneterspace(for thedriven
Double Scroll system) always surroundperiodic regions (therefore,regions that are neither
periodicnor quasi-periodicare surely chaotic,disregardingthe non-finite trajectories) Also,
in this work, we have not identified orbits with periodshigherthan pmax = 16, becausehey
arenot significant.

In orderto deternine whetheran orbit is p-periodicon a Poincarésurfacewe proceeded
asfollows. After the transient(100 crossingsn the Poincarésection) we keepthe next n =
Pmax + k points (X,,, with i = 1,..., pmax + k, Where X representghe coordinatesVe,
andi;, on the Poincarésection V¢, = —1.5) to verify whetherthe coordinatevaluesrepeat
themseles p times.Thus,we compute

k
accum= > " |X, — Xuy,pl, (6)
n=1

forp=(1223,...,16).
We consideredthat we have a period-p orbit if, for the minimum p, and for k = 5,
accum< 0.02.In Figure5 we shov adiagramwherethe periodp regions,obtainedby using
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Figure 6. Isopeiodic diagram shaving the peiiod of the orbits of the driven Double Scroll system. The regions
marked by the letter n representvaluesof frequeny and ampitudefor which no boundedattracior was obtained.
A 800 x 600grid of pointsis consderedin thisfigure.

thealgorithm (6), are indicatedby the numbersandwith differentgray scales.Thisfigurehas
thesamerangeof f andV asFigure4.

Besidesthe suitableCPU time spentfor computing Figure5 (aboutfour timessmallerthan
theprevious Eckmann—Rielle algorithmusing Gram—Shmidt),we cannow preciselyidentify
the period-p regionsin the paraneterspace.

Figure6 shavs a diagramconsideringanotherrangeof V and f thatwill beinvestigated
in this paper In this figure,we seealame region (the largestblack region, indicatedwith the
lettern) correspondindo non-finite trajectoriesWe alsoseeperiodicregions (with the period
indicatedby nunbers)and speciallyalame period-onasland(indicatedby the number 1) that
is aregion wherewe find periodic movement for a large varying anmplitude andfrequeng. In
this case for a large varying frequeng or amplitude only small changesare inducedin the
shapeof the period-oneorbits.

4. Phase-Locking

We aimed to study chaossuppressiortausedy driving perturbationsn the DoubleScroll cir-
cuit. Weidentifiedthreewaysthroughwhich periodicmovementis inducedin this systemtwo
from chaoticandonefrom quasi-periodicscillations. Thesewaysareidentified accordingto
the position of the meging frequeny peakin the power spectrawhena periodic oscillation
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Figure 7. Power spectra of the time evolution of the variable V1, for frequeny f = 0.075anddifferent ampi-
tudesV, to show thephashg-ocking at thedriving frequengy f. (A) shavsthecharaceristic frequences, f1, and
fe, of theunpeturbedcircuit. Rising V (B, C, D) the peals f. and f1 disappearlndthe frequences f and f
shaw up.

shavs up. The power spectrashaved hereonwerecomputedusingthe FFT algorithmfor the
time evolution of thevariable V,. We considered32768points.

Figure7A shows the spectrumof the unperturbedsystem We see two main peaks,one
correspondingdo the characteristidrequeng f, = 0.29 andthe other indicatedby f;, cor-
respondingo thefrequeng with which thetrajectoryjumps betweenthetwo rolls presented
in the Double Scroll attractor For f = 0.075andV = 0.202,in Figure7B, the peakat f; is
destrgyed and a peakcorrespondingo the driving frequeng appearsin addition,thepeak f,
moves to the left. The amplitude of this moving peakdecrease@dswe increasedV to 0.204,
in Figure 7C, anda small peak becane evidentat f,. Finally, whenwe set V = 0.206 the
systemis periodicand the spectrumhasonly two peakswith the harmonic frequenciesf and
f, representinghedriving frequeny andtheresponsdrequeng, respectiely. In this casethe
orbitisalimit cycle.

In Figure 8 we seea seriesof spectrashaving for a varying amplitude how the periodic
movement appeared.n this casebothpeakswith f. and f; (Figure8A), hadtheiramplitudes
decreasedFigures8B and8C), being conpletely destroeed whenV = 0.20 (Figure 8D). In
this lastfigurethereis only onepeak,correspondingo thedriving frequeny f.

Thevalues of V = 0.20and f = 0.17 correspondo the large period-oneisland shoved
in Figure6. For ary setof parangters, f andV, of thisisland,the obtainedattractorhasonly
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Figure8. Power spectraof thetime evolution of thevariable V1, for frequeny f = 0.17anddifferentampitudes
V, to show the phasihgocking at thedriving frequeng f. (A) shaws the characgristic frequences, f1, and f¢,
of the unpeturbedcircuit. Rising V (B, C, D) the peals f. and f1 disappeaandthefrequeny f shavs up.

thedriving frequeny f. This resultshows thatfor suchdriving perturbationghe circuit has
responsesharacteristicef linear circuits.

Until now we showed periodic regimesfor which the frequeng componentsf, and f; are
destryed.However, we obsenred that,if we chooseafrequeny f harnmonicto f. or f1, these
lastfrequenciesnay bepresered.

So, in Figure 9 we seethat, when we introducedthe perturbationwith f = 0.650 and
V = 0.08 (Figure 9B), the perturbedspectrais still similar to the oneshavn in Figure 9A.
The peak correspondingo f = 0.650, inside the small box, had a very small amplitude,
indicating that the driving had a small effect on the Double Scroll system Increasingthe
driving frequeng to f = 0.652 (andfixing V = 0.08) we got periodicmovement. Naturally,
in thesecaseghe peaksf, and f1 hadafrequeng harmonic to thefrequeny f.

Thus,if perturbingthe systemwith afrequeng harmonicto f, we getperiodic movement,
the resulting trajectory has frequenciesvery close to harmonicsof the frequenciesf, and
/1. This factled us to think that the resultingtrajectorypresenes somecharacteristicef the
unperturbedhttractorasit canbeseenn Figure10 wherewe plot anunstableperiodicorbit of
thenon-perturbedoubleScroll system(thethin line) andtheperturbedorbit with f = 0.652
andV = 0.08.
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Figure 9. Power spectra of the time evolution of the variable V1, for ampitudeV = 0.08 anddifferent frequen-
cies f, to show the phashg-ocking at thedriving frequeng f. (A) shaws thecharacgristic frequences, f1, and
fe, of theunpeturbedcircuit. Rising f (B, C) the peals f. and f; are preseved,the peakcomrespondngto f has
avery smal ampitudeindicaiedonthe box, and f;- with its hammonics show up.

In this system thereis anotherway throughwhich periodic movement canappearfrom a
quasi-periodianovement. In this casewe have two inconmensurablefrequencieghatphase-
locks as showed in the next section.

5. Bifurcation Phenomena

5.1. PERIODIC ENTRAINMENT OF CHAOTIC ATTRACTORS

For perturbationswith small driving frequenciesye did not find any periodicregime. How-
ever, thereis oneinterestingphenomenomvherea chaotictrajectorytracksa periodicoscilla-
tion, narred periodic entrainment of the chaoticattractor

As amatterof fact,the system(3) hasthreeequilibrium pointswhosepositionsandequi-
librium stability arechangingin time accordingto the value of the driving perturbationg (¢).
Thus, this driven systemfor a null perturbationhas the equilibrium points: P!, a stable 1D
saddleand an unstable2D saddle, P2, a 1D unstablesaddleand a 2D stablefocus,and P?,
thesameas P, eachcorrespondindo oneof thethreedomainsof the function(1).

The positionof thesepointsin respecto ¢(¢) is given by

Pt = (—a—B,qt), ga —moP), P?=(—y, —q(t), —m1y),
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Figure 10. The unstble periodic orbit of the nonpeiturbed Double Scroll system (the thin line) and the orbit
obtainedfor driving paramegrs f = 0.652andV = 0.08, showing that stabiliz ation of chaotic oscillation using
the driving sinusotal perturbation canpreseve the original featiresof the nonpeturbedsystem.

P = (a— B, =V, —ga —mgp), (7)
where
_ B,(mg — my) _ B, (mg — my) and v — gq(1)
(g +mo) g+mo g+mi

To seethis periodic entrainment,in Figure 11 we plot the time evolution of the variable
V1 andthecorrespondingaluesof thefirst coordinateof the equilibrium points X*, X?, and
X3. We notethatthetrajectoryevolveswith the driving periodaroundthe equilibrium points.
In addition, the attractor seemso changein successie smalltime intenels (smallerthanthe
periodof the perturbingtermg (1)), asit canbeseenin Figure12.

Figure 12 shows the trajectoryduring eight successie time intenals (8¢ = 32). Thefirst
Vc1 plottedvaluein thesefigurescanbeidentified,in Figure 11, by thelettersinsideboxes.

We seethat Figure 12A represents trajectorythat resenlesa limit cycle. This happens
becausehe equilibrium point P2 changests positionwith the equilibrium point P? (seeFig-
urell).In fact,thereis suchalimit cyclefor aconstantperturbationg = 0.4 correspondent
to anaveragevalueof ¢ in theintenels containingthe pointsA andH of Figure11.

In Figure 12 the trajectoryresembleghat of the Double Scroll atractor with the trajec-
tory oscillating aroundthe two differentpoints P* and P3. In fact, the time evolution from
Figures12A to 12D shaws atime period-doublingroutesto chaos.The time-reversedperiod-
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Figure1l. Timeevolution of thevariable V-1 of thesystem (3) with f = 0.001andV = 0.4. Thefirst coordinatkes
of the equilibrium points (X2, X2, and X3) whose position change in time due to the perturbation are alsoplotted.
We seethatthetrajecory evolvesalongthesepoints.

doublingbifurcationscanbe seenin Figures12D-12H. In otherwords,the analyzedchaotic
trajectoryvisits differentembeddedittractors.

If we considera constantanplitude we obsened thatwe cansuppresshaotic motion of
thedriven Double Scroll circuit by changingthe positionof the equilibrium points.

5.2. ARNOLD’S TONGUEAND PERIOD ADDING LAW

Whenthe driving forceis turnedon, thatmeansV # 0, anew frequeng isintroducedn the
characteristi@scillationsof the Double Scroll System.This new frequeny is responsibldor
the appearancef quasi-periodiand periodicmovementson atwo-frequenyg torus(7?).

In the parametediagramsbesideperiodicregions, thereexist also quasi-periodiaegions.
Betweenthe regions that representa quasi-periodictrajectory there exist regions that rep-
resentsthe phase-lockd trajectoriesthat evolves on the previous existing torus 72. These
periodp regionsmay formwhatis known asArnold’s tongueq10].

TheseArnold's tonguesappearfollowing a rule called period-addinglaw [10]. The geo-
metrical interpretationof this law is representedby the known Farey tree. To introducethe
addinglaw, let us first definethewinding number W,

w=2=>, (8)

g
p
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Figure 12. Time evolution of the bi-dimensbnal (Vo1 x V2) projecion of the threedimensonal trajeciory of
the driven Double Scroll system with the sameparameers of Figure 11. FiguresA—H are obtainedfor intervals
with 6z = 32 andinitial conditionindicatedn Figurell by thelettersA—H.

where ¢ is the numberof the trajectoryrotationsalongthe torusto returnbackto the same
point, taking p conplete cycles.lt meanshat p is the period of the orbit.

Following the notation[10], betweentwo Arnold’s tonguesof winding numberg/p and
Q/ P, respectrely, thereexist otherArnold’s tongueswith winding number given by

g q+0 q+20
— — —
P p+P p+2P
q+nQ 0
7 )

The following sequencés also valid

g<—chaos<—...anrQ ...
p np+ P
2q_f_Q<—q’+Q<—g (10)

2p+P p+P P’

Thus, betweentwo prime (level I) winding numbers,a seriesof Arnold’s tongues(level
I1) shav up. Otherwise, betweenary two tonguesin level I, anotherseriesof tonguesmay
appeamwith their winding numberclassified as level 11l. Eachlevel correspondo abranchin
the Farey treethatcantheoreticallyhave infinity branches.
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Figure 13. Schemaitc represendtion of the Farey tree constucted from therationalnumbes 1/2 and 1/3.
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Figure 14. Magnification of Figure 6 shaving the Arnold’s tongueswith their winding numbes indicatedin the
figure. Thesewindingsnumbes follow the pefiod-adding law.
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Figure 15. Magnificaion of Figure6 shaving the compkx structure of the parameer spacediagram.

In Figure13 we represent Farey treewherethe Romannumbersindicatethe branchlevel
and the Arabiannumbers,the winding number. Note that the period-addinglaw is verified
to occurat a given level sincethe periodp Arnold’s tonguehave their periodsfollowing an
arithmeticprogression.

The Farey tree showed in Figure 13 is one of the mary verified to occurin the studied
systemasit canbe seenin Figurel4, amagnificationof theboxin Figure6. In Figure 14, we
seepart of the period-oneisland and,when period-onetrajectorysuffers a Hopf bifurcation
leadingto the creationof a torus T2, the Arnold’s tonguescorrespondingo phase-lockd
trajectoriesare obsened.

5.3. COEXISTENCE OF ATTRACTORSAND HYSTERESIS

It is known thatthe Arnold’s tonguescanoverlap for certainrangesof f andV [22] andthus
theexistenceof differentattractorsis possible Consequentlyin the parangter spacediagram
this coexistenceof attractorscreatescomplex and interleared periodic regions with fractal
boundaries.

Anothermagnificationof Figure6 is shavn in Figure 15. We see by conparingthediffer-
entlevelsof gray, thatfor smal changesn f andV thesystemcanpresentlifferentperiodp
attractors.Successie amplifi cationsof the box in Figure 15 show thatthe boundarybetween
the period-threeand period-tworegions, and alsothe boundarybetweenthe period-fourand
period-sixregions have a Cantorlik e fractal structure However, thereare alsoregionsof two
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Figure 16. Timeevolution of thevariable V-» whenthe trajecbry crosseshe Poincare section V-1 = —1.5, for
f =0.1005andV = 0.2420.This valuescoirespondto the region indicated by the point P in Figure 15.

differentattractorswhoseboundaryhasa non-fractalstructureas we canseein Figure 6, for
the boundarybetweenperiodicand chaoticregions.

Anothercasewherewe find a non-fractalboundarybetweenregionsthat representswo
differentattractorsis whenoneof the attractorsraisedfrom a period-doublingbifurcation of
the other.

Eventhoughthe diagramof Figure 15 at the point P indicatesa period-threeattractor a
period-two attractorcoexists aswe canseein Figure 16, whereit is plotted the time evolution
of the variable V-, whenthe trajectory crossesthe Poincarésection Ve, = —1.5, for f =
0.1005and vV = 0.2420 (correspondingo the point P). In this figure,to changefrom one
attractorto the other, we restartedheintegrationof Equation(2) with initial conditionsasthe
lastvariablesof the prior trajectory The fasttransientscanbe seenin Figure16.

Wehave alsoobsenred thatal periodicregionspresentanattractorobustto small changes
in f and V. For exanple, the point P in Figure 15 represents period-threeattractor and
with small changesin f and V one never obtain the other coexisting period-two attractor
Therefore,even in the presenceof more than one attractor the microscopicstructure of a
periodicregion (far away from the boundarywith anotherattractor)is not fractal.

The coexistenceof attractordeadsto the phenonenonof hysteresigiueto jumps between
coeisting attractors.To shaw that, in Figure 17, for f = 0.075 and a varying amplitude,
we seethat the systemcan present or the rising amplitude (Figures17A-17F), a different
sequencef attractorsobtainedfor the decreasingamplitude (Figures17F17Q. Thus, for
V = 0.30two differentattractorscanbe obtained(Figures17D and17G).
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Figure 17. Sequenceof attraciors showing the phenomenomf hyseresis. Forafixedfrequeny f = 0.075anda
varying amplitude indicated in the figure we show that the attractor can jump to the others existing attractors.

6. Conclusions

For the purposeof having a betterunderstandingf the phase-lockingn the Double Scroll
circuit [6, 16] driven by a sinusoidal perturbation[10, 12—14] we computed original and
preciseparangter spacediagrans for ample rangesof thedriving paraneters.

We computed the Lyapunw spectrato distinguishif the driven circuit trajectory was
chaotic, periodic or quasi-periodic However, this kind of diagramrequireda large amount
of computationtime and an algorithm parameterdependencen the driving parameterg f
andV).

We alsocomputedheseparametediagramsconsideringanotheralgorithm to identify the
orbit periods.For this kind of diagram the requiredCPU time was aboutten times shorter
thanthatnecessaryo conmputethe diagrans basedon the Lyapunw spectrum

With sucha diagramwe have conplete knowledgeof the phase-lockd regions. With fine
resolutionsmary bifurcation phenonenapresentedn this circuit [12—14]asperiod-doubling,
hysteresiscoexistenceof attractors,phase-lockingandArnold’s tongue[10] were identified
[17].

Thesediagrans may have regions of differentattractorsfor which either a fractal or a
non-fractalboundarymay be found.Basically, a non-fractalboundaryis foundwhenthetwo
closedregionshave attractorswith period p and2p, respectrely. That meansthatthe period-
2p attractorappeargrom its neighborperiod-p suffersaperiod-doublingoifurcation. Another
situationwherethereis no fractal boundaryis found whenyou have a periodic region beside
achaoticregion. This is atypical casewhena tangentbifurcationoccurs.
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However, we also seeregions of differentattractorsin thesediagrans for which their
boundaryhasa Cantorlike fractal structure.This is due to the coexistenceof differentat-
tractors.

If the perturbing frequeng, f, is smaller than the characteristicfrequengy, f., chaotic
oscillationswere easilysuppressedincethelarge-sizedperiodicislandsgpresentedn Figure 6
appearonly for f < f.. Infact,for f > f., theonly structuresin the paraneter spaceare
line-shapedines, indicating that there are specific values of f to obtain periodic motion.
Generally, the driving frequenciesrequiredfor phase-lockingare closeto harmonics of the
characteristidrequeng f..

We deternined threewaysthroughwhich periodic motion appeardor a suitablevariation
onthedriving parameterstwo whenthe driven circuit hasa chaotictrajectoryand onewhen
it hasa quasi-periodictrajectory Thesethreewayswere newly classified accordingto the
way thefrequeng peaks(in the power spectraof suchchaoticor quasi-periodidrajectories)
changetheir positionwith thedriving parametersariation.

Thesethree ways must be consideredas the possiblescenariosfor the phase-locking.
Therefore,if one needsto suppresschaotic motion by applying a sinusoidal perturbation,
the identification of oneof thesethreescenariospy inspectingthe power spectraof a given
sinusoidally-diven system perrrits to suitablyadjustthedriving paraneterto obtainperiodic
motion.

The first scenariooccurswhenthe driven circuit presentsa trajectorywith mary frequen-
cies harnonic to the perturbingfrequeny f and different from the original characteristic
frequeng f.. Thus,the region of the biggestperiod-oneislandin Figure 6 hasan attractor
whosesll frequenciesf, aregivenby f, = (2n+1) f; however, theonly significantfrequeny
IS fo = f becausdts peakamplitudeis remarkablybiggerthantheothers.Thatmeansjn this
case thecircuit responseo the driving is typically linear This and otherislandsthatappear
for f < f. shaw the presenation of the periodicattractorfor a large variationof the driving
frequeny and anplitude. We obsered this kind of phase-lockingboth, experimentally and
numerically)when f 5 f.. A specialcaseiswhen f ~ f.. In this case aperiodic oscillation
(a period-onelimit cycle resemblinga circle) is obtainedwith the lowestamplitude V. Ob-
viously, a periodicaldriven systemis expectedto modulatewith the externalfrequeny if its
valueis closeto the non-perturbedtharacteristidrequeng.

The other phase-lockingscenariois whentheresultingfrequenciesre closeor harmonics
of f. andthe peakof the driving frequengy amost doesnot appearin the spectra.ln this
casethedriven circuit possesatrajectorythatshadavs anunstableperiodic orbit of thenon-
perturbedattractor In otherwords, the perturbingfrequeng £ is closeto an harmonic of f,.
Numerically, we have obsened thatthis caseusually happensvhen f is biggerthan f..

The lastscenariooccurswhenperiodicmotion emegesfrom a quasi-periodicone.In this
case,the quasi-periodictrajectory evolves along a two-frequeng torus, and, for a driving
parangter variation, the two-orbit conponentsphase-lockand then periodic motion shows
up. The phase-lockd two-frequeng torusis responsibldor the appearancef the Arnold’s
tongueg[10, 12] in the paraneter spacediagrans aroundthe periodic islands.Therefore,as
for other systens [22], Arnold’s tonguesonly appearbesidea periodicisland.

Analyzing the phenonenon of periodic entrainment of chaotic motion [14, 23, 24] we
found an attractorthat presentedn sequentialtime intenals (smaller than the perturbing
period) doubling routesto chaosand a time-reversed period-doublingbifurcations. In other
words,this trajectoryvisited differentembeddeditractorsfoundin non-linearsystemg25].
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Finally, athoughwe analyzedsinusoidalperturbationsappliedto the driven Double Scroll
circuit, we obtainedalso similar resultsapplying otherperiodical perturbationgastriangular
andsguarewaves, for example)to this circuit.
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