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Abstract. The dynamic alterationsof an electronic circuit in a chaotic regime,described by the Double Scroll
attractor, subjected to sinusoidal perturbation are numerically investigated. Parameter diagramsof the circuit
phase-locking oscillations in terms of the driving amplitude and frequency are computed. Thesediagrams have
highly interleavedandcomplex structures,part of themCantor-like fractals.However, a Cantor-like fractal struc-
ture is also observed. In addition, the power spectrum analysis is usedto find and characterize three ways of
phase-lockingtheDoubleScroll circuit, andtodeterminehow thisprocessdependsonthedrivingparameters. Fur-
thermore, thedynamicsof bifurcation phenomena,aschaotic attractor entrainment, Arnold’s tongues,coexistence
of attractors,andhysteresis are identifiedin theparameter space.
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1. In tr oduction

Periodic-oscillatingnon-linearsystemshave importantapplicationsin any situationwhenever
predictabilityof complex dynamicalsystemsis required.Besides,in many situationscontrol-
ling chaotic systems by periodic forcing is useful as in the applicationsreportedin [1–5].
Thus,determining theconvenientdriving parameters(usuallyamplitudesand frequencies)is
relevant to improve thedesiredcontrolor oscillationphase-lockingin theconsideredsystems.
Furthermore,investigatingthe dependenceof this effect, or other bifurcation phenomena
commonly observed in such driven systems, on the requiredcontrol driving parameters, is
alsoconvenient.

Electronicnon-linearcircuits areparticularly useful to investigatethesenon-linearphe-
nomena[6], as thementionedoscillationphase-locking.In fact,thesesystemsareexperimen-
tally easyto build, usually with very low noiselevels, and their characteristicdynamics are
well modeledby differential equations.Examplesof experimentswith a non-linearcircuit
perturbedby periodicforcescanbeseenin [7–9].

Thebestknown non-linearelectroniccircuit is theMatsumoto’s circuit [6] (alsoknown as
Chua’s circuit). This is asimple non-linearcircuit with apiecewise-linearresistor.

Several bifurcation phenomenaand phase-lockingpropertiesare observed in experiments
with theoriginal Matsumoto’scircuit or with slightly modified versionsof thiscircuit [10,11].
In particular, wementionheresomeof thereportedfeaturesthatarenumericallyinvestigated
in this work. Adding one inductor and one voltage sourceto this circuit, it is possibleto
induceperiod-doublingbifurcations,period-addingand the Farey sequence,quasi-periodic

∗ Contributed by ProfessorD. T. Mook.∗∗ Presentlyat theInstitutefor PlasmaResearch,University of Maryland,CollegePark, MD 20742,U.S.A.



120 M. S.BaptistaandI. L. Caldas

andchaoticbehavior, coexistenceof multiple attractorsand hysteresis[12, 13]. Thesameis
observed if thecircuit isdriven by acurrentsource,in additionwith thefrequency entrainment
of chaosalso reportedin this case[14]. For this last kind of driving force, the appearance
of Arnold’s tonguesand period-addinglaw in the driving parameter spaceis numerically
observed [10].

In thispaper, weconsidertheMatsumoto’s electroniccircuit in achaoticregimedescribed
by theDoubleScroll attractor, a very known attractorin the literature[6]. Therefore,in this
case,this circuit is calledDoubleScroll circuit [16].

We investigatednumerically phase-lockingand bifurcationphenomenawhentheDouble
Scroll circuit wasdriven by a sinusoidalperturbation.The considereddriving wasdifferent
from thoseusedin otherworks.Namely, thevoltagesourcewasappliedto thelinearresistorin
serieswith theinductor. With thisperturbation,weobserved,bothnumericallyandexperimen-
tally [17], all phenomenapreviously mentioned.However, in this work, we addressedmore
generalquestionsconcerningthe representationof thesephenomena in the driving control
parameter space.Thus,we identified regionsin this spacewith pointsrepresentingthesame
kind of attractorbehavior (periodic,quasi-periodic,or chaotic),or attractorswith the same
period.

Generally, the analysisof thesestructuresin the parameter diagrams, can reveal if the
applicationof a chosenperiodicperturbationto a given systemis a goodmethod to obtain
chaossuppression.One questionis to determine any possiblerelation betweenthe driving
amplitudeandfrequency appliedto this systemand theresultingphase-lockedfrequency.

Particularly, for small frequenciesthereis the phenomenonof frequency entrainmentof
chaoticmotion [14, 17]. However, for further smaller frequenciesor almost constantper-
turbations,we observed anothernew phenomenon:the chaotic attractorcyclically visiting
chaoticandperiodic regionsconnectedby a period-doublingroadto chaos.In fact, this kind
of trajectoryreproducedthe roadto createtheDoubleScroll attractorby varying oneof the
controlparameters[17].

Besidesthe previously mentionedphenomena,theseparameter diagrams show also the
periodattractorpreservation for large rangesof driving frequency and amplitude,as it canbe
experimentallyreproduced[17].

In Section 2 we presentthe driven Double Scroll circuit. In Section 3 we presentthe
algorithm usedto computethe driving-parameterspacediagrams.We use power spectrum
analysisto show, in Section4, that therearethreedifferentwaysof phase-lockingthe con-
sideredoscillations.In Section5 weanalyze,for low frequencies,theperiodicentrainmentof
chaos,theArnold’s tonguesand their period-addinglaw in thedriving-parameter space,and
thecoexistenceof differentattractors.Forsomeof thesephenomena,weshow alsoevidences
of fractalstructuresin theparameterspace.Wepresenttheconclusionsin Section6.

2. Dr iven DoubleScroll Cir cuit

The DoubleScroll circuit is shown in Figure1 with its threeenergetic components:two ca-
pacitors,C1 andC2, andoneinductor, L. It hasalsotwo resistors,R andr, and thenon-linear
resistor, RNL, whosecharacteristiccurve canbeseenin Figure2.

TheRNL characteristiccurve is representedby

iNR(Vc1) = m0Vc1+ 0.5(m1 −m0)|Vc1+ Bp| + 0.5(m0 −m1)|Vc1− Bp|, (1)
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Figure 1. The Double Scroll circuit. Al though,in this work, we consider only numerical results, the electronic
valuecomponentsusedfor therealization of arealexperimentare:C1 = 0.0052µF,C2 = 0.056µF,R = 1470�,
L = 9.2 mH, and r = 10�.

where m0, m1, and Bp are indicatedin Figure 2. VC1 is the voltageacrossthe non-linear
resistor.

Thedriving forceappliedacrosstheresistorr (Figure1) is representedby

q(t) = V sin(2πf t), (2)

whereV is theamplitudeandf is thefrequency.
Wecansimulatethecircuit of Figure1 by applyingKirchoff ’s laws.So, theresultingstate

equationsare

C1
dVC1

dt
= 1

R
(VC2− VC1)− iNR(Vc1)

C2
dVC2

dt
= 1

R
(VC1− VC2)+ iL

L
diL

dt
= −VC2− q(t), (3)

where VC1 andVC2 are the voltageacrossthe capacitorsC1 andC2, respectively, and iL is
the electric currentacrossthe inductor L. To avoid numerical problems we do not usethe
actualcomponentvaluesin Equations(3), but a rescaledsetof parametersgiven in terms of
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Figure2. Thecharacteristic curve of thenon-linearresistor RNL, whereBp = 1.0, m0 = −0.5, andm1 = −0.8.

theactualvalues.Thus,in this work, theparametersusedin Equations(3) for thenumerical
simulationof thecircuit in Figure1 are

1

C1
= 10.0,

1

C2
= 1.0,

1

L
= 6.0,

1

R
= 0.6 (4)

andthenormalizedinitial conditionsare

Vc1(0) = 0.15264, Vc2 = −0.02281, iL(0) = 0.38127. (5)

For theparametersimulationvaluesgivenby Equation(4), and for a vanishingperturbing
amplitude V = 0, the circuit behaves chaotically. As the circuit is dissipative its dynamic
variables(VC1, VC2, and iL) evolve on a chaoticattractornamed DoubleScroll that canbe
seenin Figure3.

All resultsshown in this paperaredueto numericalsimulations.However, we also built
the circuit of Figure 1 andobserved the bifurcation phenomenaherediscussed.For further
detailsaboutthis experimentwereferto [18].
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Figure3. Thechaotic DoubleScroll attractor for V = 0 andotherparameters givenby Equations(4) and (5).

3. Parameter SpaceDiagrams

We choseto investigatethe behavior of the driven Double Scroll system in the Poincaré
sectionon theplaneVC1 = −1.5. Thus,insteadof dealingwith thetrajectories,we analyzed
the mappingdetermined by their intersectionson the Poincarésection.We obtaineda good
convergencewhen the transientlength wasn = 100, wheren is the numberof times the
trajectorycrossesthePoincarésection.

Forobtainingtheparameterspacediagrams two methodswere considered.
Themostknown tool for constructingaparameterspacediagramistheLyapunov spectrum

formed by the threeLyapunov exponentsλn. For the consideredsystem, the natureof the
attractorcanbecharacterizedby thevaluesof thesethreeLyapunov exponents:(λ1, λ2, λ3).
Thus,a chaoticoscillation, for which λ1 >0, λ2 = 0, λ3 <0, is representedas (+, 0,−).
Moreover, (0, 0,−) standsfor aquasi-periodicmovement ona torusT 2, (0,−,−) represents
a limit cycle,and(−,−,−) representsafixed point.

WeobtainedtheLyapunov exponentsby applying theEckmann–Ruellealgorithm[19,20]
with atransientn = 100,andatimestepdt = 0.005duringaintegrationtime t = 3882which
correspondsto n ≈ 700. The Gram–Schmidt orthonormalization is applied eachGS = 10
steps.

Due to thenon-exact computationof theseexponents,we consideranexponentnull if its
value is within the interval [−ε, ε], where ε = 0.02, if we considertheprevious parameters
of thealgorithm. However, suchparametersforceus to wait a large CPU time to obtaineach
Lyapunov spectrumwith thedesiredaccuracy.
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Figure 4. Parameter spacediagram(f × V ) obtained from the Lyapunov spectra, indicating the behavior of
the driven Double Scroll systemthroughdifferentlevel of gray. Letterc indicateschaoticoscillations,letterp
indicates periodic oscillations, letter q indicates quasi-periodic oscillations, and letter n indicates trajectories that
go to infinity. Weused a400 × 400grid of points.

So, we determinedthat similar results,but not so faithful, canbeobtainedif we consider
dt = 0.04, t = 1040which correspondto n ≈ 260,andGS= 15. The toleranceconsidered
is still ε = 0.02.With theseconsiderationsin mind weobtainedtheparameter spacediagram
shown in Figure4, where400valuesof thefrequency and amplitudewereconsidered.

In this figurewe canseefor which valueof f or V we have chaos(blackregion indicated
by c), limit cycles(cleargray region indicatedby p), or tori T 2 (darkgray region indicated
by q). We alsofound unboundedtrajectories(thewhite region indicatedby the lettern) due
to exterior crises[21]. In this figure, the minimum value of f is closeto the value of the
characteristicfrequency fc ≈ 0.29 for the unperturbedsystem(V = 0), correspondingto
fc ≈ 5.40 kHz.

The useof the Eckmann–Ruelle algorithm hasbasicallythreemain problems:the large
amountof CPU time required,the uncapabilityof detectingweakchaos(the toroidal chaos
thatis dueto thebreakdown of a two-frequency torusthroughtheCurry–Yorke scenario[20]
for which the largestLyapunov exponentis too small, andthe impossibility of determining
theperiodof theperiodicorbits.

Thereisan additionalproblemwith theEckmann–Ruellealgorithm.It worksverywell for
autonomoussystems;however, whenwehaveanon-autonomouscase(aswhenthesinusoidal
perturbationis introducedinto theDoubleScroll system), the choiceof t , n, GS, and dt for
a specific f andV may not be convenient for anotherset of theseparameters.Hence, for
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Figure 5. Parameter spacediagram indicating the period, indicated by numbers, of orbits of the driven Double
Scroll system.A 400× 400grid of points is consideredin this figure.

computinga parameter spacefor which a largerangeof f andV must beconsidered,theuse
of anotheralgorithm maybemoreconvenient.

So, we realizedthat in our casean algorithm that identifies only the periodic regions
would be appropriatefor our understandingof thedriven DoubleScroll system. This canbe
confirmedby thefact thatsmall quasi-periodicregionsof theparameterspace(for thedriven
DoubleScroll system) alwayssurroundperiodic regions (therefore,regions that areneither
periodicnor quasi-periodicare surelychaotic,disregardingthenon-finite trajectories).Also,
in this work, we have not identifiedorbitswith periodshigherthanpmax = 16, becausethey
arenot significant.

In orderto determine whetheran orbit is p-periodicon a Poincarésurfacewe proceeded
asfollows. After the transient(100 crossingsin the Poincarésection)we keepthe next n =
pmax + k points (Xn, with i = 1, . . . , pmax + k, where X representsthe coordinatesVC2

andiL, on the PoincarésectionVC1 = −1.5) to verify whetherthe coordinatevaluesrepeat
themselvesp times.Thus,wecompute

accum=
k∑

n=1

|Xn −Xn+p|, (6)

for p = (1, 2, 3, . . . , 16).
We consideredthat we have a period-p orbit if, for the minimum p, and for k = 5,

accum< 0.02. In Figure5 weshow adiagramwheretheperiod-p regions,obtainedby using
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Figure 6. Isoperiodic diagramshowing theperiod of the orbits of the driven Double Scroll system. The regions
markedby the letter n representvaluesof frequency and amplitudefor which no boundedattractor was obtained.
A 800× 600grid of points is consideredin this figure.

thealgorithm (6), are indicatedby thenumbersandwith differentgrayscales.Thisfigurehas
thesamerangeof f andV asFigure4.

BesidesthesuitableCPU timespentfor computingFigure5 (aboutfour timessmaller than
thepreviousEckmann–RuellealgorithmusingGram–Schmidt),wecannow preciselyidentify
theperiod-p regionsin theparameterspace.

Figure6 shows a diagramconsideringanotherrangeof V andf thatwill be investigated
in this paper. In this figure,we seea largeregion (the largestblackregion, indicatedwith the
lettern) correspondingto non-finite trajectories.Wealsoseeperiodicregions(with theperiod
indicatedby numbers)andspeciallyalargeperiod-oneisland(indicatedby thenumber1) that
is a region wherewe find periodicmovement for a large varyingamplitudeandfrequency. In
this case,for a large varying frequency or amplitudeonly small changesare inducedin the
shapeof theperiod-oneorbits.

4. Phase-Locking

Weaimed to studychaossuppressioncausedby driving perturbationsin theDoubleScroll cir-
cuit.Weidentifiedthreewaysthroughwhich periodicmovement is inducedin thissystem: two
from chaoticandonefrom quasi-periodicoscillations.Thesewaysareidentifiedaccordingto
thepositionof themerging frequency peakin the power spectrawhena periodic oscillation
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Figure 7. Power spectra of the time evolution of the variable VC1, for frequency f = 0.075anddifferent ampli-
tudesV , to show thephasing-locking at thedriving frequency f . (A) shows thecharacteristic frequencies,f1, and
fc, of the unperturbedcircuit. Rising V (B, C, D) the peaks fc andf1 disappearandthe frequencies f andfr

show up.

shows up.The power spectrashowedhereonwerecomputedusingtheFFT algorithmfor the
timeevolution of thevariableVC1. Weconsidered32768points.

Figure7A shows the spectrumof the unperturbedsystem. We see two main peaks,one
correspondingto the characteristicfrequency fc u 0.29 andthe other, indicatedby f1, cor-
respondingto thefrequency with which thetrajectoryjumpsbetweenthetwo rolls presented
in theDoubleScroll attractor. For f = 0.075andV = 0.202,in Figure7B, thepeakat f1 is
destroyedandapeakcorrespondingto thedriving frequency appears.In addition,thepeakfc

moves to the left. The amplitude of this moving peakdecreasedaswe increasedV to 0.204,
in Figure7C, anda small peakbecame evident at fr . Finally, whenwe set V = 0.206 the
systemis periodicand thespectrumhasonly two peaks,with theharmonic frequenciesf and
fr representingthedriving frequency andtheresponsefrequency, respectively. In thiscasethe
orbit is a limit cycle.

In Figure8 we seea seriesof spectrashowing for a varying amplitude how the periodic
movement appeared.In thiscasebothpeaks,with fc andf1 (Figure8A), hadtheiramplitudes
decreased(Figures8B and8C), beingcompletely destroyed whenV = 0.20 (Figure8D). In
this lastfigurethereis only onepeak,correspondingto thedriving frequency f .

The values of V = 0.20 andf = 0.17 correspondto the largeperiod-oneislandshowed
in Figure6. For any set of parameters,f andV , of this island,theobtainedattractorhasonly
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Figure8. Power spectraof thetimeevolutionof thevariableVC1, for frequency f = 0.17anddifferent amplitudes
V , to show thephasing-locking at thedriving frequency f . (A) shows thecharacteristic frequencies, f1, and fc,
of theunperturbedcircuit. RisingV (B, C, D) thepeaks fc andf1 disappearandthefrequency f shows up.

thedriving frequency f . This resultshows that for suchdriving perturbationsthecircuit has
responsescharacteristicsof linearcircuits.

Until now weshowed periodicregimesfor which thefrequency componentsfc andf1 are
destroyed.However, weobserved that,if wechooseafrequency f harmonic to fc or f1, these
lastfrequenciesmay bepreserved.

So, in Figure 9 we seethat, when we introducedthe perturbationwith f = 0.650 and
V = 0.08 (Figure 9B), the perturbedspectrais still similar to the oneshown in Figure 9A.
The peak correspondingto f = 0.650, inside the small box, had a very small amplitude,
indicating that the driving had a small effect on the Double Scroll system. Increasingthe
driving frequency to f = 0.652(andfixing V = 0.08) wegot periodicmovement. Naturally,
in thesecasesthepeaksfr andf1 hada frequency harmonic to thefrequency f .

Thus,if perturbingthesystemwith afrequency harmonicto fc wegetperiodicmovement,
the resulting trajectoryhas frequenciesvery close to harmonicsof the frequenciesfc and
f1. This fact led us to think that theresultingtrajectorypreservessomecharacteristicsof the
unperturbedattractor, asit canbeseenin Figure10 whereweplot anunstableperiodicorbit of
thenon-perturbedDoubleScroll system(thethin line) andtheperturbedorbit with f = 0.652
andV = 0.08.
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Figure9. Power spectraof the timeevolution of thevariable VC1, for amplitudeV = 0.08 anddifferent frequen-
ciesf , to show thephasing-locking at thedriving frequency f . (A) shows thecharacteristic frequencies,f1, and
fc, of theunperturbedcircuit. Risingf (B, C) thepeaksfc andf1 arepreserved,thepeakcorresponding to f has
avery small amplitudeindicatedon thebox,andfr with itsharmonicsshow up.

In this system, thereis anotherway throughwhich periodicmovement canappearfrom a
quasi-periodicmovement. In this casewehave two incommensurablefrequenciesthatphase-
locksas showed in thenext section.

5. Bifurcation Phenomena

5.1. PERIODIC ENTRAINMENT OF CHAOTIC ATTRACTORS

For perturbationswith small driving frequencies,we did not find any periodicregime. How-
ever, thereis oneinterestingphenomenonwhereachaotictrajectorytracksaperiodicoscilla-
tion, named periodicentrainment of thechaoticattractor.

As a matterof fact,thesystem(3) hasthreeequilibrium pointswhosepositionsandequi-
librium stability arechangingin time accordingto thevalue of thedriving perturbationq(t).
Thus,this driven systemfor a null perturbationhasthe equilibrium points:P 1, a stable 1D
saddleand an unstable2D saddle,P 2, a 1D unstablesaddleand a 2D stablefocus,and P 3,
thesameasP 1, eachcorrespondingto oneof thethreedomainsof thefunction(1).

Thepositionof thesepointsin respectto q(t) is given by

P 1 = (−α − β, q(t), gα −m0β), P 2 = (−γ,−q(t),−m1γ ),
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Figure 10. The unstable periodic orbit of the non-perturbed Double Scroll system (the thin line) and the orbit
obtainedfor driving parametersf = 0.652andV = 0.08, showing that stabilization of chaotic oscillation using
thedrivingsinusoidal perturbation canpreserve theoriginal featuresof thenon-perturbedsystem.

P 3 = (α − β,−V,−gα −m0β), (7)

where

α = Bp(m0−m1)

(g +m0)
, β = Bp(m0−m1)

g +m0
, and γ = gq(t)

g +m1
.

To seethis periodic entrainment,in Figure 11 we plot the time evolution of the variable
VC1 andthecorrespondingvaluesof thefirstcoordinateof theequilibrium pointsX1, X2, and
X3. Wenotethatthetrajectoryevolveswith thedriving periodaroundtheequilibrium points.
In addition,theattractorseemsto changein successive small time intervals (smallerthanthe
periodof theperturbingtermq(t)), asit canbeseenin Figure12.

Figure12 shows the trajectoryduring eight successive time intervals (δt = 32). Thefirst
VC1 plottedvaluein thesefigurescanbeidentified,in Figure11,by thelettersinsideboxes.

We seethatFigure12A representsa trajectorythat resemblesa limit cycle. This happens
becausetheequilibrium point P 3 changesits positionwith theequilibrium pointP 2 (seeFig-
ure11).In fact,thereis suchalimit cycle for aconstantperturbationq = ∓0.4 correspondent
to anaveragevalueof q in theintervals containingthepointsA andH of Figure11.

In Figure12 the trajectoryresemblesthat of the DoubleScroll attractor, with the trajec-
tory oscillatingaroundthe two differentpointsP 1 andP 3. In fact, the time evolution from
Figures12A to 12D shows a timeperiod-doublingroutesto chaos.The time-reversedperiod-
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Figure11. Timeevolution of thevariableVC1 of thesystem (3) with f = 0.001andV = 0.4.Thefirst coordinates
of theequilibrium points (X1, X2, and X3) whoseposition change in timedueto theperturbation arealsoplotted.
Weseethatthetrajectory evolvesalongthesepoints.

doublingbifurcationscanbeseenin Figures12D–12H. In otherwords,theanalyzedchaotic
trajectoryvisits differentembeddedattractors.

If we considera constantamplitude we observed thatwe cansuppresschaoticmotion of
thedriven DoubleScroll circuit by changingthepositionof theequilibriumpoints.

5.2. ARNOLD’ S TONGUE AND PERIOD ADDING LAW

Whenthedriving force is turnedon, thatmeansV 6= 0, a new frequency is introducedin the
characteristicoscillationsof theDoubleScroll System.This new frequency is responsiblefor
theappearanceof quasi-periodicand periodicmovementson a two-frequency torus(T 2).

In theparameterdiagrams,besideperiodicregions,thereexist alsoquasi-periodicregions.
Betweenthe regions that representa quasi-periodictrajectory, thereexist regions that rep-
resentsthe phase-locked trajectoriesthat evolves on the previous existing torusT 2. These
period-p regionsmay form whatisknown asArnold’s tongues[10].

TheseArnold’s tonguesappearfollowing a rule calledperiod-addinglaw [10]. The geo-
metrical interpretationof this law is representedby the known Farey tree.To introducethe
addinglaw, let us firstdefinethewinding numberW ,

W = q

p
, (8)
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Figure 12. Timeevolution of thebi-dimensional (VC1 × VC2) projection of the three-dimensional trajectory of
the driven Double Scroll system with the sameparameters of Figure 11. FiguresA–H are obtainedfor intervals
with δt = 32andinitial conditionindicatedin Figure11 by thelettersA–H.

where q is the numberof the trajectoryrotationsalongthe torusto returnbackto the same
point, takingp completecycles.It meansthatp is theperiodof theorbit.

Following the notation[10], betweentwo Arnold’s tonguesof winding numberq/p and
Q/P , respectively, thereexist otherArnold’s tongueswith windingnumbergivenby

q

p
→ q +Q

p + P
→ q + 2Q

p + 2P
→ . . .

q + nQ

p + nP
→ . . . chaos→ Q

P
. (9)

The following sequenceisalso valid

q

p
← chaos← . . .

nq +Q

np + P
← . . .

2q +Q

2p + P
← q +Q

p + P
← Q

P
. (10)

Thus,betweentwo prime (level I) winding numbers,a seriesof Arnold’s tongues(level
II) show up. Otherwise,betweenany two tonguesin level II, anotherseriesof tonguesmay
appearwith their winding numberclassified as level III. Eachlevel correspondto abranchin
theFarey treethatcantheoreticallyhave infinity branches.
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Figure13. Schematic representation of theFarey treeconstructed from therationalnumbers 1/2 and 1/3.
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Figure15. Magnification of Figure6 showing thecomplex structureof theparameter spacediagram.

In Figure13 werepresentaFarey treewheretheRomannumbersindicatethebranchlevel
and the Arabiannumbers,the winding number. Note that the period-addinglaw is verified
to occurat a given level sincethe period-p Arnold’s tonguehave their periodsfollowing an
arithmeticprogression.

The Farey treeshowed in Figure 13 is oneof the many verified to occur in the studied
systemasit canbeseenin Figure14,amagnificationof thebox in Figure6. In Figure14,we
seepart of the period-oneislandand,when period-onetrajectorysuffers a Hopf bifurcation
leadingto the creationof a torus T 2, the Arnold’s tonguescorrespondingto phase-locked
trajectoriesare observed.

5.3. COEXI STENCE OF ATTRACTORS AND HYSTERESIS

It is known thattheArnold’s tonguescanoverlap for certainrangesof f andV [22] andthus
theexistenceof differentattractorsis possible.Consequently, in theparameter spacediagram
this coexistenceof attractorscreatescomplex and interleaved periodic regions with fractal
boundaries.

Anothermagnificationof Figure6 is shown in Figure15.Wesee,by comparingthediffer-
entlevelsof gray, thatfor small changesin f andV thesystemcanpresentdifferentperiod-p
attractors.Successive amplificationsof thebox in Figure15 show thattheboundarybetween
theperiod-threeand period-tworegions,and alsotheboundarybetweentheperiod-fourand
period-sixregionshave a Cantor-like fractalstructure.However, thereare alsoregionsof two
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Figure 16. Timeevolution of thevariable VC2 whenthe trajectory crossesthePoincaŕe section VC1 = −1.5, for
f = 0.1005andV = 0.2420.This valuescorrespondto the region indicatedby thepoint P in Figure15.

differentattractorswhoseboundaryhasa non-fractalstructureas we canseein Figure6, for
theboundarybetweenperiodicand chaoticregions.

Anothercasewherewe find a non-fractalboundarybetweenregionsthat representstwo
differentattractorsis whenoneof theattractorsraisedfrom a period-doublingbifurcation of
theother.

Even thoughthe diagramof Figure15 at the point P indicatesa period-threeattractor, a
period-two attractorcoexistsaswecanseein Figure16,whereit isplottedthetimeevolution
of the variableVC2 whenthe trajectorycrossesthe PoincarésectionVC1 = −1.5, for f =
0.1005andV = 0.2420(correspondingto the point P ). In this figure,to changefrom one
attractorto theother, werestartedtheintegrationof Equation(2) with initial conditionsasthe
lastvariablesof theprior trajectory. The fasttransientscanbeseenin Figure16.

Wehavealsoobserved thatall periodicregionspresentsanattractorrobust to small changes
in f andV . For example, the point P in Figure15 representsa period-threeattractor, and
with small changesin f andV one never obtain the other coexisting period-two attractor.
Therefore,even in the presenceof more than one attractor, the microscopicstructureof a
periodicregion (far away from theboundarywith anotherattractor)is not fractal.

Thecoexistenceof attractorsleadsto thephenomenonof hysteresisdueto jumps between
coexisting attractors.To show that, in Figure 17, for f = 0.075 and a varying amplitude,
we seethat the systemcanpresent,for the rising amplitude (Figures17A–17F), a different
sequenceof attractorsobtainedfor the decreasingamplitude (Figures17F–17G). Thus, for
V = 0.30 two differentattractorscanbeobtained(Figures17D and17G).
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Figure17. Sequenceof attractors showing thephenomenonof hysteresis.Forafixedfrequency f = 0.075anda
varying amplitude indicated in thefigureweshow that theattractor can jump to theothers existing attractors.

6. Conclusions

For the purposeof having a betterunderstandingof the phase-lockingin the DoubleScroll
circuit [6, 16] driven by a sinusoidal perturbation[10, 12–14] we computed original and
preciseparameter spacediagrams for ample rangesof thedriving parameters.

We computed the Lyapunov spectra to distinguish if the driven circuit trajectory was
chaotic,periodic or quasi-periodic.However, this kind of diagramrequireda large amount
of computationtime and an algorithm parameterdependenceon the driving parameters(f
andV ).

Wealsocomputedtheseparameterdiagramsconsideringanotheralgorithm to identify the
orbit periods.For this kind of diagram, the requiredCPU time wasaboutten timesshorter
thanthatnecessaryto computethediagrams basedon theLyapunov spectrum.

With sucha diagramwe have completeknowledgeof thephase-locked regions.With fine
resolutions,many bifurcationphenomenapresentedin thiscircuit [12–14]asperiod-doubling,
hysteresis,coexistenceof attractors,phase-locking,andArnold’s tongue[10] were identified
[17].

Thesediagrams may have regions of differentattractorsfor which either a fractal or a
non-fractalboundarymaybe found.Basically, a non-fractalboundaryis foundwhenthetwo
closedregionshaveattractorswith periodp and2p, respectively. Thatmeansthattheperiod-
2p attractorappearsfrom its neighborperiod-p suffersaperiod-doublingbifurcation.Another
situationwherethereis no fractalboundaryis foundwhenyou have a periodic region beside
achaoticregion.This is a typical casewhena tangentbifurcationoccurs.
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However, we also seeregions of different attractorsin thesediagrams for which their
boundaryhasa Cantor-like fractal structure.This is due to the coexistenceof differentat-
tractors.

If the perturbing frequency, f , is smaller than the characteristicfrequency, fc, chaotic
oscillationswereeasilysuppressed,sincethelarge-sizedperiodicislandspresentedinFigure6
appearonly for f < fc. In fact, for f > fc, the only structuresin the parameterspaceare
line-shapedlines, indicating that thereare specific values of f to obtain periodic motion.
Generally, the driving frequenciesrequiredfor phase-lockingare closeto harmonicsof the
characteristicfrequency fc.

We determinedthreewaysthroughwhich periodicmotion appearsfor a suitablevariation
on thedriving parameters:two whenthedriven circuit hasa chaotictrajectoryand onewhen
it hasa quasi-periodictrajectory. Thesethreeways were newly classified accordingto the
way the frequency peaks(in thepower spectraof suchchaoticor quasi-periodictrajectories)
changetheir positionwith thedriving parametersvariation.

Thesethree ways must be consideredas the possiblescenariosfor the phase-locking.
Therefore,if one needsto suppresschaotic motion by applying a sinusoidal perturbation,
the identificationof oneof thesethreescenarios,by inspectingthepower spectraof a given
sinusoidally-driven system, permits to suitablyadjustthedriving parameterto obtainperiodic
motion.

The first scenariooccurswhenthedriven circuit presentsa trajectorywith many frequen-
cies harmonic to the perturbingfrequency f and different from the original characteristic
frequency fc. Thus,the region of the biggestperiod-oneisland in Figure6 hasan attractor
whoseall frequenciesfn aregivenby fn = (2n+1)f ; however, theonly significantfrequency
is f0 = f becauseits peakamplitudeis remarkablybiggerthantheothers.Thatmeans,in this
case,thecircuit responseto thedriving is typically linear. This and otherislandsthatappear
for f < fc show thepreservation of theperiodicattractorfor a large variationof thedriving
frequency and amplitude.We observed this kind of phase-locking(both,experimentally and
numerically)whenf / fc. A specialcaseiswhenf ≈ fc. In thiscase,aperiodicoscillation
(a period-onelimit cycle resemblinga circle) is obtainedwith the lowestamplitudeV . Ob-
viously, a periodicaldrivensystemis expectedto modulatewith theexternalfrequency if its
value iscloseto thenon-perturbedcharacteristicfrequency.

Theotherphase-lockingscenariois whentheresultingfrequenciesarecloseor harmonics
of fc and the peakof the driving frequency almost doesnot appearin the spectra.In this
case,thedriven circuit possessatrajectorythatshadowsanunstableperiodicorbit of thenon-
perturbedattractor. In otherwords,theperturbingfrequency f is closeto an harmonic of fc.
Numerically, wehave observed thatthis caseusuallyhappenswhenf is biggerthanfc.

The lastscenariooccurswhenperiodicmotion emergesfrom a quasi-periodicone.In this
case,the quasi-periodictrajectory evolves along a two-frequency torus, and, for a driving
parameter variation, the two-orbit componentsphase-lockand then periodic motion shows
up. The phase-locked two-frequency torusis responsiblefor the appearanceof the Arnold’s
tongues[10, 12] in the parameterspacediagrams aroundthe periodic islands.Therefore,as
for othersystems [22], Arnold’s tonguesonly appearbesideaperiodic island.

Analyzing the phenomenon of periodic entrainment of chaoticmotion [14, 23, 24] we
found an attractor that presentedin sequentialtime intervals (smaller than the perturbing
period)doubling routesto chaosand a time-reversedperiod-doublingbifurcations.In other
words,this trajectoryvisiteddifferentembeddedattractorsfoundin non-linearsystems[25].
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Finally, althoughweanalyzedsinusoidalperturbationsappliedto thedrivenDoubleScroll
circuit, we obtainedalso similar resultsapplyingotherperiodicalperturbations(astriangular
andsquarewaves, for example)to this circuit.
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