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Periodic driving of plasma turbulence
M. S. Baptista, I. L. Caldas, M. V. A. P. Heller, and A. A. Ferreira
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Tools to characterize three important characteristics of turbulence are proposed:
Structures-within-structures, intermittent amplitude bursting, and turbulence complexity. These
tools are applied to show that the injection of a rf wave into the plasma confined on the Tokamak
Chauffage Alfvén Bresilién ~TCABR! @R. M. O. Galvao, V. Bellintani, Jr., R. D. Bengtsonet al.,
Plasma Phys. Controlled Fusion43, A299 ~2001!# decreases plasma edge turbulence, although not
completely destroy it, by destroying the only two types of time structures found in the data. Both
structures present multiscaling spectra, with infinitely many possible scalings. So, according to this
analysis, complexity of this turbulence is mainly due to the multiscaling character of the oscillations.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1561612#
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I. INTRODUCTION

Turbulence is among one of the most interesting p
nomenon in physics, very common in life and yet not co
pletely understood.1–3 Some important tools contribute muc
for a good understanding of turbulence: The Reyno
number4 which can be used to measure the level of turb
lence, the scaling between the diffusivity of relative partic
and the length scale of a fluid,5 and the strong formal defi
nition of turbulence based on relative diffusion in terms
the averaged relative velocities of pairs of particles.6,7 In this
work we propose new tools that introduce a statistical
namical description of turbulence that can improve the
derstanding of turbulence.

We study magnetohydrodynamic plasma turbulence
described in Ref. 8. The use of only traditional plasma ph
ics, as pointed out in Ref. 9, is not sufficient to explain t
experiments in fusion plasma confinement, as, for exam
the observed particle transport.10 So, like in Refs. 11–15, we
propose new tools to improve the understanding of plas
turbulence, which should be, in principle, applicable to a
type of turbulent system, once plasma turbulence seem
have all the characteristics of fluid turbulence. One of
interests in studying plasma edge turbulence is that, in
case one wants to construct a controlled fusion reactor fe
plasma, turbulence should be avoided, once it is respons
to increase particle transport that drives particles out of
plasma. Although the main reason of injecting rf Alfve´n
wave into the plasma cavity is to increase plasma temp
ture, our intention, in this paper, is to understand, from
dynamical point of view, the effect this wave has on t
structures present in the plasma edge turbulence, and its
sequences for the level of it.

For that, we propose tools that identify modifications
the characteristics of three properties of turbulence.The
structures-within-structures acting on each other in differe
time scales, the typicalintermittent amplitude-bursting of th
turbulent oscillations, and itscomplexity~being quantified by
the amount of predictability one can get from the data!. To
characterize the action of the structures acting on differ
1281070-664X/2003/10(5)/1283/8/$20.00
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time scales, we look into self-similarities in the data. W
further adapt the multifractal formalism proposed in Ref.
for its application in time series. That will give us all th
possible self-similar exponents in the time series, which w
enable us to fully characterize the multiscaling of the da
To characterize the intermittent amplitude-bursting,
check for phase synchronization between positive-peak
negative-peak amplitudes, and to characterize its comple
we calculate the inverse of the N-Gramm entropy, of a sy
bolic sequence obtained from the data, which measures
amount of predictability obtained observing a certain amo
of data.

In our proposed time multiscaling analysis we can ide
tify clearly only two structures. One is a low-periodsmall
structure~with time dimensions of less than 20ms!, and the
other is a high-periodlarge structure~with time dimensions
higher than 200ms. Considering all the other analysis, o
main result, on the acting of the wave, is that the wave a
destructively in both structures.

The contents of the paper are as follows. In Sec. II,
describe the experiment as well as the turbulent data. In
III, we describe the proposed time multiscaling formalis
which unravels the structures present in the data. In Sec
we show that the phase synchronization between the pos
and negative peaks gets stronger when the wave is in
duced. In Sec. V, we make a symbolic analysis of the d
showing the increase of the predictability when the wave
injected. Finally, in Sec. VI, we present the conclusions.

II. THE DATA

The experiment is performed in a hydrogen plasma
the Tokamak Chauffage Alfve´n Bresilién ~TCABR!17 ~major
radiusR050.61 m and minor radiusa50.18 m!. The plasma
currentI p is 100 kA, the current duration 100 ms, the toro
dal magnetic fieldBt is 1.1 T. In order to study turbulenc
changes introduced by Alfve´n wave injection, we keep the r
power during 10 ms in the range of 40 kW at 3.6 MHz, f
excitation of modesm/n51/4, wherem andn are the poloi-
dal and toroidal mode numbers, respectively. The data
3 © 2003 American Institute of Physics
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1284 Phys. Plasmas, Vol. 10, No. 5, May 2003 Baptista et al.
collected with a multi-pin probe~for more details see Ref
12! that measures the fluctuations on the floating potentia
the scrape-off layer~outer region of the plasma chambe!,
Vn . Figure 1 shows the floating potential for one comple
discharge and for selected intervals.

The variable of analysis is the floating potential diffe
ence,Rn , defined as

Rn5~Vn112Vn!/s, ~1!

whereRn is normalized by the standard deviations of Vn .
This variable is shown in Fig. 2 without~A! and with the rf
injection ~B!. The intermittent peak-to-peak bursting is mo
evident without rf injection. The size of the data to be an
lyzed, i.e., the maximum value forn is N510000.

In Fig. 3 we show the probability distribution functio
~PDF! of Rn without ~A! and with the wave injection~B!.
Without the wave,r(Rn) has a Poisson decay and large a
plitude events indicating a power-law tail, as it is expec

FIG. 1. ~A! Floating potential for the complete discharge and~B! the se-
lected pieces~without and with Alfvén wave injection! of the data for the
analysis. The sampling time is 1ms.

FIG. 2. Rn without wave~A! and with wave~B!. Intermittent peak-to-peak
bursting is reduced when the wave is injected.
Downloaded 18 Mar 2008 to 143.107.134.77. Redistribution subject to AIP
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from the measured plasma turbulence.11,13–15With the wave,
the distribution kurtosis changes to 3.29, a value near the
obtained for a Gaussian distribution.

III. STRUCTURES-WITHIN-STRUCTURES

Turbulence has organized~coherent! structures that are
observed both in time and in space. These structures ca
characterized by either their time scales or space scales.
work is dedicated to identify such structures in the time d
main. That is done finding distributions of floating potent
fluctuations that are self-similar for a given time interva
Thus, we search for self-similar patterns in the data, as
change the time scale within which we observe the fluct
tions, i.e., we search for a scaling of the probability distrib
tion of the floating potential as we change the time scale
the observation.

Due to the short duration of the discharge, instead
observing the floating potential eachm samplings, we aver-
age the signal within overlapping time windows,j, of sizem.
Then, we introduce an average positive value of the float
potential over different time scales

G j~m!5
1

k (
i 51

k

Ri , j
1 , ~2!

whereRi , j
1 are thek values bigger than the average value

Rn within the windowj ~with m points andk,m). Once we
work with overlapping time windows, for a chosenm we can
haveN2m windows. The reason for introducing the variab
G j (m) in Eq. ~2! is that, for the plasma edge turbulence, t
PDF of this variable is a Poisson-type and should be cha
terized by its average positive value as shown in Refs. 11
13–15.

A PDF r@G j (m)# is said to be self-similar ifr@G j (m)#
}mDr@m2DG j (m)# ~see Refs. 18–20!, whereD is the self-
similar parameter. A PDF is defined to be multiscaling
r@G j (m)q#}mDqr@m2DqG j (m)#, whereDq varies nontrivi-
ally with q, and qPR. For simplicity, instead of working
with the properties of the distributionr@G j (m)q#, we work
with the mean^G j (m)q&5 @1/(N2m)# ( j 51

N2mG j (m)q. This
mean can be associated to the width of the distribution

FIG. 3. Probability distribution for the data without~A! Alfvén wave and
with ~B!, shown in Fig. 1~B!.
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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1285Phys. Plasmas, Vol. 10, No. 5, May 2003 Periodic driving of plasma turbulence
positive values ofRn(m) defined as (Vn1m2Vn)/s. A con-
sequence of having a multiscaling self-similar PDF is that
the characteristics of the PDF are also multiscaling s
similar, and therefore

^G j~m!q&}m2Dq, ~3!

whereDq is the generalized scaling characterizing the e
lution of theq-order moment of the distributionr@G j (m)q#.
Note thatDq5D13q for a one-scaling probability distribu
tion r@G j (m)#, andDqÞD13q, for a multiscaling distribu-
tion. Moreover, the exponentDq is equivalent tot(q), first
introduced in Ref. 21, later in Refs. 22 and 23. In Ref. 2
given a measurex(m,q) of a set, t(q) is the exponent
x(m,q)}et(q), wheree is some small interval in the set.

So, to understand how theqth moment ofRn(m) evolves
with m we show in Fig. 4 hoŵ G j (m)q& evolves withm,
where we chooseq523.0. We see that for both data~with
and without the wave injection! there are mainly two region
of self-similarity, for all q, which basically means that Eq
~3! is valid for these time domains. Once, Eq.~3! is a power-
law, it preserves the form within each time domains. Th
the dynamics responsible for such invariance can be f
characterized by the exponentsDq . Such dynamics are th
result of some time structure.

Although the knowledge of wave number power spe
trum requires measurements in different positions, there
correlations between the space and time power spectr
structures propagating inside the plasma. In this sense
time scales of structures found in this work could give so
insight of space scales of these structures. In fact, as
described in Ref. 20, there is a connection between the s
tures found in time domain~self-similar regions! and the
structures present in the space domain. So, the short
self-similar regimes are consequence of the existence
high-frequency structures that are also small structu
within the space domain. Similarly, the large time se
similar regimes are consequence of low-frequency struct

FIG. 4. ^G (m)
q & for the data without wave injection~A! and with wave

injection ~B! with respect tom, for q523.0. Two self-similar regions ap-
pear. One in a short time interval region~small structure! and the other for
large time windows~large structures!.
Downloaded 18 Mar 2008 to 143.107.134.77. Redistribution subject to AIP
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that are also large structures in the space domain. There
identifying the time scale of the existing structures means
identify the space-scale of these structures.

Thus, in Fig. 4 we show the value of^G(m)q& for the
data without wave injection~A! and with wave injection~B!.
One can see two types of structures. One is a short-pe
~with time dimensions smaller than 30ms! that we associate
to small structurein the space domain, and the other is
high-period~with time dimensions higher than 100ms! that
we associate to alarge structurein the time domain. These
two time regions vary slightly in length~windows of length
m) and position as we changeq, and they are associated wit
two types of structures found in the data.

A. Generalized local and global time exponents

To reveal how nonlinearDq is with respect toq, and
therefore, to check if̂ G(m)q& is either mono or multi-
fractal, we just analyze if the derivative ofDq with respect to
q (a), is either constant or a nontrivial curve

a5
dDq

dq
. ~4!

The exponenta is equivalent to the singularity exponen
a j introduced in Refs. 16, 25, and 26 or to the ‘‘pointwis
dimension’’~see a discussion of this equivalence in Ref. 2!,
which is a spatially local exponent. So, like in those work
we also considera to be a local measure, that in our case
a measure within a localized time windows. Differently fro
the works of Refs. 16, 25, and 26, in which the local exp
nent is calculated as a local space interval shrinks to zero
our time formalism we interpreta as a measure of a particu
lar window j, as its sizem increases.

We also define the exponentf a by

f a5qa2Dq , ~5!

which measures higher order terms in the expansion ofDq ,
that differs from (dDq /dq) q. So, it measures how man
different scalings we have in̂G(m)q&. For example, ifDq is
monofractal,f a50 for all a, and therefore, is punctual an
monofractal. In the case we have multifractal system,f a is a
curve with respect toa, and we have an infinite spectrum o
values. The interval ofa values for whichf a exists is a
measure of the number of different scalings the system h
So, the exponentf a is the characteristic exponent of the s
of valuesa, and the curve off a versusa we call spectraf a .

In the multifractal formalism of Ref. 16, assuming th
G(m) is a summation over the probabilities of finding poin
within some interval, from a given set of points,D0 is the
capacity dimension,27 equivalent to the Hausdorf
dimension.28 These metric dimensions are also known by t
generic term of fractal dimension coined by Mandelbrot
Ref. 29 referring to the Hausdorff dimension of some me
sured variable, meaning that such measurement could be
bally characterized by a noninteger power-law exponent.D1

is the information dimension,30 equivalent to the pointwise
dimension introduced in Ref. 31. In the present propositi
Dq should be understood as the generalized exponent o
q-moments of the time measurementG(m), which in this
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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case characterizes the probability distributionr@G(m)q#. So,
while Dq in Ref. 23 describes spatial properties of points
a set, in the present workDq describes the time evolution o
the distribution of the ensemble( j 51

N2mG j (m)q. Similarly to
the work of Ref. 23, whereDq characterizes global and un
versal invariants of the set, in the present workDq describes
global invariants of the distribution of this ensemble. To
from this formalism to the one proposed in the generaliz
dimensions,G should describe probabilities densities of t
data as the space shrinks to zero. In the present case
space in which the data live does not have to be defined.
is attracting to turbulent data analysis, because the spac
turbulent systems are usually considered to be either
known, or higher dimensional, and thus difficult to deal wi
We refer toDq as thegeneralized global time exponent.

B. Time multi-exponents analysis of the data

Following, we describe results of the time multiscalin
exponents analysis of the data, for largem that we choose it
to be m.200. Therefore, such analysis tries to understa
what happens to the large time-domain structures, assoc
with the large space-domain structures. In that case, the
eralized global exponentDq is shown in Fig. 5 with and
without the wave, forq within the interval@210,10#. These
exponents are obtained by fitting the curve^G(m)& versusm.
The existence of such continuous and smooth curve forDq

versusq shows that the data are self-similar for that tim
domain, and consequently, Eq.~3! is valid. From this figure,
with and without wave the data is self-similar. We find mul
similarity in both data, as one can check by the existenc
a nonlinear curve ofa with respect toq, shown in Fig. 6.
Finally, a measurement of how much multi-similar the data
given by the interval range~bandwidth! for which the func-
tion f a exists. One can see in Fig. 7 that, for the data w
wave, the bandwidth in thea variable is smaller than withou
the wave. That means that the wave destroy many struct
that were responsible for making the data to present a la
number of exponents, and consequently a higher comple
curve ofa versusq.

Another range ofm we find self-similarity in the func-
tion ^G(m)& is for small values ofm, that is m,20. The
results are shown in Figs. 8 and 9, and they are similar to

FIG. 5. Global exponentDq(q) with respect toq, showing the average
scalings for large time,m.200.
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ones presented in Figs. 5–7. In Figs. 8–10, we consider o
positive values ofq due to numerical problems that arise
the sum of Eq.~2! if q,0, for m,20. It is worth mentioning
that the bandwidths~for both data sets, with and without th
wave! of a values for this time domain is larger than th
ones found in the large time-domain~Figs. 5–7!. That means
that the small structures, should be more complex than
large structures.

IV. PEAK-TO-PEAK SYNCHRONIZATION

Turbulence is characterized by an intermittent behav
between explosions of large amplitude and medium osc
tions. Studying the phase between turbulent peak-to-peak
cillations enables us to both characterize turbulence an
understand the effect of the wave injected on the plasma

FIG. 6. Local exponenta(q) with respect toq, for large time,m.200.

FIG. 7. f a spectra for large time,m.200. The wave is responsible for
shrinkage of the spectra which means that the large structures are b
destroyed.
 license or copyright; see http://pop.aip.org/pop/copyright.jsp



f a
g
es

n
h
v

le
ob
p

f

s,
That
for

lic
arac-
ex-
or

c-
this
hin-
the

a
eing
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For that, we analyze the standard deviations of the
probability distribution,r@e(t)#, for the differencee(t)

e~ t !5uf1~ t !2f2~ t !umodp, ~6!

wheref1(t) is the phase of the seriess1(t),32 constructed
by the values ofRn bigger thand/2, andf2(t) is the phase
of the seriess2(t), constructed by the values ofRn smaller
than 2d/2. We show in Fig. 11 an example ofs1(t) and
s2(t), and in Fig. 12 ass changes with the gapd. Once
turbulence is characterized by the existence of a sum o
infinite number of phases, we do the same analysis leadin
Fig. 12, for Rn as it is smoothed out by running averag
within windows of sizeT; hereT,20. With that procedure
we want to eliminate from the data possible fast oscillatio
which could affect the reliance of the phase analysis. T
result is similar to the one obtained without the running a
erage, and thus, we can state that the wave is responsib
synchronizing the peak-to-peak oscillations. In fact, we
serve that the data with the wave do not present large am
tude bursting, as one can see from Fig. 2.

FIG. 8. Global exponentDq(q) with respect toq, showing the average
scalings for short time,m,20. Only positives values ofq are considered.

FIG. 9. Local exponenta(q) with respect toq, for short time,m,20. Only
positive values ofq are considered.
Downloaded 18 Mar 2008 to 143.107.134.77. Redistribution subject to AIP
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V. SYMBOLIC MAPPING, STRUCTURES-WITHIN-
STRUCTURES, REGULARITY, AND PREDICTABILITY

In a symbolic analysis we do not work with windows o
very largem. Instead, we symbolizeRn by associating sym-
bols to its values, working with small-length time-window
and so, generating short length sequences of symbols.
type of analysis should be used to search for structures
short-time windows. The structures found in this symbo
analysis should be considered to be the ones that are ch
terized, in the previous sections, by the global and local
ponent, for smallm. So, we make a microscopical search f
structures within short-time windows of 12ms (m512).
With this analysis we also find two types of symbolic stru
tures, which we classify as large and small. Therefore,
result should be a consequence of the structures-wit
structures characteristic of turbulence. So, we symbolize
data with the symbol ‘‘0,’’ ifRn is negative, and ‘‘1’’ if it is

FIG. 10. f a spectra for short time,m,20. The wave is responsible for
shrinkage of the spectra which means that the small structures are b
destroyed. Only positive values ofq are considered.

FIG. 11. s1(t) are the values ofRn which are bigger thand/2, ands2(t) are
the values ofRn which are smaller than2d/2.
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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1288 Phys. Plasmas, Vol. 10, No. 5, May 2003 Baptista et al.
positive. We construct the symbolic sequenceSn , that is
separated in overlapping regions of 12 symbols each. To t
this problem in a Cartesian space, we convert each groui,
of 12 symbols, that we refer to it as a 12-bit sequence, in
decimal, di , by using the decimal-binary conversion rul
di5( j 51

12 Sj32(122 j ). From the decimalsdi , we construct
the symbolic mapping,di versusdi 11 , shown in Figs. 13~A!
and 13~B!, where Fig. 13~A! is for the discharge without the
wave injection, and Fig. 13~B! with the wave. The blank
regions of Fig. 13~B! corresponds to forbidden sequence
and are, in its majority, composed by repeating sequence
the same symbol. Therefore, small-lengthed cyclic seque
of bits as ‘‘01010101 . . . ’’ are very common. These particu
lar symbolic sequences represent a patterned time oscilla
Symbolic sequences like this previous one, with typica
low-period patterns, are a consequence of a low-period t
oscillation, and therefore high frequency, which as done p
viously, we believe is consequence of a small spatial str
ture. On the other hand, long-period symbolic patterns,
for example ‘‘111111111111,’’ or ‘‘000000111111,’’ are a
consequence of a large-period time oscillation, which we

FIG. 12. Dependence ofs@e# on d for the plasma with and without the
Alfvén wave. The wave injection makess@e(t)# to get smaller, which
means that the phase synchronization between the positive and the ne
oscillations increases.

FIG. 13. The symbolic map with~A! and without~B! the wave injection.
Blank regions in~B! represent the symbolic large structures that are
stroyed by the wave injection.
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lieve to be a consequence of a large spatial structure. Th
symbolic large structures are represented bydj decimal
which correspond to horizontal and vertical lines, position
at 1, 1024, 2048, 3076, and 4096. These lines positions a
the blank regions of the mapping. So, patterns with lon
period symbolic structures are unlikely to be found when
wave is injected in the plasma. Therefore, although the w
acts destructively in the small time-structures (m,20! as it
was observed in the previous sections, symbolic low-per
time structures seems not to be so affected by the wave
is the case for symbolic large-period time structures. A
consequence, the remaininga bandwidth after the wave in
jection, in Fig. 10, should be mainly due to this symbo
low-period patterns also consequence of high-frequency t
oscillations.

More powerful than only detecting patterns in the sy
bolic sequences, the symbolic analysis can also give us
idea of the complexity of the data from its entropy and p
dictability. For this complexity quantification, we follow th
treatment described in Ref. 33. So, the Shannon entropy34 of
words of lengthm are given by

Hm52( pi
~m! log pi

~m! , ~7!

where the summation has to be carried out over all wo
with pi

(m).0. The entropiesHm measure the amount of in
formation contained in a word of lengthm. From Eq.~7! we
define the conditional~dynamic! entropyhm as the average
information necessary to predict the next symbol, given
precedingm symbols, by

hm5Hm112Hm , ~8!

with h05H1 . The entropy of the source is the average inf
mation content of one symbol, or the information necess
to predict the next symbol when being informed about
complete pre-history of the system

h5 lim
n→`

hm5 lim
m→`

Hm

m
. ~9!

Note that when Eq.~9! is used to calculate the source e
tropy of a symbolic sequence generated from a dynam
system, with a symbolization of the trajectory through a M
kov partition, then, Eq.~9! is the Kolmogorov–Sinai entropy
of the trajectory, as shown in Ref. 35. In the case
Kolmogorov–Sinai is positive, that means the trajectory
chaotic. In the present analysis, however, we interpret
finding of ah positive as a measure of complexity, i.e., t
more positiveh is, the more complex are the data. While E
~9! should be used to have a global characterization of co
plexity, Eq. ~8! should be used to have an ‘‘instantaneou
characterization of complexity. From the decay ofhm with
respect tom we can understand how much order~fast decay!
or disorder~slow decay! the data have. The maximum valu
h can assume is ln(2).

tive

-
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1289Phys. Plasmas, Vol. 10, No. 5, May 2003 Periodic driving of plasma turbulence
The ability to predict,P, is defined as33

P512hm . ~10!

So, we obtainh50.53 for data with the wave andh50.66
for data without the wave. Note that the value forh, for the
data without the wave, is close to the maximum value, wh
agrees with the believed random-like character of turbulen

In Fig. 14 we show the conditional entropy which
smaller for allm for the data with the wave. That means, t
uncertainty of the bitg, analyzing the previousg2m sym-
bols in the sequences is smaller with the injection of
wave. Also, the slow decay for smallm shows that the data
have a very complex characteristic, nontypical of chao
system, that have a faster decay. Finally, in Fig. 15 we sh
the ability of prediction for a givenm and we see that the
wave introduces into the turbulent data more predictabi
In Figs. 14 and 15, the abrupt change in the slope of
functions form higher than 8 is due to the insufficient num
ber of experimental data.

FIG. 14. Conditional entropy for data with~A! and without~B! the wave.
The faster decay of this entropy with respect tom indicates that the wave
injection introduces regularity and predictability in turbulence.

FIG. 15. Predictability for data with~A! and without~B! the wave. Clearly,
the wave injection increases the predictability of the data.
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VI. CONCLUSION

The wave injection decreases turbulence by destroy
both the large~time windows of@200,500#ms! and the low
period structures~time windows of@1,20#ms!. However, for
the low-period structures we have observed by the symb
analysis that the higher-frequency time oscillations are m
resistant than the lower-frequency time oscillations in
presence of the wave injection. A direct consequence of
decrease of the turbulence level, due to the wave injection
the increase in the regularity and predictability of the da
Regularity is indicated by the smoothing of the data, ph
synchronization between the positive and negative peak
cillations, the smaller value of the source entropy, and
faster decay of the conditional entropy.

These conclusions are a consequence of an integr
comparison of the results of our proposed tools of analy
which identifies the time changes caused by the wave in
structures present in the data. With the visual inspection
the normalized data and the phase difference between p
to-peak oscillations we show the plasma edge turbulence
a typical peak-to-peak intermittent oscillation~coupling be-
tween thelarge structureand thesmall structure! which is
destroyed by the wave, resulting in more uniform data. T
probability distribution for the data without the wave inje
tion is a typical turbulent Poisson-type distribution11,13–15

that with the wave turns into a Gaussian-type. However,
shown by our local and global multiscalings analysis, th
are two time self-similar regions for both data. Which mea
that independently of the distribution found, its time evol
tion happens according to multiscalings rules, and the
fore, not randomly. Finally, with the symbolic analysis, w
show that the wave creates forbidden zones in the symb
mapping which means that symbolic structures
destroyed.

Therefore, our tools of analysis not only give us a go
understanding of the driving of resonant rf wave in t
plasma edge turbulence, but also give a criteria for the c
acterization of the turbulent level. The higher turbulence
the higher peak-to-peak intermittent oscillations are,
wider the f a spectra are, the less phase-synchronized
positive and negative peak oscillations are, the more dens
the symbolic mapping is, and the more unpredictable
data are. Finally, our tools could be used in a real-time
periment to detect if a flow is about to become more turb
lent, just by showing that the measured quantities propo
with these tools are changing in time, heading to values
characterize a stronger turbulent state.

The finding of only two main structures, on the analyz
data, could be related with the theory described in Ref.
which describes the onset of turbulence from the breakup
a two-frequency torus.
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