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Periodic driving of plasma turbulence
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Tools to characterize three important characteristics of turbulence are proposed:
Structures-within-structures, intermittent amplitude bursting, and turbulence complexity. These
tools are applied to show that the injection of a rf wave into the plasma confined on the Tokamak
Chauffage Alfve Bresilien (TCABR) [R. M. O. Galvao, V. Bellintani, Jr., R. D. Bengtsen al.,
Plasma Phys. Controlled Fusid3, A299 (2001)] decreases plasma edge turbulence, although not
completely destroy it, by destroying the only two types of time structures found in the data. Both
structures present multiscaling spectra, with infinitely many possible scalings. So, according to this
analysis, complexity of this turbulence is mainly due to the multiscaling character of the oscillations.
© 2003 American Institute of Physic§DOI: 10.1063/1.1561612

I. INTRODUCTION time scales, we look into self-similarities in the data. We
further adapt the multifractal formalism proposed in Ref. 16

Turbulence is among one of the most interesting phefor its application in time series. That will give us all the
nomenon in physics, very common in life and yet not com-possible self-similar exponents in the time series, which will
pletely understood-® Some important tools contribute much enable us to fully characterize the multiscaling of the data.
for a good understanding of turbulence: The ReynoldsTo characterize the intermittent amplitude-bursting, we
numbef which can be used to measure the level of turbucheck for phase synchronization between positive-peak and
lence, the scaling between the diffusivity of relative particlesnegative-peak amplitudes, and to characterize its complexity
and the length scale of a flutddand the strong formal defi- we calculate the inverse of the N-Gramm entropy, of a sym-
nition of turbulence based on relative diffusion in terms ofbolic sequence obtained from the data, which measures the
the averaged relative velocities of pairs of parti®ésn this  amount of predictability obtained observing a certain amount
work we propose new tools that introduce a statistical dy-of data.
namical description of turbulence that can improve the un-  In our proposed time multiscaling analysis we can iden-
derstanding of turbulence. tify clearly only two structures. One is a low-pericall

We study magnetohydrodynamic plasma turbulence astructure(with time dimensions of less than 26s), and the
described in Ref. 8. The use of only traditional plasma physether is a high-periodarge structure(with time dimensions
ics, as pointed out in Ref. 9, is not sufficient to explain thehigher than 20Qus. Considering all the other analysis, our
experiments in fusion plasma confinement, as, for examplenain result, on the acting of the wave, is that the wave acts
the observed particle transpdftSo, like in Refs. 11-15, we destructively in both structures.
propose new tools to improve the understanding of plasma The contents of the paper are as follows. In Sec. Il, we
turbulence, which should be, in principle, applicable to anydescribe the experiment as well as the turbulent data. In Sec.
type of turbulent system, once plasma turbulence seems itl, we describe the proposed time multiscaling formalism
have all the characteristics of fluid turbulence. One of thewhich unravels the structures present in the data. In Sec. 1V,
interests in studying plasma edge turbulence is that, in theve show that the phase synchronization between the positive
case one wants to construct a controlled fusion reactor fed bgnd negative peaks gets stronger when the wave is intro-
plasma, turbulence should be avoided, once it is responsiblguced. In Sec. V, we make a symbolic analysis of the data,
to increase particle transport that drives particles out of thehowing the increase of the predictability when the wave is
plasma. Although the main reason of injecting rf Alfve injected. Finally, in Sec. VI, we present the conclusions.
wave into the plasma cavity is to increase plasma tempera-
ture, our |ntentlon, m_thls paper, is to gnderstand, from thql_ THE DATA
dynamical point of view, the effect this wave has on the
structures present in the plasma edge turbulence, and its con- The experiment is performed in a hydrogen plasma in
sequences for the level of it. the Tokamak Chauffage AlfveBresilien (TCABR)*' (major

For that, we propose tools that identify modifications inradiusRy=0.61 m and minor radius=0.18 n). The plasma
the characteristics of three properties of turbulentee  currentl, is 100 kA, the current duration 100 ms, the toroi-
structures-within-structures acting on each other in differentdal magnetic fieldB; is 1.1 T. In order to study turbulence
time scalesthe typicalintermittent amplitude-bursting of the changes introduced by Alfwewave injection, we keep the rf
turbulent oscillationsand itscomplexity(being quantified by  power during 10 ms in the range of 40 kW at 3.6 MHz, for
the amount of predictability one can get from the glaf@  excitation of modesn/n=1/4, wherem andn are the poloi-
characterize the action of the structures acting on differentlal and toroidal mode numbers, respectively. The data are
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FIG. 1. (A) Floating potential for the complete discharge dBd the se-
lected piecesgwithout and with Alfven wave injection of the data for the 3 15 n
analysis. The sampling time is/Is. from the measured plasma turbuledt&>with the wave,

the distribution kurtosis changes to 3.29, a value near the one
obtained for a Gaussian distribution.

collected with a multi-pin pro_beéfor more deta_ils see R(_af. Il STRUCTURES-WITHIN-STRUCTURES
12) that measures the fluctuations on the floating potential in

the scrape-off layefouter region of the plasma chamber Turbulence has organizedoherent structures that are
V,,. Figure 1 shows the floating potential for one comp|eteobserved both in time and in space. These structures can be
discharge and for selected intervals. characterized by either their time scales or space scales. Our
The variable of analysis is the floating potential differ- work is dedicated to identify such structures in the time do-
ence,R,, defined as main. That is done finding distributions of floating potential
fluctuations that are self-similar for a given time interval.
Ra=(Vni1—Vy)lo, (1) Thus, we search for self-similar patterns in the data, as we

change the time scale within which we observe the fluctua-
tions, i.e., we search for a scaling of the probability distribu-

This variable is shown in Fig. 2 witho@f) and with the rf . . . .
ST . . L tion of the floating potential as we change the time scale of
injection (B). The intermittent peak-to-peak bursting is more the observation

evident without rf injection. The size of the data to be ana- Due to the short duration of the discharge, instead of

lyzed, i.e., the maximum value foris N=10000. observing the floating potential eaclhsamplings, we aver-
In Fig. 3 we show the probability distribution function 9 ating p S npings, We
age the signal within overlapping time windovysof sizem.

(PDPF) of R, without (A) and with the wave injectioriB). - o .
Without the wavep(R,) has a Poisson decay and large am_Then, we introduce an average positive value of the floating

. SR . I otential over different time scales
plitude events indicating a power-law tail, as it is expecteop

whereR,, is normalized by the standard deviationof V,,.

1 k
rj(m):Ei;Rifj, 2

whereRﬁlj are thek values bigger than the average value of
R, within the windowj (with m points andk<<m). Once we
work with overlapping time windows, for a chosenwe can
haveN—m windows. The reason for introducing the variable

| I'j(m) in Eq. (2) is that, for the plasma edge turbulence, the
0 20'00 : 40'00 : 60|00 : 80|00 10000 PDF of th|_s variable is a F_’(_Jlsson-type and sho_uld be charac-
12— : : : : r . : I(B) ] t1e3r|z§g by its average positive value as shown in Refs. 11 and

oL . A PDF p[I'j(m)] is said to be self-similar ip[I';(m)]
o OW «mPp[m~PT;(m)] (see Refs. 18-20whereD is the self-
6 . similar parameter. A PDF is defined to be multiscaling if
T p[T';(m)4]ecmPap[ m~Pal’;(m)], whereD,, varies nontrivi-
0 2000 4000 6000 8000 10000 ally with g, andge 9. For simplicity, instead of working
n(x1us) with the properties of the distributiop[l“’\i(m)q], we work
FIG. 2. R, without wave(A) and with wave(B). Intermittent peak-to-peak  With the mean(I’;(m)%) = [1/(N—m)] 2T (m)%. This
bursting is reduced when the wave is injected. mean can be associated to the width of the distribution of
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 SLEERL A ALL 7 T W) that are also large structures in the space domain. Therefore,
(A) ] identifying the time scale of the existing structures means to
D,=0.07102 . identify the space-scale of these structures.
LT ———— D =0.01907 | Thus, in Fig. 4 we show the value ¢f'(m)9%) for the
- | - - | ] data without wave injectiofA) and with wave injectior{B).
R Ll P e w iyl i i wiiig One can see two types of structures. One is a short-period
E = m % (with time dimensions smaller than 36) that we associate
(V[ — L ————g to small structurein the space domain, and the other is a
E (B) 1 high-period(with time dimensions higher than 1Qs) that
r= D =1.17510 ] . - . .
ro T we associate to krge structurein the time domain. These
F i D,=0.02555 3 two time regions vary slightly in lengttwindows of length
i . ] m) and position as we changgand they are associated with
| SR e — iy two types of structures found in the data.

m

. o _ A. Generalized local and global time exponents
FIG. 4. (T'(,) for the data without wave injectiofA) and with wave

injection (B) with respect tom, for = —3.0. Two self-similar regions ap- To reveal how nonlineabD, is with respect tog, and

pear. One in a short time interval regiggmall structurgand the other for  therefore, to check ik T'(m)%) is either mono or multi-

large time windows(large structures fractal, we just analyze if the derivative Bf, with respect to
g (a), is either constant or a nontrivial curve

positive values oR,(m) defined asV,,+m— Vn)/o. A con- a= %
sequence of having a multiscaling self-similar PDF is that all dg
the characteristics of the PDF are also multiscaling self-
similar, and therefore

4

The exponenty is equivalent to the singularity exponent
a@; introduced in Refs. 16, 25, and 26 or to the “pointwise
dimension”(see a discussion of this equivalence in Ref), 24
<Fj(m)q>°<m7DQ, 3 whichis a spatially local exponent. So, like in those works,
we also considew to be a local measure, that in our case is
whereD, is the generalized scaling characterizing the evo-a measure within a localized time windows. Differently from
lution of theg-order moment of the distributiop[ I';(m)]. the works of Refs. 16, 25, and 26, in which the local expo-
Note thatD =D, X q for a one-scaling probability distribu- nent is calculated as a local space interval shrinks to zero, in
tion p[I';(m)], andD,# D1 X q, for a multiscaling distribu-  our time formalism we interpret as a measure of a particu-
tion. Moreover, the exponem is equivalent tor(q), first  lar windowj, as its sizem increases.
introduced in Ref. 21, later in Refs. 22 and 23. In Ref. 23,  We also define the exponefy by
given a measurey(m,q) of a set, 7(q) is the exponent
x(m,q) €™ wheree is some small interval in the set. fa=qa=Dy, ®)
So, to understand how tiggh moment ofR,(m) evolves  which measures higher order terms in the expansioD of
with m we show in Fig. 4 how(I'j(m)%) evolves withm,  that differs from ¢ID4/dq)q. So, it measures how many
where we choosg=—3.0. We see that for both datwith  different scalings we have 1" (m)%). For example, iD is
and without the wave injectigrihere are mainly two regions monofractal,f ,=0 for all @, and therefore, is punctual and
of self-similarity, for all g, which basically means that Eq. monofractal. In the case we have multifractal systépmis a
(3) is valid for these time domains. Once, E8) is a power-  curve with respect tar, and we have an infinite spectrum of
law, it preserves the form within each time domains. Thusyalues. The interval oftx values for whichf, exists is a
the dynamics responsible for such invariance can be fullymeasure of the number of different scalings the system have.
characterized by the exponerids,. Such dynamics are the So, the exponent, is the characteristic exponent of the set
result of some time structure. of valuesa, and the curve of , versusa we call spectrd , .
Although the knowledge of wave number power spec-  In the multifractal formalism of Ref. 16, assuming that
trum requires measurements in different positions, there arE(m) is a summation over the probabilities of finding points,
correlations between the space and time power spectra @fithin some interval, from a given set of poinf3, is the
structures propagating inside the plasma. In this sense themapacity dimensiod’ equivalent to the Hausdorff
time scales of structures found in this work could give somedimensior?® These metric dimensions are also known by the
insight of space scales of these structures. In fact, as alggeneric term of fractal dimension coined by Mandelbrot in
described in Ref. 20, there is a connection between the stru&kef. 29 referring to the Hausdorff dimension of some mea-
tures found in time domairself-similar regions and the sured variable, meaning that such measurement could be glo-
structures present in the space domain. So, the short timaally characterized by a noninteger power-law exponent.
self-similar regimes are consequence of the existence a$ the information dimensio#f, equivalent to the pointwise
high-frequency structures that are also small structuredimension introduced in Ref. 31. In the present proposition,
within the space domain. Similarly, the large time self-D, should be understood as the generalized exponent of the
similar regimes are consequence of low-frequency structuregmoments of the time measuremdnfm), which in this
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scalings for large timem>200. .

case characterizes the probablllty dIStrIbut,[([If(m)q] SO, FIG. 6. Local exponen&(q) with respect tag, for large time,m>200.

while D in Ref. 23 describes spatial properties of points in

a set, in the present woliR, describes the time evolution of o _ _

the distribution of the ensembt&};"T';(m). Similarly to ~ Ones presented in Figs. 5-7. In Figs. 810, we consider only

the work of Ref. 23, wher®, characterizes global and uni- positive values o_t1 due to numerical problems that_an_se in

versal invariants of the set, in the present wbrkdescribes ~the sum of Eq(2) if g<0, form<20. Itis worth mentioning

global invariants of the distribution of this ensemble. To gothat the bandwidthgor both data sets, with and without the

from this formalism to the one proposed in the generalizegv@ve of a values for this time domain is larger than the

dimensions]" should describe probabilities densities of the ©Nes found in the large time-domalifigs. 5-7. That means

data as the space shrinks to zero. In the present case, tfat the small structures, should be more complex than the

space in which the data live does not have to be defined. Thigrge structures.

is attracting to turbulent data analysis, because the space of

turbulent systems_are L!sually considered_ to be either_ Uy PEAK-TO-PEAK SYNCHRONIZATION

known, or higher dimensional, and thus difficult to deal with.

We refer toD as thegeneralized global time exponent Turbulence is characterized by an intermittent behavior

between explosions of large amplitude and medium oscilla-

tions. Studying the phase between turbulent peak-to-peak os-
Following, we describe results of the time multiscaling cillations enables us to both characterize turbulence and to

exponents analysis of the data, for largehat we choose it understand the effect of the wave injected on the plasma.

to be m>200. Therefore, such analysis tries to understand

what happens to the large time-domain structures, associated

B. Time multi-exponents analysis of the data

with the large space-domain structures. In that case, the ger — without wave
eralized global exponer, is shown in Fig. 5 with and — with wave
without the wave, foig within the intervall —10,10. These 0 . T T '

exponents are obtained by fitting the cut¥gm)) versusm. L
The existence of such continuous and smooth curveDfpr
versusq shows that the data are self-similar for that time
domain, and consequently, E@®) is valid. From this figure, -
with and without wave the data is self-similar. We find multi-
similarity in both data, as one can check by the existence of
a nonlinear curve ofxr with respect tog, shown in Fig. 6. <
Finally, a measurement of how much multi-similar the datais  -0.6|-
given by the interval rangéandwidth for which the func-
tion f, exists. One can see in Fig. 7 that, for the data with
wave, the bandwidth in the variable is smaller than without 081~
the wave. That means that the wave destroy many structure L
that were responsible for making the data to present a large
number of exponents, and consequently a higher complexity .
curve of @ versusg. o(q)

Another range ofm we find self-similarity in the func- FIG. 7. f,, spectra for large timen>200. The wave is responsible for a

tion (I'(m)) is for_sm_a” values ofm, that is m<2_0- _The shrinkage of the spectra which means that the large structures are being
results are shown in Figs. 8 and 9, and they are similar to theestroyed.

-0.2-

01 02
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For that, we analyze the standard deviationof the
probability distribution,p[ e(t)], for the differencee(t)

FIG. 10. f, spectra for short timem<20. The wave is responsible for a
shrinkage of the spectra which means that the small structures are being

e(t)= | ¢1(t) _ ¢2(t)|m0d7r, (6) destroyed. Only positive values gfare considered.

where ¢,(t) is the phase of the series (t),3? constructed
by the values oR, bigger thans/2, and¢,(t) is the phase V. SYMBOLIC MAPPING, STRUCTURES-WITHIN-
of the series™ (t), constructed by the values &, smaller = STRUCTURES, REGULARITY, AND PREDICTABILITY

than — /2. We show in Fig. 11 an example sf (t) and . . . .
- . . In a symbolic analysis we do not work with windows of
s (t), and in Fig. 12 asr changes with the gap. Once : L
very largem. Instead, we symbolizR, by associating sym-

turbulence is characterized by the existence of a sum of aj) . . : . .
L . . ols to its values, working with small-length time-windows,
infinite number of phases, we do the same analysis leading t0

Fig. 12, forR, as it is smoothed out by running averagesand S0, generating short length sequences of symbols. That

within windows of sizeT; hereT<20. With that procedure type OT analy5|s should be used to search _for s_tructures _for
- : ... short-time windows. The structures found in this symbolic
we want to eliminate from the data possible fast oscillations . :
. . . analysis should be considered to be the ones that are charac-
which could affect the reliance of the phase analysis. Th

result is similar to the one obtained without the running avft’enzed, In the previous sections, by the global and local ex-

erage, and thus, we can state that the wave is responsible fgcr)nent, for smalin. So, we make a microscopical search for

. - Structures within short-time windows of 12s (m=12).
synchronizing the peak-to-peak oscillations. In fact, we ob- . . . . .
. With this analysis we also find two types of symbolic struc-
serve that the data with the wave do not present large ampl|- ) ; .
. . ures, which we classify as large and small. Therefore, this

tude bursting, as one can see from Fig. 2.

result should be a consequence of the structures-within-
structures characteristic of turbulence. So, we symbolize the
data with the symbol “0,” if R, is negative, and “1” if it is

S
T
I

o
(0]
[&]
c
&
R
—~-0.4 - o
~pd ©
S . =
3 — without wave ] S
- with wave 5
0.6 o
£

© |
- fe!
B
0.8 3

. l . l . l . @ 10 7
0 2 4 6 8 e : :
q n

FIG. 9. Local exponeni(q) with respect ta, for short time,m<20. Only FIG. 11.s"(t) are the values dR, which are bigger thaa/2, ands™ (t) are
positive values ofy are considered. the values ofR, which are smaller than- 6/2.

Downloaded 18 Mar 2008 to 143.107.134.77. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



1288 Phys. Plasmas, Vol. 10, No. 5, May 2003 Baptista et al.

o
3

lieve to be a consequence of a large spatial structure. These
symbolic large structures are represented dyy decimal

— with Alfven T which correspond to horizontal and vertical lines, positioned
— without Alfven 1

o
~

at 1, 1024, 2048, 3076, and 4096. These lines positions are in
the blank regions of the mapping. So, patterns with long-
period symbolic structures are unlikely to be found when the
wave is injected in the plasma. Therefore, although the wave
acts destructively in the small time-structures<(20) as it

was observed in the previous sections, symbolic low-period
time structures seems not to be so affected by the wave as it
is the case for symbolic large-period time structures. As a
consequence, the remainiagbandwidth after the wave in-
FIG. 12. Dependence af €] on & for the plasma with and without the jection, in Fig. 10, should be mainly due to this symbolic

Alfvén wave. The wave injection makeas| e(t)] to get smaller, which ) . - .
means that the phase synchronization between the positive and the negatil%w period patterns also consequence of high-frequency time

oscillations increases. oscillations.
More powerful than only detecting patterns in the sym-
bolic sequences, the symbolic analysis can also give us an
positive. We construct the symbolic sequerfgg that is idea of the complexity of the data from its entropy and pre-
separated in overlapping regions of 12 symbols each. To trealictability. For this complexity quantification, we follow the
this problem in a Cartesian space, we convert each giiup, treatment described in Ref. 33. So, the Shannon entfagy
of 12 symbols, that we refer to it as a 12-bit sequence, into &vords of lengthm are given by
decimal,d;, by using the decimal-binary conversion rule:
di=2i2,5x 2. From the decimalsi;, we construct
the symbolic mappingd; versusd, , ;, shown in Figs. 13%) Hy=—2> p{™ log p{™, (7)
I i+1
and 13B), where Fig. 18A) is for the discharge without the
wave injection, and Fig. 18) with the wave. The blank
e 1. ) Coresponcs L Iiten SEHLEnCESuytn (70 The entoies, messure he smoun o -
the sam’e symbol JTh()e/;efore smaII-Ianthed cyclic sequencg rmation contai_n_ed in a wor_d of length. From Eq.(7) we
of bits as “OlOlOiQ . are’very common. These particu- tefine the conditionaldynamio entropyh,, as the average
. e o ... information necessary to predict the next symbol, given the
lar symbolic sequences represent a patterned time OSC'”at'OB'recedin bols. b
) i i ! . . gm symbols, by
Symbolic sequences like this previous one, with typically
low-period patterns, are a consequence of a low-period time
oscillation, and therefore high frequency, which as done pre- m=Hm+1=Hm, ®)
viously, we believe is consequence of a small spatial struc-
ture. On the other hand, long-period symbolic patterns, likevith ho=H,. The entropy of the source is the average infor-
for example “111111111111,” or ‘000000L11111,” are a mation content of one symbol, or the information necessary
consequence of a large-period time oscillation, which we beto predict the next symbol when being informed about the
complete pre-history of the system

I °
N W
(R

©
—
T

Standard deviation of p(g)

where the summation has to be carried out over all words

4001 (A) h=lim hm: lim ﬁ (9)

m
3001 n—o m—oe

2001 Note that when Eq(9) is used to calculate the source en-
Ak tropy of a symbolic sequence generated from a dynamical
; ;§ : ol system, with a symbolization of the trajectory through a Mar-
1 1001 2000 3001 4001 kov partition, then, Eq(9) is the Kolmogorov—Sinai entropy
With wave of the trajectory, as shown in Ref. 35. In the case the
AR e :>71(B)  Kolmogorov—Sinai is positive, that means the trajectory is
chaotic. In the present analysis, however, we interpret the
finding of ah positive as a measure of complexity, i.e., the
more positiveh is, the more complex are the data. While Eq.
(9) should be used to have a global characterization of com-
plexity, Eq. (8) should be used to have an “instantaneous”
4001 characterization of complexity. From the decaymf with
FIG. 13. The symbolic map witA) and without(B) the wave injection. resp_eCt tanwe can understand how much Ordijt decay
Blank regions in(B) represent the symbolic large structures that are de-Of disorder(slow decay the data have. The maximum value
stroyed by the wave injection. h can assume is In(2).

1001

4001 £

3001
2001

1001

1

1 1001 2001 3001
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— without wave Vl CONCLUS'ON

= with wave

The wave injection decreases turbulence by destroying
both the large(time windows of[200,50Qus) and the low
period structurestime windows of[1,20|us). However, for
the low-period structures we have observed by the symbolic
analysis that the higher-frequency time oscillations are more
resistant than the lower-frequency time oscillations in the
presence of the wave injection. A direct consequence of the
decrease of the turbulence level, due to the wave injection, is
the increase in the regularity and predictability of the data.
Regularity is indicated by the smoothing of the data, phase
04— . L synchronization between the positive and negative peak os-

0 2 4 6 8 10 12 o
m cillations, the smaller value of the source entropy, and the

FIG. 14. Conditional entropy for data wittA) and without(B) the wave. faster decay of the, conditional entropy. .
The faster decay of this entropy with respecttdndicates that the wave These conclusions are a consequence of an integrated

injection introduces regularity and predictability in turbulence. comparison of the results of our proposed tools of analysis
which identifies the time changes caused by the wave in the
structures present in the data. With the visual inspection of

The ability to predictP, is defined a& the normalized data and the phase difference between peak-

P=1-h (10) to-peak oscillations we show t.he plasm_a nge tur_bulence has

m: a typical peak-to-peak intermittent oscillatiéooupling be-
So, we obtairh=0.53 for data with the wave and=0.66 tween thelarge structureand thesmall structurg¢ which is
for data without the wave. Note that the value fprfor the  destroyed by the wave, resulting in more uniform data. The
data without the wave, is close to the maximum value, whickprobability distribution for the data without the wave injec-
agrees with the believed random-like character of turbulenceion is a typical turbulent Poisson-type distributtoi®=1°

In Fig. 14 we show the conditional entropy which is that with the wave turns into a Gaussian-type. However, as
smaller for allm for the data with the wave. That means, theshown by our local and global multiscalings analysis, there
uncertainty of the big, analyzing the previoug—m sym-  are two time self-similar regions for both data. Which means
bols in the sequences is smaller with the injection of thethat independently of the distribution found, its time evolu-
wave. Also, the slow decay for smati shows that the data tion happens according to multiscalings rules, and there-
have a very complex characteristic, nontypical of chaoticfore, not randomly. Finally, with the symbolic analysis, we
system, that have a faster decay. Finally, in Fig. 15 we showhow that the wave creates forbidden zones in the symbolic
the ability of prediction for a giverm and we see that the mapping which means that symbolic structures are
wave introduces into the turbulent data more predictabilitydestroyed.

In Figs. 14 and 15, the abrupt change in the slope of the Therefore, our tools of analysis not only give us a good
functions form higher than 8 is due to the insufficient num- understanding of the driving of resonant rf wave in the
ber of experimental data. plasma edge turbulence, but also give a criteria for the char-
acterization of the turbulent level. The higher turbulence is,
the higher peak-to-peak intermittent oscillations are, the
— without wave wider the f, spectra are, the less phase-synchronized the
= withwave positive and negative peak oscillations are, the more dense is
o L the symbolic mapping is, and the more unpredictable the
data are. Finally, our tools could be used in a real-time ex-
I ] periment to detect if a flow is about to become more turbu-
lent, just by showing that the measured quantities proposed
with these tools are changing in time, heading to values that
characterize a stronger turbulent state.

The finding of only two main structures, on the analyzed
data, could be related with the theory described in Ref. 36
which describes the onset of turbulence from the breakup of
a two-frequency torus.
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