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Shearless barriers in the conservative Ikeda map
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We investigate the dynamics of the Ikeda map in the conservative limit, where it is represented as a two-
dimensional area-preserving map governed by two control parameters, θ and φ. We demonstrate that the map
can be interpreted as a composition of a rotation and a translation of the state vector. In the integrable case
(φ = 0), the map reduces to a uniform rotation by angle θ about a fixed point, independent of initial conditions.
For φ �= 0, the system becomes nonintegrable, and the rotation angle acquires a coordinate dependence. The
resulting rotation number profile exhibits extrema as a function of position, indicating the formation of shearless
barriers. We analyze the emergence, persistence, and breakup of these barriers as the control parameters vary.
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I. INTRODUCTION

The Ikeda map is a well-known system that exhibits chaotic
behavior and a wide range of nonlinear dynamic phenomena.
Originally proposed to describe the dynamics of light rays
in a nonlinear ring cavity [1,2], its simplicity has made it a
prototype model for studying dissipative nonlinear phenom-
ena [3–9]. Meanwhile, the conservative version of the system
has received less attention, despite exhibiting rich dynamical
behavior [10].

Conservative and dissipative systems are fundamentally
different. Dissipative dynamics contract phase space volumes,
leading to asymptotic states known as attractors [3,4]. On the
other hand, conservative systems preserve phase volumes and
often present a mixed phase space [11] with the coexistence
of regular (periodic and quasiperiodic) and chaotic solutions.
In conservative systems, chaotic trajectories can be totally or
partially bounded by regular structures that act as transport
barriers [12,13]. Symplectic maps, such as the conserva-
tive Ikeda map, are the discrete-time analog of Hamiltonian
systems. In two dimensions, they can be interpreted as the
Poincaré surface of section of a three-dimensional Hamilto-
nian flow and preserve area and orientation [11,14]. Maps
are useful because they are simpler to study than differential
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equations; questions regarding transport properties of phase
space trajectories can be addressed with much less computa-
tional effort [14].

Symplectic twist maps satisfy the so-called twist condition,
i.e., a condition that guarantees the nondegeneracy of frequen-
cies in the integrable limit. For such systems, in angle-action
coordinates, as the action is varied, the average time increment
of the angle—quantified by the rotation number—changes
monotonically. The twist condition is assumed to be satisfied
globally in the proofs of many results of Hamiltonian non-
linear dynamics [11,15–17], including the well-known KAM
theorem.

Nontwist systems violate the twist condition, which leads
to unique phase space phenomena due to the nonmonotonic
rotation number profile [18–21]. Of particular interest is the
solution for which the rotation number is an extreme point,
called the shearless curve since the derivative of the rotation
number with respect to the action vanishes. These curves are
robust in the sense that, as the perturbation is increased and in-
variant curves are destroyed, the shearless curves are roughly
the last to be destroyed, limiting the transport of chaotic so-
lutions even for strong perturbations. Evidence for shearless
barriers has been reported in fluid flow experiments [22,23]
and in toroidal devices for plasma confinement [24–26] as
they have been identified in mathematical models of geophys-
ical flows [21,27] and magnetically confined plasmas [28].
More recently, it has been discovered that shearless barriers
can be created even in twist systems inside resonance islands.
This is often associated with the bifurcation of periodic orbits,
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such as tripling [29], quadrupling [29,30], and saddle-node
and pitchfork bifurcations [31].

In contrast to twist and nontwist systems, maps that vio-
late the twist condition everywhere are globally degenerate
and exhibit a constant rotation number profile. An example
is the simple harmonic motion, whose angular frequency is
independent of the action; many physical systems reduce to
this linear oscillator to leading order. Despite this, the dy-
namics of globally degenerate systems under perturbations
remain comparatively underexplored. To our knowledge, the
best-studied representative is the web map [32–35], derived
for a nonrelativistic particle in a uniform magnetic field sub-
jected to a resonant electrostatic wave packet propagating
perpendicular to the field. The resulting phase space con-
sists of symmetrically arranged islands with the same rotation
number, separated by a narrow chaotic layer—the stochastic
web—that percolates between them. Most previous work has
focused on describing particle diffusion along this web.

Globally degenerate systems are structurally unstable [20];
nonlinear perturbation (or, in the web map, a deviation from
the resonant condition) makes the system degenerate or non-
degenerate. Here we study the conservative Ikeda map, whose
integrable limit is globally degenerate and equivalent to a
linear oscillator. We determine when a small perturbation
generates a local degeneracy in the rotation number profile,
numerically and with a perturbative approach. The appearance
or disappearance of shearless curves, as the perturbation is
increased, is linked with two bifurcations that previously were
not observed in this context: a distorted pitchfork bifurcation
and a subcritical period-doubling bifurcation.

The paper is organized as follows. In Sec. II we present
the real two-dimensional form of the Ikeda map; the inte-
grable limit is examined and demonstrated to be globally
degenerate. The violation of the twist condition is discussed.
Section III develops our numerical procedure for detecting
shearless curves via rotation number extrema and explores
their bifurcations for representative parameter values in asso-
ciation with fixed points bifurcations. Section IV explores the
breakup of shearless barriers at critical values and their role as
barriers to chaotic transport. Finally, Sec. V summarizes our
findings and discusses prospects for future work.

II. THE MODEL

The Ikeda map was originally proposed to describe the dy-
namics of a laser pulse in a nonlinear optical cavity [1,2]. The
system, normalized to dimensionless form [36], is expressed
in terms of a complex variable z = x + iy as

zn+1 = A + Bzne
i(θ− φ

|zn |2+1
)
, (1)

where the modulus and phase of zn represent the amplitude
and phase of the nth laser pulse exiting the cavity. The pa-
rameter A represents the laser input amplitude, while B is
a damping parameter related to the reflection properties of
cavity mirrors. The detuning of the empty cavity is given by
θ , and the detuning due to the nonlinear dielectric medium
is described by φ. Another interpretation of the Ikeda map
is as an approximation to the stroboscopic map of a driven
nonlinear oscillator [10,37].

Using Euler’s formula, Eq. (1) can be decomposed into its
real and imaginary components, yielding the two-dimensional
map

xn+1 = Re(zn+1) = 1 + B(xn cos tn − yn sin tn),

yn+1 = Im(zn+1) = B(xn sin tn + yn cos tn), (2)

where we have set A = 1 for simplicity. The angle tn is given
by

tn(xn, yn) = θ − φ

x2
n + y2

n + 1
. (3)

From the Jacobian matrix J , we find that det J = B2. If
0 < B < 1, we have det J < 1, indicating that the map is
area-contracting and dissipative. This configuration, which is
the most widely studied, exhibits phenomena such as chaotic
attractors, chaotic transients, crises, and other related behav-
iors [3,4].

Choosing B = 1 results in det J = 1, making the map area-
and orientation-preserving [14]. Thus, the system is Hamilto-
nian, and from this point onward we will consider only this
case,

xn+1 = 1 + xn cos tn − yn sin tn,

yn+1 = xn sin tn + yn cos tn, (4)

with tn given by Eq. (3). We note that the mapping can be in-
terpreted as the composition of two transformations: a rotation
of the state vector [xn, yn] by the coordinate-dependent angle
tn(xn, yn), and a translation of xn by 1. In matrix notation, this
can be written as[

xn+1

yn+1

]
=

[
cos tn − sin tn
sin tn cos tn

][
xn

yn

]
+

[
1
0

]
. (5)

In terms of the original model, B = 1 corresponds to the
idealized case of a lossless optical cavity, i.e., the attenua-
tion of the laser pulse after a round trip inside the cavity
is neglected. Although this is unrealistic in an experimen-
tal setup, ultra-high-Q cavities have been developed in the
past decades [38–41]. These cavities are designed to have
extremely small losses; therefore, a conservative model is a
good approximation for the dynamics in timescales shorter
than the damping time.

A. The integrable limit

For φ = 0, the map defined by Eq. (5) reduces to[
xn+1

yn+1

]
=

[
cos θ − sin θ

sin θ cos θ

][
xn

yn

]
+

[
1
0

]
. (6)

In this case the rotation angle is simply θ and is indepen-
dent of the coordinates. The fixed point of the system is found
by setting [xn+1, yn+1] = [xn, yn] = [x∗, y∗], which yields

x∗ = 1

2
, y∗ = sin θ

2 (1 − cos θ )
. (7)

Due to the translation introduced by the map, the rotations
are performed around the fixed point of the map, not around
the origin of the system. However, by performing a change
of coordinates, the map in Eq. (6) can be rewritten as a pure
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rotation around the origin. Let x = u + x∗ and y = v + y∗.
Then Eq. (6) becomes[

un+1

vn+1

]
=

[
cos θ − sin θ

sin θ cos θ

][
un

vn

]
. (8)

Equivalently, with w = u + iv we have the complex map
wn+1 = eiθwn: each iterate is a counterclockwise rotation by
θ about the origin. In polar form, a point in the complex
plane is represented as w = |w|eiψ , with |w| = √

u2 + v2 and
ψ = arg w = arctan2(v, u). We wish to use ψ as the angular
coordinate of an action–angle canonical pair. This is achieved
with the transformation

u =
√

2I cos ψ, v =
√

2I sin ψ. (9)

In terms of the new variables, Eq. (8) is written as

In+1 = In, ψn+1 = ψn + θ (mod 2π ). (10)

As expected from an integrable Hamiltonian system, the
action coordinate remains unchanged under time evolution,
while the angle coordinate evolves cyclically. Equation (10)
is the same map of a harmonic oscillator in action-angle
coordinates, establishing a direct correspondence between
the integrable Ikeda map and the harmonic oscillator. Our
choice of action-angle variables and the associated Hamilto-
nian structure are detailed in Appendix A.

B. The twist condition and the nonintegrable map

A large class of area-preserving maps can be described in
the form [11]

Jn+1 = Jn + ε f (ϑn, Jn+1),

ϑn+1 = ϑn + �(Jn+1) + εg(ϑn, Jn+1) (mod 2π ), (11)

with the area preservation condition ∂ f
∂Jn+1

+ ∂g
∂ϑn

= 0, and
(ϑ, J ) a pair of canonical variables. These maps are suitable
for the study of an integrable Hamiltonian system subjected
to a nonintegrable perturbation. The Hamiltonian for such a
system can be written as

H = H0(J ) + εH1(ϑ, J, t ), (12)

where H0 is the unperturbed Hamiltonian with associated
angle-action variables (ϑ, J ), and H1 is the nonintegrable
perturbation, with intensity controlled by ε and periodic in
ϑ and t . The perturbing functions f and g are the partial
derivatives of H1 with respect to ϑ and J , respectively. The
function � is associated with the frequency of the unperturbed
Hamiltonian, ∂H0(J )

∂J . The unperturbed system’s solutions are
confined to invariant tori and are either periodic (rational �)
or quasiperiodic (irrational �).

The nondegeneracy condition for the frequencies of a
Hamiltonian flux is ∂2H0

∂J2 �= 0, which corresponds to the twist
condition for maps: ∂ϑn+1

∂Jn
�= 0. A system that satisfies the twist

condition is referred to as a twist system, and this property is
required for the rigorous proof of many results in Hamiltonian
dynamics [11,15–17], such as the conventional KAM theorem
and the Poincaré-Birkhoff theorem. These theorems provide a
general qualitative description of the effects of a small non-
integrable perturbation: most irrational invariant tori persist,
albeit slightly deformed, and, around the rational tori, chains

of alternating elliptic islands and hyperbolic saddle points are
created. Chaotic layers are formed in the vicinity of the saddle
points.

The integrable map described by Eq. (10) violates the twist
condition globally, as ∂ψn+1

∂In
= 0 for all In. Another example of

a globally degenerate system is the web map [32–35], which
models the motion of a charged particle in a constant magnetic
field, and subject to an electrostatic wave packet propagating
perpendicularly to the magnetic field. The Hamiltonian of the
system is that of a periodically kicked linear oscillator under a
resonant condition. The main property of the web map is that
its phase space exhibits an unbounded domain of chaos that
percolates around symmetrically distributed islands.

It is known that globally degenerate Hamiltonian systems
are not structurally stable [20]; the presence of a nonlinear
perturbation and a small deviation from the resonant condition
can make the system nondegenerate or locally degenerate. Of
particular interest is the case with local degeneracies, known
as nontwist systems. The curve along which the twist con-
dition is violated is referred to as the shearless curve. This
curve acts as a robust transport barrier, as it is highly resistant
to perturbations, being roughly the last one to be destroyed,
inhibiting chaotic transport between phase space regions [13].
Even after its destruction, sticky behavior is often observed
where the shearless curve once was, resulting in a partial
transport barrier. Moreover, small changes in the control pa-
rameters may cause the shearless curve to reappear [18,42].

Another effect of the local violation of the twist condition
is the formation of twin resonances on each side of the shear-
less curve. The separatrices of these resonances experience a
reconnection process near the shearless curve, a bifurcation
that alters the phase space topology in that region [19,43].
During the reconnection process, meandering tori may ap-
pear [43].

The shearless curve can be found by calculating the rota-
tion number profile for a set of initial conditions and checking
whether it has an extreme value [30,31,44]. The rotation num-
ber ω(ϑ0, J0) corresponds to the average angular displacement
of the orbit generated from the initial condition X0 = (ϑ0, J0).
If ω is a rational number r/s, the orbit is periodic with
period s; if it is irrational, the orbit is quasiperiodic. To
compute ω, we use the superconvergent method presented in
Refs. [44–48], which provides a faster convergence compared
to the standard average. It is defined as

ω(zn) = 1

2π

N−1∑
n=0

ŵn,N [�(M(Xn)) − �(Xn)], (13)

ŵn,N = w(n/N )∑N−1
n=0 w(n/N )

, (14)

w(ξ ) =
{

exp
( −1

ξ (1−ξ )

)
for ξ ∈ (0, 1),

0 for ξ /∈ (0, 1),
(15)

where M(Xn) is the map applied to Xn and � is a suitable
angular projection. In maps of the form of Eq. (11), where
the dynamical variable ϑn is the angle coordinate itself, we
have �(Xn) = ϑn. For the conservative Ikeda map, as given
by Eq. (4), we consider rotations around a fixed point of the
map, so �(zn) = ψn = arctan2(yn − y∗, xn − x∗). The initial
conditions considered to calculate the rotation number will be

054212-3



BARONI, DE CARVALHO, JUNIOR, AND CALDAS PHYSICAL REVIEW E 112, 054212 (2025)

FIG. 1. For φ = 0.01, (a) extreme value of the rotation number
as a function of θ . In the interval θ ∈ (π/2, 3π/4), the rotation
number profile is monotonic. (b) Nonmonotonic rotation number
profile obtained for θ = 1. (c) Monotonic rotation number profile
obtained for θ = 3.5.

distributed along the line x = 1/2, as this is a symmetry line
of the system (see Appendix B).

Considering the nonintegrable map from Eq. (4), it is not
straightforward to perform coordinate changes to transform it
into an action-angle form, as we did for the integrable map
in Eq. (6), which led to Eq. (10), and explicitly revealed the
global degeneracy of the frequencies. This difficulty arises
because the fixed points of the nonintegrable map must be
found numerically, and due to the coordinate-dependent an-
gle tn given by Eq. (3). Thus, to examine how the global
degeneracy of the rotation number profile is affected by a
small perturbation, we carry out a numerical experiment and a
perturbative approach. The perturbative results are presented
in the Appendix C, where we derive an analytical expres-
sion for the rotation number for φ << 1 [Eq. (C24)] and
conclude that the profile is nonmonotonic for θ ∈ (0, π/2) ∪
(3π/2, 2π ).

In the numerical experiment we set φ = 0.01, a small
perturbation value, and check if the rotation number profile
exhibits an extreme point. The diagram in Fig. 1(a) shows
how the extreme value of the rotation number, ω∗, changes
with θ for φ = 0.01. We observe that ω∗ increases linearly
with θ , with the absence of extreme values in the inter-
val θ ∈ (π/2, 3π/4) justified by the perturbative approach.
Figures 1(b) and 1(c) show the analytic and numerical rota-
tion number profile, for θ = 1 (which is nonmonotonic) and
θ = 3.5 (which is monotonic), respectively. As will be shown
in the next section, it is possible that, by increasing φ, a non-
monotonic rotation number profile could emerge even for θ

FIG. 2. For θ = 1, (a) bifurcation diagram of the shearless curve
and (b) bifurcation diagram of the fixed points, where blue denotes
stability and red denotes instability. The saddle-center bifurcation
around φ = 3.8 (marked by the vertical black line) is associated with
the disappearance of the shearless curve. The vertical green lines in
the inset indicate the two consecutive φ values considered in Fig. 3.

values in the interval where no extreme points were observed
for φ � 1.

III. SHEARLESS CURVE BIFURCATIONS

To investigate the presence of the shearless curve as the
system parameters vary, we use the following method to con-
struct bifurcation diagrams of the shearless curve. For a fixed
value of θ , we consider values of φ uniformly distributed
in the interval [0, 2π ]. For each parameter combination, we
compute the rotation number profile along a vertical line
segment of initial conditions, extending from the fixed point
to an appropriately chosen minimum value of y0. We then
search for extreme points in the rotation number profile by
identifying values of y0 for which dω/dy0 = 0. If such a point
exists, (x∗, y0) corresponds to a point on a shearless curve. We
compare the resulting diagram with the bifurcation diagram
of the fixed points, as we have observed that the creation
or destruction of the shearless curve is often associated with
bifurcations of the fixed points.

A. Case θ = 1

We begin by analyzing the case θ = 1. Figure 2(a) shows
the bifurcation diagram of the shearless curve, where we
observe that the extreme rotation number ω∗ decreases as φ

increases. Around φ = 3.8, the shearless curve disappears,
coinciding with a saddle-center bifurcation that creates a pair
of stable and unstable fixed points. This type of bifurcation,
where a second stable fixed point arises abruptly along an
unstable one, is known as a distorted pitchfork bifurcation [49]
or imperfect bifurcation [50], and is associated with some
asymmetry in the system. The bifurcation diagram of the
fixed points is shown in Fig. 2(b), where the y∗ coordinate
of the fixed points is plotted. Stability is indicated by color:
blue represents stable fixed points, and red represents unstable
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FIG. 3. Phase space and rotation number profile for θ = 1:
(a), (b) φ = 3.8245, before the saddle-center bifurcation; (c), (d) φ =
3.8456, after the saddle-center bifurcation.

fixed points. The rotations for the rotation number profile are
always computed with the fixed point with the higher y∗ value,
which corresponds to the continuation of the integrable map’s
fixed point.

Figure 3(a) shows the phase space for θ = 1 and φ =
3.8245, just before the saddle-center bifurcation. The shear-
less curve is shown in red, and the inset provides an amplified
view of the region where the bifurcation will occur. The
dashed line represents the initial conditions used to compute
the rotation number profile in Fig. 3(b), where the extreme
point is marked in red. Figure 3(c) shows the phase space for
φ = 3.8456, after the saddle-center bifurcation has occurred.
The inset shows the fixed points created by the bifurcation:
the stable fixed point is marked as a circle, and the unstable
one as a cross. The rotation number profile in Fig. 3(d) is
computed using the same initial conditions as in Fig. 3(b), but
no extreme points are found; the observed nondifferentiable
local minimum corresponds to the elliptic fixed point created
by the bifurcation [43].

Figure 4 illustrates the reconnection-collision sequence of
the ω = 1/7 twin resonances, as well as the meandering tori.
Starting with decreasing values of φ, Fig. 4(a) shows the
shearless curve in red, identified by the global minimum in
the rotation number profile in Fig. 4(b), and the twin period-7
resonances. One resonance lies inside the region delimited
by the shearless curve, while the other lies outside of it. In
Fig. 4(c), φ is decreased to the reconnection threshold, and
the corresponding rotation number profile in Fig. 4(d) shows
no extreme points, with the global minima corresponding
to the ω = 1/7 plateau. In Fig. 4(e), after the reconnection
process, the interior and exterior of the shearless curve region
now contain elliptic and hyperbolic points from the opposing
resonances. In Fig. 4(f), we observe a local maximum that
corresponds to the shearless curve, and is associated with
meandering tori. In Fig. 4(g), the elliptic and hyperbolic points
of the opposing resonances have collided and mutually anni-
hilated. Finally, in Fig. 4(h), the rotation number profile shows
a global minimum corresponding to the shearless curve.

FIG. 4. Reconnection-collision sequence of the ω = 1/7 twin
resonances. Phase spaces (upper row) and rotation number profiles
(lower row) for θ = 1 and decreasing values of φ; the dashed line
segment at x = 0.5 in the phase spaces represents the initial con-
ditions used to compute the rotation number profile. (a), (b) φ =
0.4833; (c), (d) φ = 0.46745; (e), (f) φ = 0.4623; (g), (h) φ = 0.455.

B. Case θ = 3.5

The shearless curve bifurcation diagram for θ = 3.5 is
shown in Fig. 5(a). In agreement with the result in Fig. 1(a),
no extreme point is found in the rotation number profile for
small values of φ. Around φ = 1, a shearless curve emerges,
and the extreme rotation number decreases as φ increases. The
gaps in the diagram correspond either to reconnections of twin
resonances, during which the shearless curve disappears, or
the actual breakup and reappearance of the shearless curve,
illustrating sensitivity to the control parameters. Figure 5(b)
shows the stability bifurcation of the fixed point. A single
fixed point exists for this parameter range, but its stability
switches from stable to unstable through a period doubling bi-
furcation. Upon further increasing φ, the fixed point becomes
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FIG. 5. For θ = 3.5, (a) bifurcation diagram of the shearless
curve and (b) bifurcation diagram of the fixed point, where blue
denotes stability and red denotes instability. A subcritical period-
doubling bifurcation around φ = 0.7 (marked by the vertical black
line) is associated with the appearance of the shearless curve. The
vertical green lines in the inset indicate the three consecutive φ values
considered in Fig. 6.

stable again, coinciding with the creation of the shearless
curve.

Figure 6 shows the phase spaces (upper row) and rota-
tion number profiles (lower row), illustrating the bifurcations
that lead to the creation of the shearless curve. In Figs. 6(a)
and 6(b), we consider φ = 0.42, before the period-doubling
bifurcation of the fixed point, where the rotation number pro-
file is monotonic. In Figs. 6(c) and 6(d) we have φ = 0.65,
after the supercritical period-doubling bifurcation and before
the subcritical period-doubling bifurcation, the fixed point is
unstable and a period-2 resonance is observed. In Figs. 6(e)
and 6(f) we consider φ = 0.78, after the subcritical period-
doubling bifurcation, the rotation number profile shows a
minimum point, which identifies the shearless curve, shown
in red in Fig. 6(e).

IV. SHEARLESS CURVE BREAKUP

To illustrate both the breakup of the shearless curve as the
perturbation is increased and its role as a barrier to chaotic
transport, we search in the parameter space for the values
that result in a shearless curve with a specific frequency. The
numerical scheme is as follows: suppose we are investigating
the breakup of the shearless curve with ω∗ = �. Starting with
φ0 = 0, we know from the integrable map of Eq. (10) that
the rotation number profile is globally degenerate with ω∗ =
θ/2π . We then choose θ0 = 2π� and consider φ1 = φ0 + δ.
Next, using the bisection method, we search for a value θ1 ∈
[θ0 − δ, θ0 + δ] such that the rotation number profile for θ1

has the extreme value ω∗ = �. This procedure is repeated for
increasing values of φ until the shearless curve with frequency
� is no longer found, indicating that it has broken.

As shown in Fig. 1, not all values of θ will generate a
locally degenerate rotation number profile when perturbed by
φ. Therefore, the frequency � of the shearless curves that can

FIG. 6. Phase space and rotation number profile for θ = 3.5:
(a), (b) φ = 0.42, before the supercritical period-doubling bifur-
cation; (c), (d) φ = 0.65, after the supercritical period-doubling
bifurcation and before the subcritical period-doubling bifurcation;
(e), (f) φ = 0.78, after the subcritical period-doubling bifurcation,
which also creates a shearless curve.

be found with this method is restricted to those within the
ranges 0 < 2π� < π/2 and 3π/2 < 2π� < 2π . We apply
this method for negative powers of the golden ratio, ϕ =
1+√

5
2 , that satisfy this restriction: ϕ−3 ≈ 0.236, ϕ−4 ≈ 0.146,

and ϕ−5 ≈ 0.09. The results are shown in the parameter space
of Fig. 7, where the blue, orange, and purple curves represent
ω∗ = ϕ−3, ω∗ = ϕ−4, and ω∗ = ϕ−5, respectively.

Figure 8 illustrates the ω = ϕ−3 shearless curve
near the point of breakup, for (θ, φ) = (θc, φc) =
(3.7008749277131261, 5.4248044343970880). Figure 8(a)
shows the phase space in the map’s original coordinates,
(x, y), with the shearless curve (in red) preventing transport
between the two chaotic seas. Some twin resonances are
highlighted: ω = 1/3 in purple, ω = 1/4 in green, and
ω = 2/7 in pink. Two initial conditions in the chaotic regions
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FIG. 7. Parameter space of the conservative Ikeda map, with
curves representing the parameters for which a shearless curve with
a specific frequency was observed. The red star marks the critical
parameter (θ, φ) = (θc, φc ) for which the ω = ϕ−3 shearless curve
is in the imminence of breakup; the corresponding phase space is
shown in Fig. 8(a).

are iterated n = 104 times; one, colored blue, is considered
within the region delimited by the shearless curve, and the
second one, colored olive, is outside the region delimited by
the shearless curve. We observe that the shearless curve acts
as a barrier to chaotic transport, as there is no mixing between
those regions. The rotation number profile, computed over

FIG. 8. Phase space and rotation number profile for (θ, φ) =
(θc, φc ), where the ω = ϕ−3 shearless curve is close to breaking up.
In panel (a) the phase space is shown with the shearless curve in
red, and some twin resonances are highlighted: ω = 1/3 in purple,
ω = 1/4 in green, and ω = 2/7 in pink. Panel (b) shows the rotation
number profile computed along the dashed line in (a); the colored
horizontal dashed lines correspond to the rotation number of the
highlighted twin resonances and coincide with their plateaus. The
insets show the extreme values of the rotation number profile.

FIG. 9. Phase spaces after the breakup of the shearless curve. In
both cases two initial conditions in the chaotic sea are iterated 104

times, and colored blue and olive. In panel (a), for (θ, φ) = (θc +
10−2, φc + 10−2 ), though the shearless curve has been destroyed,
the chaotic regions did not mix for the number of iterations consid-
ered. In panel (b), for (θ, φ) = (θc + 2 × 10−2, φc + 2 × 10−2), the
chaotic seas mix with the number of iterations considered.

the dashed line in Fig. 8(a), is shown in Fig. 8(b). The ω

values of the highlighted resonances in the phase space
are represented by the dashed horizontal lines, colored
accordingly; coinciding with the corresponding plateaus. The
red horizontal dashed line represents ω = ϕ−3, and the insets
show amplifications of the minima of the profile, marked in
red, which indicate the shearless curve. Although two minima
are observed, they correspond to the same shearless curve.
From the phase space in Fig. 8(a), it can be seen that the
line of initial conditions used for the rotation number profile
crosses the fixed point (x∗, y∗), around which the rotations
are computed, so some invariant curves are considered twice.
The black vertical dashed line in Fig. 8(b) is at y0 = y∗.

Figure 9(a) shows the phase space for (θ, φ) = (θc +
10−2, φc + 10−2), past the breakup of the shearless curve.
Even though the shearless curve was broken, no mixing of
the chaotic regions is observed with 104 iterations. However,
iterating further, the trajectories leave the apparently delimited
area; we verified mixing with 105 iterations. This is because
even after the breakup of the shearless curve, the transport is
observed to be reduced in the region it used to be. In Fig. 9(b),
we considered (θ, φ) = (θc + 2 × 10−2, φc + 2 × 10−2), and
104 iterations of the chaotic orbits were enough to observe the
mixing of the regions.

Interpreting the results of this section in terms of the ideal
optical cavity, the shearless curve acts as a barrier that bounds
the chaotic fluctuations of the field’s amplitude and phase.
For parameters matching Fig. 8 and an initial condition in the
olive chaotic sea, the pulse amplitude and phase would evolve
chaotically but remain confined to that sea, never crossing into
the blue chaotic sea; the converse holds for initial conditions
on the other side. After the shearless curve breaks (Fig. 9),
mixing of the two amplitude-phase regimes becomes possible,
though typically only after long transients.

V. CONCLUSIONS

In this work, we investigated the formation, persistence,
and breakup of shearless barriers in the conservative Ikeda
map, a two-dimensional area-preserving system governed by
parameters θ and φ. Starting from the integrable limit (φ = 0),
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we showed that the map reduces to a uniform rotation about
a fixed point and is globally degenerate, violating the twist
condition everywhere. Introducing the perturbative parameter
φ breaks this global degeneracy, with some θ yielding non-
monotonic locally degenerate rotation number profiles whose
extrema mark the emergence of the shearless curves. An an-
alytical expression for the rotation number was obtained with
perturbation theory, and it was shown that, for small φ, the
profile is nonmonotonic if cos θ > 0.

Key findings include the association of shearless barriers
with bifurcations of fixed points, such as saddle-center and
period-doubling bifurcations. For θ = 1, the disappearance
of the shearless curve coincides with a distorted pitchfork
bifurcation, while for θ = 3.5, the emergence of a shearless
barrier follows a subcritical period-doubling bifurcation. The
reconnection-collision sequences of twin resonances and the
formation of meandering tori further illustrate the intricate
phase space dynamics near shearless curves.

We demonstrated that shearless barriers act as effective
transport inhibitors, confining chaotic trajectories even un-
der strong perturbations. Their breakup at critical parameter
values allows chaotic mixing, though remnants of these bar-
riers can delay transport. Numerical tracking of shearless
curves with frequencies related to the golden ratio highlighted
their resilience and parameter-dependent thresholds for
destruction.

These results contribute to the broader understanding of
transport phenomena in Hamiltonian systems, as well as
present a unique approach to the well-known Ikeda map.
Future studies could further explore the discrete symmetries
of the map and the mixing of chaotic trajectories. The method-
ology developed here, combining rotation number analysis
and bifurcation tracking, provides a versatile framework for
studying transport barriers in diverse conservative systems.
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APPENDIX A: ACTION-ANGLE COORDINATES
FOR THE INTEGRABLE MAP

The conservative and integrable Ikeda map in (u, v) vari-
ables [Eq. (6)] can be derived from the flow generated by
the Hamiltonian H = −ω0

2 (u2 + v2), with u the generalized
coordinate and v the conjugate momentum. Note that this
Hamiltonian differs from the harmonic oscillator by a minus

sign; this is because the harmonic oscillator describes clock-
wise rotations in the (u, v) plane, while, as we have shown, the
integrable Ikeda map describes counterclockwise rotations.

We adopt the action-angle transformation (u, v) 	→ (ψ, I )
from Eq. (9), taking ψ = arg(w) with w = u + iv as the
angle, since it measures rotation in the complex plane. The
symplectic form in (u, v) is

ω̄ = du ∧ dv, (A1)

with

du = −
√

2I sin ψ dψ + cos ψ√
2I

dI, (A2)

dv =
√

2I cos ψ dψ + sin ψ√
2I

dI. (A3)

A direct computation gives

ω̄ = du ∧ dv = − dψ ∧ dI. (A4)

Equation (A4) shows that (u, v) 	→ (ψ, I ) reverses the ori-
entation of the symplectic form, so the proper ordering of the
variables is (I, ψ ). Thus, I plays the role of generalized posi-
tion and ψ that of the conjugate momentum. The Hamiltonian
is H = −ω0I , and the equations of motion are

İ = ∂H

∂ψ
= 0, ψ̇ = −∂H

∂I
= ω0. (A5)

The negative sign in the Hamiltonian is compensated by
the sign in Hamilton’s equation, so the dynamics agree with
the harmonic oscillator in action-angle variables.

APPENDIX B: SYMMETRY PROPERTIES OF THE MAP

Discrete symmetries of Hamiltonian systems are useful to
understand the organization of periodic orbits and to find those
orbits. A detailed discussion of symmetries in dynamical sys-
tems can be found in Ref. [52], and in the context of nontwist
systems in Refs. [53,54]. A transformation T is called a
symmetry of a map M if M = T −1MT . A transformation I1

is called a time-reversal symmetry of M if M−1 = I−1
1 MI1.

Furthermore, I1 is an involution if it is its own inverse, that
is, I2

1 = Id. In this case, it can be used to construct a second
time-reversal symmetry of M, I2 = MI0, which is also an in-
volution, and the map can be decomposed as M = I2I1. Maps
that obey this property are called reversible.

The conservative Ikeda map has the following time-
reversal symmetry:

I1(z) = 1 − z̄, (B1)

where z̄ is the complex conjugate of z. Equation (B1) rep-
resents a reflection along the line x = 1/2 and is also an
involution. It can be used to construct a second involution
from MI1:

I2(z) = 1 + (1 − z̄)eit[I1(z)]. (B2)

The symmetry lines of the map are the set of fixed points of
the involutions �i = {z|Ii(z) = z}. Symmetry lines are useful
to the numerical search for symmetric periodic orbits, i.e.,
periodic orbits with a point belonging to the symmetry line.
Considering I1, we find

�1 = {
(x, y)|x = 1

2

}
, (B3)
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while I2 furnishes

�2 =
{

(x, y)|y = (1 − x) sin [t (I1(z)]

1 − cos (t[I1(z)]

}
. (B4)

Equation (B4) needs to be solved numerically for the non-
integrable map.

APPENDIX C: PERTURBATIVE APPROACH

The goal of this section is to obtain an analytical expres-
sion for the rotation number of the conservative Ikeda map
through perturbation theory. Choosing A = B = 1 in Eq. (1),
we obtain the map

zn+1 = F (zn; θ, φ) = 1 + zne
i(θ− φ

|zn |2+1
)
. (C1)

Considering φ � 1 and expanding up to first order, we find

zn+1 = 1 + zneiθ − izneiθ φ

|zn|2 + 1
+ O(φ2), (C2)

which is a quasi-integrable form: the first two terms in the
right-hand side describe the integrable part of the system,
and the term proportional to φ is the perturbation. As the
rotation number is computed from the rotations of a state
vector around the fixed point z∗, we look for an expression
in the form

z∗(φ) = z∗
0 + φz∗

1 + O(φ2), (C3)

where z0, z1 ∈ C are coefficients to be determined. The fixed
point condition is z∗(φ) = F (z∗(φ); θ, φ), and the coefficients
of Eq. (C3) are determined by expanding both sides and
matching the coefficients. We find

z∗
0 = 1

1 − eiθ
, (C4)

which is the complex form of the integrable map’s fixed point
[Eq. (7)], and the first-order correction is

z∗
1 = i

3 − 2 cos θ
. (C5)

To analyze the rotations around the fixed point, we
write an initial point as z0 = z∗ + |w0|eiψ0 , where |w0| =√

Re(z0 − z∗)2 + Im(z0 − z∗)2 is the initial distance from the
fixed point and ψ0 the initial phase. Its first iterate can be writ-
ten as z1 = z∗ + |w1|ei(ψ0+�), where the angular increment
after a single iteration, �, can be expressed as

�(|w0|, ψ0; θ, φ) = arg(z1 − z∗) − arg(z0 − z∗), (C6)

= arg(δz ) − ψ0. (C7)

We look for the perturbative expansion

�(|w0|, ψ0; θ, φ) = �0 + φ�1 + O(φ2). (C8)

To determine the coefficients �0,�1, we first expand

δz = z1 − z∗ = a0 + φa1 + O(φ2), (C9)

where z1 = F (z0; θ, φ). Then the coefficients of Eq. (C8) are
obtained from [55]

arg(δz) = arg a0 + φIm

(
a1

a0

)
+ O(φ2), (C10)

which yields

�0 = arg(a0) − ψ0 = θ, (C11)

�1 = Im

(
a1

a0

)
= − 4 sin2 θ

2 cos θ − 3

M(ψ0)

D(ψ0)
, (C12)

where

M(ψ0) = 2 − |w0| cos ψ0 − 2 cos θ

+ |w0| cos(ψ0 + θ ) + cos(2ψ0 + θ ) (C13)

and

D(ψ0) = −3 + 2 cos θ − 2|w0|2(1 − cos θ )

+ 2|w0|(cos θ − 1) cos ψ0 − 2|w0| sin θ sin ψ0.

(C14)

Assuming that the distance from the fixed point remains
constant throughout the dynamics (|wn| = |w0| = |w| for all
n), the rotation number profile ω(|w|; θ, φ) can be obtained
from averaging �/2π over the initial angle ψ0. We have

〈�(|w|; θ, φ)〉 = 1

2π

∫ 2π

0

(
θ − φ

4 sin2 θ

2 cos θ − 3

M(ψ0)

D(ψ0)

)
dψ0,

〈�(|w|; θ, φ)〉 = θ − φ

2π

4 sin2 θ

2 cos θ − 3

∫ 2π

0

M(ψ0)

D(ψ0)
dψ0.

(C15)

To solve the remaining integral, we define

a = −3 + 2 cos θ − 2|w|2(1 − cos θ ), (C16)

b = 2|w|(cos θ − 1), (C17)

c = −2|w| sin θ ; (C18)

then Eq. (C14) is rewritten as D(ψ0) = a + b cos ψ0 +
c sin ψ0. Defining d2 = b2 + c2 and using the right angle iden-
tities sin γ = c/d , cos γ = b/d , and tan γ = c/b, we perform
a phase shift ψ0 − γ = ϕ and obtain

D(ϕ) = a + d cos ϕ, (C19)

which is an even function of ϕ. The same definitions are
used to rewrite Eq. (C13). Discarding the terms proportional
to sin(nϕ), as they result in odd integrands and the corre-
sponding integrals vanish, yields

M(ϕ) = 2(1 − cos θ ) + |w| cos(θ − 1) cos ϕ

+ cos θ cos 2ϕ. (C20)

Thus, we have∫ 2π

0

M(ψ0)

D(ψ0)
dψ0 =

∫ 2π

0

M(ϕ)

D(ϕ)
dϕ,

= 2(1 − cos θ )
∫ 2π

0

dϕ

a + d cos ϕ

+ 2(cos θ − 1)
∫ 2π

0

cos ϕ dϕ

a + d cos ϕ

+ cos θ

∫ 2π

0

cos 2ϕ dϕ

a + d cos ϕ
. (C21)
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TABLE I. Leading–order coefficients entering Eq. (C25) in the
small- and large-|w| regimes, and sgn(∂�/∂|w|).

Quantity |w| � 1 |w| � 1

a −3 + 2 cos θ −2K |w|2
� 3 − 2 cos θ + 4K

−3 + 2 cos θ
|w|2 2K |w|2

sgn(∂�/∂|w|) −sgn(cos θ ) +1

The integrals in Eq. (C21) are known:

I0 =
∫ 2π

0

dϕ

a + d cos ϕ
= 2πsgna√

a2 − d2
, (C22)

In =
∫ 2π

0

cos (nϕ) dϕ

a + d cos ϕ
= I0

(
−d

a + √
a2 − d2sgna

)n

, (C23)

and considering |w| �= 0, we have sgna = −1. Thus, the final
expression for the rotation number profile is

ω(|w|; θ, φ) = θ

2π
+ φ

2π
�(|w|; θ ), (C24)

where

�(|w|; θ ) = 2 sin2(θ/2)

�(cos θ − 3)

(
2K − d2

2(a − �)
− d2

(a − �)2

)

(C25)

and

K = 1 − cos θ, (C26)

d2 = 8K|w|2, (C27)

� =
√

a2 − d2. (C28)

Figure 2(a) shows that, for sufficiently small φ, the rotation
number profile develops an extremum when θ ∈ (0, π/2) ∪
(3π/2, 2π ), whereas it remains monotonic for all other an-
gles. This behavior is dictated by the θ dependence contained
in Eq. (C25). To make this explicit we analyze Eq. (C25) in the
two asymptotic regimes |w| � 1 and |w| � 1. In each limit
we expand the coefficients a and � (see Table I), substitute
the results into Eq. (C25), and obtain

�(|w|; θ )

=

⎧⎪⎨
⎪⎩

�0(θ ) + �2(θ ) |w|2 + O(|w|4), |w| � 1,

− (2K + 1) sin2 θ
2

K (3 − cos θ )

1

|w|2 + O(|w|−4), |w| � 1,

(C29)

with K = 1 − cos θ and coefficients

�0(θ ) = 4 sin2
(

θ
2

)
K

(3 − cos θ )(3 − 2 cos θ )
, (C30)

�2(θ ) = −16 sin2(θ/2)(cos θ − 1)2

(cos θ − 3)(2 cos θ − 3)3
cos θ. (C31)

The term �0(θ ) vanishes upon taking the |w| derivative,
thus not influencing its sign, and sgn(�2) = −sgn(cos θ ).
Next, we evaluate the sign of the derivative ∂�/∂|w| ac-
cording to the leading-order expressions given by Eq. (C29).
For |w| � 1 we find sgn(∂�/∂|w|) = +1 for all θ , while
for |w| � 1 we find sgn(∂�/∂w) = −sgn(cos θ ). Thus,
∂�/∂|w| changes sign only if cos θ > 0, justifying the θ

interval for which an extremum � was observed numerically
in the rotation number profile.

As our analytical expression for the frequency profile
depends only on the action variable, since |w| = √

2I , a
Hamiltonian function H = H0 + φH1 can be obtained by inte-
grating Eq. (C24) with respect to the action I . This procedure
results in

H0(I; θ ) = −I
θ

2π
, (C32)

which agrees with the Hamiltonian obtained for the integrable
map in Appendix A by choosing ω0 = θ/2π , and

H1(I; θ ) = − 1

2π

∫ I

0
�I (I; θ )dI ′, (C33)

= 3 − 2 cos θ

8π (3 − cos θ )
log

(
1 + 4K

a + � + 2

)
, (C34)

where �I (I; θ ) = �(|w| = √
2I; θ ) is obtained from

Eq. (C25). H1 is interpreted as an integrable perturbative
Hamiltonian. The nonintegrable angular dependency was
averaged out by the integrals in Eq. (C15), to obtain the
analytical approximation of the frequency profile.

APPENDIX D: NUMERICAL SEARCH
FOR THE FIXED POINTS

The integrable map in Eq. (6) has only one fixed point,
given by Eq. (7). For the nonintegrable map in Eq. (4), the
symmetry line x = 1/2 can be used to find fixed points with
x∗ = 1/2. The fixed point condition for Eq. (4) becomes

f (y∗; θ, φ) = y∗ − sin tn
2(1 − cos tn)

= 0, (D1)

where tn = θ − φ

y∗2+5/4
. Thus, the fixed point calculation re-

duces to an one-dimensional root-finding problem. Multiple
solutions are possible depending on the parameter values. For
the parameter range considered in this work, it was sufficient
to search for solutions in the interval y ∈ [−5, 5]. This was
done by dividing the interval into a grid of 1000 points and
looking for sign changes in f (y; θ, φ). For each interval where
a sign change was detected, the bisection method was used to
refine the fixed point coordinate.

The stability of the solutions was verified by computing
the corresponding residue [56], defined as R = 1

4 (2 − trJ ),
where the Jacobian matrix is evaluated at the fixed point. If
0 < R < 1, the fixed point is stable; otherwise, it is unstable.
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