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We introduce two-dimensional symplectic maps to describe the Poincaré maps of magnetic field lines in 
large aspect ratio tokamak equilibria with reversed non-monotonic plasma current density profiles. For 
these maps, we investigate the effect of the symmetry breaking due to the toroidal correction with a 
peculiar invariant, namely, a magnetic surface with a null rotation number, enclosing a vanishing current. 
We find that this rotationless invariant surface is surrounded by many small island chains. Furthermore, 
near such invariant, the symmetry breaking gives rise to two magnetic shearless invariants surrounded 
by twin island chains. We also find chaotic lines adjacent to all the observed islands created by the 
considered structurally unstable equilibria.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Two-dimensional symplectic maps have been introduced to de-
scribe Poincaré maps of magnetic field lines in confined plasmas. 
In fact, magnetic field lines can be described by orbits of Hamil-
tonian systems of one-and-a-half degrees of freedom which are, 
provided the time-like coordinate is periodic, equivalent to two-
dimensional area-preserving maps [1–4]. Consequently, we can use 
such maps to describe field lines in magnetic configurations of 
plasmas confined in tokamaks, and to interpret plasma confine-
ment properties in the nonlinear dynamics framework. The con-
sidered magnetic configurations are essentially a superposition of 
two magnetic field components: toroidal, which is produced by 
coils around the chamber, and poloidal, which is produced by 
plasma current. Thus, the magnetic field lines are helices on nested 
toroidal magnetic surfaces characterized by their rotation num-
ber [5]. These toroidal surfaces are invariants identified as lines 
in the associated Poincaré maps.

Several symplectic maps [6] have been introduced to describe 
the field lines dynamics in tokamaks. Two of them, the Ullmann 
map [7,8] and the Tokamap [9], introduced to describe large as-
pect ratio tokamaks with toroidal correction, have been applied 
to analyze field line dynamics of confined plasmas with field lines 
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with monotonic or nonmonotonic rotation number profiles [2]. The 
form of the rotation number profile is essentially determined by 
the electrical current density profile inside the confined plasma. 
The Ullmann map is more convenient to compare with experimen-
tal results because we can introduce in the map expressions the 
experimental equilibrium profiles, as the plasma current density. 
Although the tokamap parameters do not correspond to tokamak 
experimental values, this map is appropriate to investigate general 
dynamical effects in tokamaks as the onset of global chaos and bi-
furcations.

In this article, we investigate the dynamics of plasmas with 
a reversed density current profile (negative density current at 
plasma center), which leads to a magnetic field with nonmono-
tonic rotation number profiles vanishing in a magnetic surface. 
Evidences of such reversed current profiles have already been ob-
served in tokamaks experiments [10–12]. Likewise, considering re-
versed density currents, analytical and numerical works have also 
reported instability predictions [13,14], as well as magnetohydro-
dynamic equilibrium solutions with non-nested magnetic surfaces 
[15–19]. All the reported equilibria, obtained for small inverse as-
pect ratio toroidal tokamaks (ratio between the minor and ma-
jor tokamak radii), describe KAM invariant curves in the Poincaré 
maps, with one island chain in the null rotation region, without 
chaos.

We apply the symplectic Ullmann map and the Tokamap men-
tioned before to study the field lines Poincaré sections of magnetic 
fields in plasmas with reversed current density, in large aspect ra-
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Fig. 1. Tokamak scheme showing the main coordinate systems and the cylindrical 
approximation. Also we represent the poloidal and toroidal magnetic fields.

tio tokamaks with toroidal correction [8]. In our procedure, the 
small correction parameter is the inverse of the aspect ratio. We 
investigate the effect of the symmetry breaking due to the toroidal 
correction in these maps with a peculiar invariant, a null rota-
tion number, representing a magnetic surface enclosing a vanishing 
current. We find that this rotationless invariant surface is sur-
rounded by many small island chains and localized chaotic field 
lines around these islands. Furthermore, near such invariant, the 
symmetry breaking gives rise to two magnetic shearless invariants 
surrounded by twin island chains. Thus, the main result in the ar-
ticle is not only the appearance of small islands and chaos, but also 
the unexpected onset of shearless invariant curves in the maps due 
to the symmetry break caused by the toroidal correction.

In Section 2 we introduce the symplectic two-dimensional Ull-
mann map for a reversed current profile. In Section 3 we present 
evidences of shearless bifurcations due to the symmetry breaking 
by the toroidal correction. Section 4 contains map amplifications 
with small islands surrounded by chaotic lines. In Section 5 we 
present similar results obtained for the Tokamap, another symplec-
tic two-dimensional map known in literature. Finally, the conclu-
sions are discussed in Section 6.

2. Ullmann map

In tokamaks, magnetic fields are established for the plasma 
confinement in a toroidal chamber. The plasma is mainly confined 
by the superposition of two magnetic field components: toroidal, 
which is produced by coils around the chamber, and poloidal, 
which is produced by plasma current [4,5]. In this work we con-
sider a reversed density current profile, with negative density cur-
rent at plasma center as, recently, observed in tokamaks [10–12].

The tokamak geometry is shown in Fig. 1. The toroidal vessel 
is characterized by its major radius R0, which defines the circu-
lar geometric axis around the axis of the toroid, and by its mi-
nor radius b. Usually we define the aspect ratio in a tokamak as 
ε = R0/b. The coordinates r and θ are, respectively, the radius from 
the geometric axis and the poloidal angle, and ∅ is the toroidal an-
gle. We consider a tokamak with large aspect ratio (high ε), and, 
for such approximation, the equilibrium toroidal magnetic field is 
approximately uniform and therefore the effect of the toroidal cur-
vature can be considered as a perturbative factor [2,8]. Thus, we 
can adopt a cylindrical geometry, with period 2π R0, as shown 
in Fig. 1. The rectangular coordinates system, suitable to describe 
our problem, is given by equations x = bθ/2π , y = 1 − r/b, and 
z = R0∅, where b and R0 are, respectively, the minor and the ma-
jor tokamak radii. In this coordinate system, y = 0 corresponds to 
the plasma edge and y = 1 corresponds to the plasma center. In 
the next sections, for the numerical applications, we use the main 
TCABR tokamak parameters, as b = 0.21 m and R0 = 0.61 m [20].
The magnetic field lines resulting from the sum of the poloidal 
and toroidal components have a helical format. The toroidal field 
line component is uniform, Bz ≡ B0, and, given a current density 
radial profile, J z(r), the poloidal magnetic field component, Bθ , is 
obtained from the Ampère’s Law. The field helicity is given by the 
average rotation number ι, whose inverse is known as the safety 
factor in the tokamak literature [2,8], defined as:

q0 = 1/ι ⇒ q0 = 1

2π

2π∫
0

Bz

Bθ

dθ (1)

Thus, for each poloidal magnetic field profile we have a corre-
spondent rotation number profile.

The structure of the magnetic field lines in a tokamak can be 
more easily studied by means of a return map – whose trajectories 
are obtained from the continuous trajectories arbitrating a region 
in the phase space and taking the coordinate values only at the 
intersection with the surface. A return map in ∅ coordinate con-
sists in a Poincaré map in the section z = constant, with variables 
(rn, θn) or (xn, yn) denoting the coordinates on the section surface 
(the coordinates of the nth intersection of the field line with the 
surface provides the following position) [2,4,5].

Our map consists of two equations:

rn+1 = rn

1 − a1senθn
(2)

θn+1 = θn + 2π

q(rn+1)
+ a1 cos θn (3)

where a1 = −0.04 is a correction due to the toroidal effect and 
q(r) is the safety factor profile [7]. The toroidal correction intro-
duces a poloidal angle θ dependence in the map. Such correction, 
considered in the model, takes into account the outward magnetic 
surfaces displacement, characteristic of tokamak equilibrium in the 
toroidal geometry. The constant a1 = −0.04 was fitted to repro-
duce the observed tokamak magnetic surfaces displacements [7]. 
The Jacobian for this map is unitary, so the map is symplectic [4,6]. 
Moreover, the map is derived from a generating function and can 
be interpreted as a canonical transformation between the previous 
and the next coordinates.

The map given by equations (2) and (3) is determined by the 
control parameters and the function q(r) is specified for the de-
sired plasma equilibrium, i.e., obtained from the considered mag-
netic field components Bz and Bθ . Thus, we have to introduce 
a plasma current density, J z(r), to obtain the magnetic compo-
nent Bθ .

In this article, we consider a non-monotonic current density 
profile J z , with a reversed current

J z(r) = I p R0

πa2

(δ + 2)(δ + 1)

δ + γ + 2

(
1 + δ

r2

a2

)(
1 − r2

a2

)γ

(4)

where a = 0.18 m is the plasma radius, I p = 20 kA is the plasma 
current. We also have the parameters δ = −100.2 and γ = 5 [18]. 
All these parameters are from TCABR tokamak [20]. For negative 
values of δ, the poloidal field has negative and positive values, 
changing signal at the divergence surface. For positive values the 
poloidal field is positive everywhere. The parameter γ increases 
with the field line shear at the plasma edge. From Equation (4), 
we determine the radial position for which the current density 
changes signal, namely rc = a/

√−δ.
This reversed current profile is shown in Fig. 2, where y = 0

corresponds to the plasma edge and y = 1 corresponds to the 
plasma center. Recently, other theoretical works have considered 
similar reversed density magnetohydrodynamic equilibrium solu-
tions, analytical and numerical, with non-nested magnetic surfaces 
[15–19].



2418 B. Bartoloni et al. / Physics Letters A 380 (2016) 2416–2421
Fig. 2. Reversed current density profile. We have a central region where the current 
density becomes negative (y = 0 at the plasma edge and y = 1 at the center).

For the considered J z , we calculate the magnetic field by Am-
père’s Law. In Fig. 3(a), we reproduce the poloidal field profile and 
the equilibrium safety factor profile, which is given by:

q0(r) = q(a)
r2

a2

[
1 −

[(
1 + β ′ r2

a2

)(
1 − r2

a2

)γ +1]−1]

×
[

1 − 4

(
r

R0

)2]−1/2

(5)

where q(a) = εa2/R2
0 = 5.0 and β ′ = δ(γ + 1)/(δ + γ + 2) with 

δ = −100.2 and γ = 5.
The equilibrium safety factor profile of Fig. 3(a) has a diver-

gence at the radial position where the poloidal magnetic field 
is zero and, consequently, the magnetic surface encloses a null 
current density. Such divergence corresponds to a null rotation 
number and originates the peculiar effects analyzed in the next 
sections.

In the large aspect ratio equilibrium, ε ∼ ∞ and a1 = 0, the 
map gives invariants with constant y. In the invariant horizontal 
lines the orbits are quasi periodic (periodic) if q is irrational (ra-
tional). Each invariant line has a rotation number obtained from 
equation (5), and one of theses invariants has a null rotation num-
ber.

3. Shearless bifurcations

Next we analyze the alterations in the Poincaré map due to the 
toroidal correction (finite ε) introduced by considering the param-
eter a1 = −0.04 in equations (2).

The field component in Fig. 3(a) is null in the region where 
y = 0.876. This null component causes a divergence in the ex-
pression for q0(y) in this position, as it can be seen in Fig. 3(b). 
This safety factor was obtained taking into account the equilibrium 
symmetry, namely, its independence of coordinate θ . However, the 
toroidal correction introduces a dependence on θ and a ripple in 
the modified invariant curves. Thus, the modified safety factor has 
to be calculated numerically, from the average rotation number, 
according to the definition:

q ≡ lim
k→∞

2πk∑k
j=0(θ j+1 − θ j)

(6)

Fig. 4(a) shows the modified profile q(y), obtained by fixing x =
0.510 and calculating numerically the safety factor for 100 values 
of y between 0 and 1.

Fig. 4(a) shows a divergence (null rotation number) at y =
0.916 (it is not in y = 0.876, as in Fig. 3(b), because here we take 
Fig. 3. (a) Poloidal magnetic field profile, which is null at y = 0.876; (b) Safety factor profile, with a divergence in y = 0.876.

Fig. 4. (a) Numerical safety factor profile. We fixed x = 0.51 to obtain this profile. In the inset, we highlight the maximum and minimum points; (b) Shearless line and island 
chains.
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Fig. 5. (a) Magnetic field profiles for various values of δ in reversed current region. Reversed current region (negative magnetic field) becomes smaller with the increase, in 
modulus, of δ. (b) Numerical safety factor profile for same values of δ. Values of δ: −100.2 (curve 1), −250.2 (curve 2), −400.2 (curve 3), −46000.2 (curve 4) and 100.2 
(curve 5).
into account the toroidal correction). Therefore, y = 0.916 is the 
position of the surface with a null rotation number displaced by 
the toroidal correction.

In Fig. 4(a) we see two points where ∂q/∂ y = 0 (in y = 0.903
and y = 0.873), i.e., these two points are in shearless invariant 
curves [4,6]. Around each of these shearless curves we expect to 
observe twin island chains with the same rotation number, as it is 
shown in Fig. 4(b) for one of the indicated shearless lines.

To investigate the onset of the shearless bifurcations we vary 
the values of δ in the expression for J z (equation (4)), for the same 
plasma current I p = 20 kA.

Fig. 5(a) presents the equilibrium poloidal field radial profiles 
for five values of δ chosen to show the influence of the reversed 
current region, with negative poloidal field, on the shearless bifur-
cation. To verify this influence, we present in Fig. 5(b) the mod-
ified safety factor profiles corresponding to the field profiles of 
Fig. 5(a).

We notice in Fig. 5(a) that, for curves 1, 2, 3, the region in 
which we have the reversed current (negative magnetic field) be-
comes smaller with the increase, in modulus, of δ. Curve 4 corre-
sponds to δ = −46000.2 and we can see that the field is positive 
and ends at zero for y = 1, i.e., the current density profile becomes 
only non-monotonic, without reversed current. In Fig. 5(b) we re-
produce the modified safety factor profiles for the same values of 
δ and we can see that the distance between the critical points also 
decreases until they disappear in the curve 4 (again it corresponds 
to δ = −46000.2). For this critical δ value, we do not have island 
chains in Poincaré sections. Therefore, we can conclude that the 
appearance of chain islands is directly related to δ parameter.

The same effect is observed whenever we vary the toroidal cor-
rection parameter a1. As we decrease the value of a1, in modulus, 
we also realize that the distance between the critical points de-
creases until they disappear in the limit of a1 going to zero, as we 
see in Fig. 6 (we fixed the parameter δ = −100.2).

4. Island and chaos

In Fig. 7(a) we have a Poincaré section of Ulmann map. The 
blue line indicates the divergence curve. The rectangle indicates 
the region to which we have a zoom, in Fig. 7(b).

We can see that, unexpectedly, the Poincaré section given by 
the map without perturbation, close to divergence curve, has many 
small islands (Fig. 7(a)) and localized chaos (Fig. 7(b)).

To study this behavior, we calculate again the modified safety 
factor profile q(y) for initial conditions close to the divergence 
curve.

In Fig. 8(a), we fixed x = 0.49 along the line shown in the 
Poincaré section in Fig. 7(a). If the value of the numerical safety 
Fig. 6. Numerical safety factor profile for some values of a1. Values of a1: −0.04
(curve 1), −0.02 (curve 2), −0.01 (curve 3), 0.00 (curve 4) and 0.30 (curve 5).

factor does not converge, we have a chaotic trajectory. All values 
converge, see Fig. 8(a), indicating that the chaos is quite located. 
When we have a chain, the value of the numerical safety factor 
is constant, and we can observe various levels corresponding to 
the passages through the island chains. When we make a zoom in 
Fig. 8(a), we can see the same behavior, with the levels where the 
numerical safety factor is constant (Fig. 8(b)). This characteristic is 
known in the literature as devil’s staircase and can also be observed 
in a circle map [21]. These many levels show that we have many 
small islands, as observed in Fig. 7(a).

We see that in the large aspect ratio tokamak approximation, 
for a reversed current density profile, the toroidal correction intro-
duces many small island chains and an extremely localized chaos.

5. Tokamap

In this section we show that the results described in the pre-
vious sections can also be obtained for another two-dimensional 
symplectic map, the Tokamap, found in the literature to analyze 
magnetic field line dynamical properties [9].

The Tokamap is a well established Hamiltonian map proposed 
by Balescu et al. to model magnetic field lines compatible with a 
toroidal geometry [9,22–26]. The motion of magnetic field lines is 
described by a Poincaré map where:

(ψk+1, θk+1) = P̂ (ψk, θk) (7)

relating the intersection point (ψ, θ ) of the field line with the 
poloidal section ∅ = const to the next point (ψn+1, θn+1) after the 
toroidal turn. Specifically, the Tokamap is given by the following 
set of equations:
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Fig. 7. (a) Poincaré section close to the divergence curve. (b) Amplification of the area indicated by a box in (a), where we can see many small islands and a chaotic field line.

Fig. 8. (a) Numerical safety factor profile. (b) Amplification of the profile box showing the levels when the values are constants, indicating the presence of the islands.
ψk = ψk − L

2π

ψk+1

1 + ψk+1
sin(2πθk) (8)

θk+1 = θk + 1

q(ψk+1)
− L

2π

1

(1 + ψk+1)
2

cos(2πθk) (9)

where ψ is the toroidal flux, θ is the poloidal angle and L is the 
stochastic parameter.

The Tokamap meets a minimal requirement in order to follow 
toroidal geometry: the magnetic axis is impenetrable, with ψ0 = 0
implying that ψn > 0 for all n, and if ψ0 = 0 then ψn = 0 for any 
value of n. Equations (2)–(3) are implicit. However, equation (2)
can be explicitly solved by:

ψk+1 = 1

2

[√
P 2(ψk, θk) + 4ψk − P (ψk, θk)

]
(10)

where P (ψk, θk) = 1 − ψk + L
2π sin(2πθk).

In the original version of the map the safety profile q(ψ) is 
given by:

1

q
= 1

4
(2 − ψk+1)

(
2 − 2ψk+1 + ψ2

k+1

)
(11)

In the present work, we are mainly concerned with the re-
versed current density, which yields the safety profile introduced 
in section 2. In what follows, we show the consequences of such 
safety profile on Poincaré plots of magnetic field lines, we use 
y = 1 − ψ and x = θ .

In the original Tokamap, the Shafranov shift displaces the mag-
netic axis for small values of the stochastic parameter (L � 1); for 
L = 0 the tokamap becomes integrable [9]. As an example, Fig. 9
shows the preserved KAM surfaces and the displaced magnetic axis 
for L = 0.05.

In Fig. 10(a) we show the phase portrait obtained with the new 
safety profile for L = 0.05. The line shows the x values used to 
calculate the numerical safety factor profile in Fig. 10(b).
Fig. 9. Regular magnetic surfaces for the original Tokamap with L = 0.05.

Fig. 10. (a) Phase portrait obtained by the new safety profile for L = 0.05. (b) The 
line shows the x = 0.51 used to calculate the numerical safety profile.

As in the previous example, we find two shearless curves 
(y1 = 0.8728 and y2 = 0.8856) and one divergence (y = 0.8941). 
Around each shearless curve, there are two twin chains of islands, 
as shown in Fig. 11 for y2.

Further analysis also shows that even for such small value of L, 
several small islands and localized chaos appear. Fig. 11 shows an 
example of such phenomenon.
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Fig. 11. (a) Chains of magnetic islands. (b) Localized chaos around one island.

Thus, the shearless bifurcations, islands onset and localized 
chaos found in the Ullmann map are also observed for the 
Tokamap.

6. Conclusions

We considered two symplectic two-dimensional maps, Ullmann 
map and Tokamap, with a null rotation invariant surface and a 
symmetry broken by a small amplitude geometry correction.

These two maps describe magnetic field lines in the limit 
of large aspect ratio tokamaks, described by plasma cylindri-
cal symmetric equilibria, with a peculiar null rotation invariant 
two-dimensional surface. A correction taking into account a fi-
nite aspect ratio introduces a toroidal field lines curvature around 
the equilibrium symmetry axis and, consequently, the introduced 
poloidal dependence on this equilibrium breaking the symmetry, 
creating islands chains and chaos surrounding the null rotation 
surface.

Furthermore, with the toroidal correction, two shearless invari-
ant surfaces are created, near the null rotation invariant, in addi-
tion to the unperturbed one.

The reported onset of islands, chaos, and shearless invariants in 
the analyzed maps can be attributed to the breaking of the maps 
symmetry, due to the small correction introduced to include the 
field lines toroidal curvature perturbation in the considered struc-
turally unstable equilibria.

Initially, to study the field lines for the tokamak discharges with 
reversed current density, we applied the Ullmann map which can 
be related directly to the parameters of a given tokamak and is 
still symplectic. We splitted our mapping for the Poincaré section 
immediately following the perturbation in two consecutive ones: 
the first describing the equilibrium line trajectory along the toka-
mak chamber and the second describing the effects of the external 
current coils. Thus, we could investigate the presented effects ob-
served without any external perturbation. Also important was that 
the toroidal mapping reduced to the cylindrical mapping in the 
limit of small inverse of the aspect ratio. Furthermore, the map 
was derived for a generating function, which guarantees its sym-
plecticity [20]. The safety factor profile was chosen to reproduce 
the considered reversed current density. Moreover, the map allows 
the introduction of an arbitrary poloidal magnetic field profile and, 
therefore can be applied for numerical simulations of other future 
experiments with reversed current density.

Finally, we applied the tokamap to the reversed current density 
equilibria mainly to validate our results. The obtained confirmation 
is important because the tokamap have been used in literature to 
simulate several dynamical properties of field lines in tokamaks. 
However, to validate our results we had to choose parameters val-
ues that could not be directly related to those used in the Ullmann 
map or measured in tokamak experiments. Our procedure con-
firmed the reported effects but limits the applicability of tokamap 
to predict experiments because its parameters do not correspond 
to experimental values.
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