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We investigated drift-wave turbulence in the plasma edge of a small tokamak by
considering solutions of the Hasegawa–Mima equation involving three interacting modes
in Fourier space. The resulting low-dimensional dynamics presented periodic as well as
chaotic evolution of the Fourier-mode amplitudes, and we performed the control of
chaotic behaviour through the application of a fourth resonant wave of small amplitude.
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1. Introduction

Drift waves play an important role in the transport of energy and particles in
magnetically confined plasmas, since the presence of steep density gradients in
the plasma edge gives rise to turbulence, which can explain the anomalous
transport rates observed experimentally (Horton 1999). A theoretical description
of drift-wave propagation and the emergence of cross-field transport in tokamak
plasmas has been proposed by Hasegawa & Mima (1977, 1978) leading to a
partial differential equation for the electrostatic potential.

Solutions to the Hasegawa–Mima equation can be sought as Fourier-mode
expansions, a procedure which yields an infinite number of coupled ordinary
differential equations governing the time evolution of each mode amplitude
(Horton & Hasegawa 1994). We performed a three-mode truncation of this
system, analysing the dynamics of the resonant interacting modes, where we
have added phenomenological growth/decay rates in order to include the energy
injection in the triplet and its redistribution among the different modes
interacting (Terry & Horton 1982, 1983). Energy transfer processes are key
ingredients to explain the observed broadband spectrum of the drift-wave
turbulence in the tokamak plasma edge (Wagner & Stroh 1993).
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The three waves have been chosen such that one is an energy pump mode
and the other two are sidebands, a model which also arises in situations of
interest in space plasma physics (Chian et al. 1994). The dynamics of the three-
wave model has been analysed with special emphasis on the chaotic evolution of
the complex Fourier-mode amplitudes found for wide ranges of the linear
growth/decay rates. An intermittent route to chaos has previously been
described for this kind of regime (Batista et al. 2006). In this paper we have
focused on the possibility of controlling chaotic behaviour through the
application of a fourth resonant mode with small amplitude. Our results are
promising in view of the small amplitudes needed to stabilize chaotic wave
dynamics into a low-period orbit.

This paper is organized as follows: in §2 we introduce the theoretical
framework used to describe drift-wave turbulence, as well as the three-wave
truncation model we deal with. In §3, the chaos control procedure is introduced.
Our conclusions are left to §4.
2. Three-wave model

Drift waves in magnetically confined plasmas can be studied by means of the
equation (Hasegawa & Mima 1977, 1978)

v

vt
ðV2fKfÞK½ðVf!ẑÞ$V� V2fKln

n0

uci

� �� �
Z 0; ð2:1Þ

where f(x, t) is the electrostatic potential; n0 is the background plasma density;
uciZeB=mi is the ion-cyclotron frequency; BZBẑ is the magnetic field; and
e and mi are the ion charge and mass, respectively. The operator P stands for
the gradient with respect to directions transverse to the magnetic field,
VZ x̂v=vxC ŷv=vy. The rectangular geometry we use in our treatment is a
large aspect-ratio approximation for the tokamak plasma edge, for which
curvature effects are negligible in both toroidal and poloidal directions. In this
case, the coordinates (x, y and z) stand for the radial position measured from the
tokamak wall, the rectified poloidal and toroidal angles, respectively.

The Hasegawa–Mima equation can be derived from ion-fluid theory, assuming
that the drift-wave frequency u is much smaller than uci , where the phase
velocity along the magnetic field is such that vTi

!ðu=kzÞ!vTe
, where Ts is the

thermal velocity for ions (sZi ) and electrons (sZe) and (kx, ky, kz) are the
wavevector components. The drift-wave dispersion relation is (Horton &
Hasegawa 1994)

uZuk ZK
1

1Ck2
ðk!ẑÞ$V ln

n0

uci

� �� �
: ð2:2Þ

Drift waves have a characteristic dispersion scale length rsZ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
=uci, where

Te is the electron temperature, and which turns out to be the fundamental
electric cross-field shielding distance for charge clumps in the regime of drift-
wave fluctuations. In equation (2.1), the coordinates x, y, z have been rescaled by
rs, the time by uci and the potential by Te/e.
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We shall investigate numerical solutions of equation (2.1) through a Fourier-
mode expansion of the electrostatic potential,

fðx; tÞZ 1

2

XN
jZ1

fkj ðtÞexpðikj$xÞCf�
kj ðtÞexpðKikj$xÞ

h i
; ð2:3Þ

where fkj ðtÞ is a complex mode amplitude at a fixed position x, corresponding to a
wavevector kj and the asterisk stands for the complex conjugate. Substituting the
expansion (2.3) into equation (2.1) yields an infinite system of coupled differential
equations for the mode amplitudes (Katou 1982; Horton & Hasegawa 1994):

dfkj

dt
C iukj

fkj Z
X

ðka;kb;kgÞ
L

ka
kb;kg

f�
kbf

�
kg ; ð2:4Þ

where jZ1, 2, 3,., and the summation runs over wavevector triplets which
satisfy the resonant condition kaCkbCkgZ0 for any choice of kj. The drift-wave
mode frequencies are given by the dispersion relation (2.2), and the coupling
coefficients are given by

L
ka
kb;kg

Z
k2
gKk2

b

� �
2 1Ck2

a

� � ðkb!kgÞ$ẑ: ð2:5Þ

In principle we would need a very large number of modes in order to describe a
fully turbulent scenario due to the drift waves. However, we are chiefly interested
to investigate the onset of turbulence, i.e. the scenario where a small number of
modes becomes unstable, leading to a cascade of higher modes. Accordingly, in a
lowest-order truncation of equation (2.4) we retained three resonant modes
satisfying the resonance conditions

k1 Ck2Ck3 Z 0 and ð2:6Þ

uk1 Cuk2 Cuk3
z0: ð2:7Þ

Note that the second condition holds only in an approximate way, i.e. we allow
for a (small) frequency mismatch. Moreover, the first condition can be thought
of as defining a vector triangle in a zZconstant plane transversal to the
toroidal coordinate.

The three-mode system reads (Hasegawa et al. 1979)

df1

dt
C iu1f1 ZL1

2;3f
�
2f

�
3 Cg1f1; ð2:8Þ

df2

dt
C iu2f2 ZL2

3;1f
�
3f

�
1Cg2f2 and ð2:9Þ

df3

dt
C iu3f3 ZL3

1;2f
�
1f

�
2 Cg3f3; ð2:10Þ

where we introduced the shorthand notation: fjZfkj
and ujZukj . We

introduced phenomenological dissipative terms in the coupled mode equations
to represent the energy injection necessary to sustain the wave interactions,
where gi are growth/decay coefficients (Terry & Horton 1982, 1983).
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In this paper we used typical parameter values of small tokamaks: toroidal
magnetic field BZ0.4 T; electron temperature TeZ10 eV; and electron density
n0Z7!1018 mK3, from which we estimated the ion-cyclotron frequency to be
3.82!107 Hz and the length-scale is thus rsz10K3 m. The radial density
gradient at the plasma edge was estimated, on the basis of particle flux
measurements, to be (Heller et al. 1997)

N :Z rs

����V ln
n0

uci

� �����Z rs

���� Vn0

n0

����z0:17: ð2:11Þ

Measurements of potential edge fluctuations in small tokamaks give a poloidal
wavenumber ky in the range of (1–5)!103 mK1, with a broad spectral content in
the kHz range and a more pronounced peak at 50 kHz (Castro et al. 1996). The
other wavevector components were estimated using linear relations and applying
the resonance condition (2.6), such that the normalized frequencies can be chosen
as ju1jZu2Z ju3jZ1:31!10K3, and are related to the wavevectors through the
dispersion relations (Batista et al. 2006)

ui Z
ðkiyK kixÞ
1Ck 2

i

N ; ði Z 1; 2; 3Þ; ð2:12Þ

from which we can estimate the coupling coefficients in equations (3.3)–(3.5) as

L1
2;3 Z 32:8u1 Z 0:04; ð2:13Þ

L2
3;1 ZK421:8u1 ZK0:5 and ð2:14Þ

L3
1;2 Z 335:9u1 Z 0:4: ð2:15Þ

Moreover, we shall assume that f2 is the inductor wave, which pumps energy to
the daughter waves f1 and f3; and the values of their growth/decay coefficients
are adjusted to the K50 to C50 V range for the floating electrostatic potential
(Castro et al. 1996): g1Zg3!0 and g2Z0.01, the former rates being our tunable
parameter.

Since the three Fourier modes retained fi are complex variables, the phase space
of the system has six dimensions. We can write them in exponential form as

f1 Z
ffiffiffiffiffiffi
F1

p
ei41 ; ð2:16Þ

f2 Z
ffiffiffiffiffiffi
F2

p
ei42 and ð2:17Þ

f3 Z
ffiffiffiffiffiffi
F3

p
ei43 ; ð2:18Þ

where
ffiffiffiffiffi
Fi

p
and fi are the real and imaginary parts of fi , iZ1, 2, 3. Substituting

(2.16)–(2.18) into the three-mode equations (2.8)–(2.10), one obtains six real
equations. For the mode f1, the real and imaginary parts obey the equations

_F1 ZL1
2;32

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1F2F3

p
cosð42 C43 C41ÞCgF1 and ð2:19Þ

_41 ZKL1
2;3

ffiffiffiffiffiffiffiffiffiffiffi
F2F3

F1

s
sinð42 C43 C41ÞKu1 ð2:20Þ

and similar equations for the time evolution of F2, f2, F3 and f3.
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We can simplify the above system by defining the new angle (phase conjugacy)

jh42C43 C41: ð2:21Þ
Dotting the above expression and substituting the corresponding equations for
fi , we eventually find an equation governing the time evolution of the new angle

_jZA sin jKDu; ð2:22Þ
where the term A depends on the coupling coefficients Lk

i;j and on the amplitudesffiffiffiffiffi
Fi

p
; and DuZu1Cu2Cu3 is the non-zero frequency mismatch.

Hence, the original set of six equations can be reduced to just four equations,
namely the three ones describing Fi plus equation (2.22) describing _j. Moreover,
in all these equations, the phases appear combined in the same way, such that
this phase conjugacy introduces a constraint in the six-dimensional phase space
of the problem, and the trajectories must lie on a four-dimensional subset of the
phase space. The resulting dynamical system makes phase-space volumes shrink
with time with a constant rate given by 2(g1Cg2Cg3)!0, such that equations
(2.8)–(2.10) are a globally dissipative dynamical system, whose dynamical
behaviour can be conveniently investigated through two-dimensional projections
and/or Poincaré maps.
3. Control of chaos

Once we have related electrostatic turbulent fluctuations to the low-dimensional
chaotic behaviour of drift-wave modes, one may think of a control of chaos
strategy with the purpose of reducing or suppressing weak turbulence. This
intervention may control the chaotic time evolution in a given spatial scale, unless
a collective effect sets in. Such a collective effect has been observed in some control
strategies of spatially extended systems, where a pinning scheme consisting of
localized perturbations in space has been successfully used (Hu & He 1993).

Our control strategy is based on the addition of a fourth resonant wave with
small amplitude. Resonant four-wave coupling involves the interaction of two
wave triplets. The presence of the second triplet having two waves in common
with the first can either increase or stabilize the instability of the first triplet
(Karplyuk et al. 1973; Walters & Lewak 1977). Accordingly, we introduced a
new resonance into the system by including a fourth wave f4, obeying the
additional resonant conditions,

k4 Z k1 Ck2 and ð3:1Þ

u4zu1 Cu2: ð3:2Þ

The amplitude of the control wave is kept constant so that de=dtZ0 and small
enough such that jf4jhe/ jf1;2;3j (Lopes & Chian 1996).

Retaining the fourth resonant wave in equation (2.4), there results the
modified system

df1

dt
C iu1f1 ZL1

2;3f
�
2f

�
3 Cg1f1C jejf�

2; ð3:3Þ
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Figure 1. Projection of the phase space showing the attractors obtained for g2Z0.01,
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df2

dt
C iu2f2 ZL2

3;1f
�
3f

�
1 Cg2f2 C jejf�

1 and ð3:4Þ

df3

dt
C iu3f3 ZL3

1;2f
�
1f

�
2 Cg3f3: ð3:5Þ

We integrated numerically equations (3.3)–(3.5) using a twelfth-order Adams
method and the initial conditions,

Re f1ð0ÞZRe f2ð0ÞZRe f3ð0ÞZ 0:1 and ð3:6Þ

Im f1ð0ÞZ Im f1ð0ÞZ Im f1ð0ÞZ 0:0: ð3:7Þ

A representative example of the control procedure is shown in figure 1. We set
g1ZK0.194 and plotted two-dimensional projections of the four-dimensional
subset of phase space to which the trajectories are constrained to stay, due to the
phase conjugacy described at the end of §2. We used as coordinates the moduli of
two of the waves, in plots of jf1j versus jf2j. Other choices of coordinates would
produce similar results. We observe in figure 1a that the uncontrolled situation
(eZ0) exhibits an apparently chaotic attractor in the phase projection chosen.
The addition of a fourth wave, with an amplitude as small as eZ10K12 is already
enough to steer the phase-space trajectories into a period-eight orbit (figure 1b).
Other orbits with periods equal to 4 and 2 can be obtained using eZ10K11

(figure 1c) and 10K10 (figure 1d ), respectively.

g1Zg3ZK0.194 and (a) eZ0, (b) eZ10K12, (c) eZ10K11, (d ) eZ10K10.
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Figure 2. Time series for g2Z0.01, g1Zg3ZK0.194 and (a) eZ0, (b) eZ10K10, (c) maximal
Lyapunov exponents for the cases (a,b).
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The time series corresponding to the evolution of the pump wave amplitude
jf2(t)j with chaotic (uncontrolled) and periodic (controlled) attractors are shown
in figure 2a,b, respectively. The overall behaviour of the pump wave is the same
in both cases, since f2, having a positive growth rate, initially increases
exponentially at the linear rate g2, because the other modes (not shown) have
small amplitudes. However, as they increase, the quadratic terms in (3.3)–(3.5)
become significant and saturate the linear growth of the pump wave, causing its
abrupt decay. The pump wave then imparts its energy to the daughter waves,
which rapidly increase their amplitudes in spike-like events. Similarly, since the
time-evolution of the daughter waves follows similar equations, their growth is
also saturated by the nonlinear terms, and they also decay very fast, while the
pump wave amplitude rises again completing the cycle.

In a chaotic situation (figure 2a), the time intervals between consecutive maxima
of the pump wave amplitude vary in an irregular fashion, as well as the values taken
on by these maxima. On the other hand, for periodic behaviour (figure 2b), the time
intervals and the maximum amplitudes repeat themselves with a well-defined
periodicity. Figure 2c shows the time evolution of the maximal Lyapunov exponent
for both cases, confirming the chaoticity of the uncontrolled dynamics.
Phil. Trans. R. Soc. A (2008)
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Besides the control of chaotic time series, the introduction of a fourth resonant
wave of small amplitude can also suppress the intermittent switching between
laminar regions of periodic motion and chaotic bursts, which happens for certain
parameter values (Batista et al. 2006). Figure 3a shows an example of such
behaviour for the uncontrolled system, which is suppressed for eZ10K10

(figure 3b), as confirmed by the corresponding maximal Lyapunov exponents
(figure 3c).

The preceding results refer to interacting modes in the Fourier space, but we
can describe our resonant control procedure also in the configuration space, by
focusing on a given point, say xZyZ0, and considering the superposition of the
three modes in (2.3). The evolution of the (dimensionalized) drift-wave potential
is shown by figure 4a during a time interval of 0.6 ms, for the same parameters as
in figure 2a, i.e. without control. This time series exhibits the same range of
values as in typical measurements of the floating potential in small tokamaks
(Castro et al. 1996). The application of a resonant perturbation of strength
eZ10K10, while keeping the signal within the same range, presents a clear
increase in the periodicity content (figure 4b).
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The dependence of the dynamics on the control parameter g1 is illustrated by
the bifurcation diagram shown in figure 5, in which we plot the asymptotic values
of maxjf2j versus the strength of the resonant perturbation e, the remaining
parameters being held constant. This form of sampling yields results
qualitatively similar to a stroboscopic Poincaré map and furnishes valuable
information on the system dynamics (Batista et al. 2006). As a general trend, an
increase in e leads to a less complex dynamics, starting from a two-band chaotic
attractor for the uncontrolled dynamics, and evolving, through an inverse period-
doubling cascade, towards low-period orbits. In this way we can, at least in
principle, choose the amplitude of the control wave to be applied in order to steer
the chaotic trajectory to some desired low-period stable orbit, which may be a
stationary state of interest, from the point of view of controlling drift-wave
turbulence in the plasma edge.

We also considered the effect of the control on the bifurcation diagram
obtained when the parameter g1 is varied. Figure 6a shows such a diagram for
the uncontrolled system (eZ0), which has been analysed in a previous work
(Batista et al. 2006). The worth-mentioning aspect of this figure is the relative
prevalence of chaotic dynamics for g1 higher (in absolute value) than z0.2,
appearing due to a period-doubling cascade. If a weak-amplitude perturbation is
applied (figure 6b), there follows that this chaotic region is substantially reduced
in size, and it terminates through other period-doubling cascades, characterizing
a bifurcation bubble for which a stable period-two orbit lies in the formerly
chaotic region. A bifurcation bubble is the combination, in the bifurcation
Phil. Trans. R. Soc. A (2008)
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diagram of a given dynamical system, of a period-doubling cascade starting from
a stable fixed point and leading to chaos, followed by an inverse, or period-
halving cascade leading eventually to a single fixed point. This effect is even more
visible for higher e (figure 6c), since the bubble terminates in a period-one orbit
at g1zK0.36.
4. Conclusions

In this work we investigated the application of a control procedure in a low-
dimensional dynamical system which is a truncated Fourier-mode expansion
stemming from the high-dimensional problem of drift-wave turbulence in the
plasma edge of a tokamak. We used an additional resonant perturbation of weak
amplitude, and we showed that this strategy can stabilize chaotic orbits with
very small control amplitudes, which turns to be an interesting feature from the
experimental perspective. Many cautionary remarks are in order, though.

The first one is that our control strategy is a suppression of chaos scheme
rather than a control procedure in the sense of the Ott–Grebogi–Yorke method,
for example (Shinbrot et al. 1993). In the latter, one adjusts an external
perturbation strength to steer the chaotic trajectory into the stable manifold of a
desired unstable periodic orbit embedded in the chaotic attractor, by following
the chaotic trajectory until it comes close enough to the unstable orbit one wishes
to stabilize. By way of contrast, in our control procedure we used a resonant
perturbation which may be viewed of as coming from the modes not included in
the three-mode truncation. In this sense, our perturbation is intrinsic to the
Phil. Trans. R. Soc. A (2008)
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system, and cannot be easily adjusted so as to choose a low-period orbit for the
controlled dynamics. Moreover, since the wave perturbation is resonant with the
other three waves, its strength can be very small, with the same order of
magnitude as the environmental noise, for example.

As a result, we cannot choose a priori to what periodic orbit the system will
converge asymptotically, but we have shown that chaos suppression is possible
by means of intrinsic resonances with small amplitudes. We have restricted our
description to three Fourier modes, and considered the control wave as a
resonant fourth mode. In principle, a comprehensive description of drift-wave
turbulence would involve a very large (in fact infinite) number of such modes.
However, other modes are included in such a way that a multiplet is formed by
sets of triplets. Hence, one can regard a wave triplet as a kind of building block of
the processes involved in large-scale turbulence, and the understanding of its
control mechanisms may shed some light on future spatio-temporal control
procedures.
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