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Abstract

We considered a coupled chaotic logistic map lattice exhibiting the scale-free property: the outreach connectivity of each

node obeys a power-law distribution. We analyzed a weak form of coherent spatio-temporal behavior (direction

coherence) which presents features common to completely synchronized states, like a transitional behavior with

intermittent bursting. We studied such phenomena and their dependence on the parameters of the coupled scale-free

lattice. Prospective applications in neuronal networks are emphasized.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Networks with complex topology are ubiquitous both in scientific and technological applications [1].
Such complex networks have nodes representing individuals or organizations, and the links stand
for the interactions among them [2]. A class of complex networks which has received a lot of attention is
the scale-free network, for which the connectivity, or the number of connections for each node, presents a
statistical power-law dependence [3]. Hence in scale-free networks a few nodes are connected with a large
number of other ones, whereas most of the nodes are connected with a few others only. More specifically, if
PðkÞdk denotes the probability of finding a node with connectivity between k and k þ dk, for scale-free lattices
one has PðkÞ�k�g where g41, what turns to be an example of Lévy distribution [4]. The power-law
distribution of connectivities is regarded as a consequence of two generic mechanisms [3]: (i) networks expand
continuously by the addition of new nodes; and (ii) new nodes attach preferentially to already well-connected
nodes.

A plethora of networks of physical, biological, and social interest have been found to exhibit a scale-free
connectivity: the World Wide Web [5], earthquakes [6], large computer programs [7], epidemic spreading [8],
e front matter r 2007 Elsevier B.V. All rights reserved.
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human sexual contacts [9], protein domain distributions [10], cellular metabolic chains [11], human brain
functional networks [12], just to mention a few representative examples.

While many problems involving scale-free networks have been treated from the graph–theoretical point of
view, such that the Euclidean distance between nodes does not play a significant role, practical applications of
scale-free networks often involve the use of a lattice embedded in a Euclidean space [13]. For example,
neuronal networks are embedded in a three-dimensional lattice in the brain, where the nodes are the neurons,
connected by axons and dendrites [14]. A recent work used a scale-free neural network to implement Hopfield
pattern recognition [15]. Hence, in order to investigate dynamical models for the brain function, for example,
it is necessary to develop methods to generate and analyze scale-free lattices of coupled dynamical systems.

In this paper we consider a lattice of coupled maps, which are discrete-time dynamical systems playing the
role of information-processing neurons, and a coupling prescription with the power-law dependence
characteristic of scale-free networks. Since there are experimental evidences that the neurons exhibit chaotic
behavior we use coupled logistic maps as simple models [16]. However, other discrete-time maps [17] or
continuous-time flows [18,19] could be used as well. In particular, the choice of logistic maps limits us to the
case of a single timescale, thus emulating the spiking dynamics only, whereas the models of Refs. [17–19] are
able to describe also the bursting timescale.

The spatio-temporal dynamics of coupled map lattices with the related small-world property (a small
average distance between sites, while retaining a reasonable degree of clustering [20]) has been studied in
previous papers [21,22]. We found that, for small-world lattices, synchronization of chaotic motion is
enhanced due to the non-local couplings added to an otherwise purely regular coupled map lattice. Lind et al.
have studied completely synchronized states in a scale-free lattice for which the coupling is heterogeneous
(proportional to some power of the neighbor connectivity) [23]. For the scale-free lattices considered in this
work the coupling is homogeneous (i.e. the coupling strength takes on the same value for all coupled sites) and
we cannot find complete synchronization. In spite of this, we observed a weaker form of synchronization,
which we called coherence direction, and which is an analogue of phase synchronization for discrete-time
systems.

The main purpose of this work is to consider the transition to phase synchronization and its dependence
with the coupling strength and the nonlinearity of the sites. We found this transition to share many features
with those observed for completely synchronized states, specially an intermittent behavior near the transition
threshold. This paper is organized as follows: in Section 2 we introduce the coupled logistic map lattice and
explain how we obtained a scale-free lattice. Section 3 deals with the direction coherence and the transition to
it through intermittency. Our conclusions are left to the last section.
2. Scale-free coupled chaotic map lattice

Coupled map lattices are widely reckoned as simple but paradigmatic models for complex systems like
neural networks, excitable media, oscillator chains, etc. [24]. They present both space and time as discrete
variables, while retaining a continuous state variable that is capable to undergo a smooth nonlinear dynamics.
We examine, in particular, a chain of N coupled logistic maps x7!f ðxÞ ¼ rxð1� xÞ, where xðiÞn 2 ½0; 1�
represents the state variable for the site i ði ¼ 1; 2; . . . ;NÞ at time n. The chaotic region in the bifurcation
diagram of an isolated chaotic map starts at the Feigenbaum point r1 ¼ 3:569 945 672 . . . and ends at the crisis
point rCR ¼ 4:0. In spite of this region having an infinite number of periodic windows, the probability of
getting a chaotic orbit by randomly choosing r in the interval ðr1; rCR� is non-zero [25].

In this paper we use the following coupling prescription:

x
ðiÞ
nþ1 ¼ ð1� �Þf ðx

ðiÞ
n Þ þ

�

kðiÞ

X
j2I

f ðxðjÞn Þ, (1)

where �40 is the coupling strength and we assumed that each site i is coupled with itself and with a set I

comprising kðiÞ other sites randomly chosen along the lattice according to an assigned scale-free probability
distribution PðkÞ�k�g, where k is the connectivity, or the number of connections per site. We use free
boundary conditions for the lattice and random initial conditions x

ðiÞ
0 .
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Fig. 1. (a) Seed lattice with N0 ¼ 11 sites used to start a sequence of steps towards a scale-free lattice. (b) Probability distribution for

connectivity of a coupled map lattice of the form (1) with N ¼ 230 sites. The solid line is a least-squares fit with slope �2:08.
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We built the scale-free lattice by means of a sequence of steps s ¼ 0; 1; 2; . . . ; smax; starting from a seed lattice
with N0 ¼ 11 sites (Fig. 1(a)). At each step s a new site is inserted in the lattice of size Ns, such that it is
connected to ‘ ¼ 2 randomly chosen sites. According to the scale-free distribution, these connections occur
preferentially with the more connected sites. This is done using a different probability for each site
PðiÞs ¼ kðiÞs =Ns, where kðiÞs is the number of connections per site at the step s. The process is repeated until we
achieve a desired lattice size N, which we choose as N ¼ 230 in the numerical simulations we perform in this
work. After a number smax of steps we have kðiÞ connections per site, corresponding to a probability
PðiÞ ¼ kðiÞ=N. Fig. 1(b) shows a non-normalized histogram for the number of sites with a connectivity k,
obtained through this procedure for N ¼ 230 sites. The numerical approximation to the probability actually
displays the scale-free signature of a power-law scaling k�g with slope g ¼ 2:08.

We can also rewrite (1) in the form

x
ðiÞ
nþ1 ¼ ð1� �Þf ðx

ðiÞ
n Þ þ

�

kðiÞ

XN

j¼1

gijf ðx
ðjÞ
n Þ, (2)

where gij are the elements of a N �N connectivity matrix, where gij ¼ 1 if the sites i and j are connected, and
zero otherwise. Since the connectivity per site is different, each line of the matrix gij has a different number of
ones distributed over the columns, the remaining elements being padded with zeroes. However, the
connectivity matrix is symmetric ðgij ¼ gjiÞ due to the process of construction of the scale-free lattice, i.e. the
connectivity matrix evolves through a finite number of steps conserving its symmetry.
3. Phase coherence in coupled maps

Even though the sites may undergone chaotic dynamics by themselves, when they are coupled the resulting
behavior is strongly affected by the connectivity of the lattice sites. One of the most studied phenomena is
complete synchronization, by which a given number MpN of lattice sites have the same amplitudes for m

map iterations: xðiÞn ¼ xðiþ1Þn ¼ � � � ¼ xðiþMÞ
n , n ¼ 0; 1; . . . ;m. If this synchronized state does exist it must be a

valid solution of Eq. (1), what is generally not the case for the scale-free lattice given by Eq. (1) with
homogeneous coupling, due to the randomness in the connectivity matrix elements. In spite of not having
completely synchronized states, the sites may still present some kind of spatial coherence as the coupling
parameters vary over a given range, opening the possibility of weaker but equally important collective spatio-
temporal phenomena. We stress, however, that for heterogeneous couplings, scale-free lattices can present
completely synchronized states [23].

There are many situations of physical interest in which two or more continuous-time oscillators may have
different amplitudes, even in a chaotic regime, but with a well-expressed phase coherence. The oscillator phase
can be defined in various ways for continuous-time systems, the simplest one being a geometrical phase for a
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bounded attractor [26,27]. For coupled map lattices, however, this procedure cannot be carried over, since
there is no vanishing Lyapunov exponent which would enable an interaction of the coupled phases, in order to
yield phase synchronization. Instead of phase synchronization, coupled maps can display a coherence with
respect to the direction of their temporal evolution.

Direction-coherent maps are defined as those showing local maxima or minima for their amplitudes at
the same time [28], such that the direction is provided by two sequential iterations of the coupled maps [29,30].
A lattice site xðjÞn thus has a direction at a fixed time n given by

dðjÞn ¼
1 if xðjÞn 4x

ðjÞ
n�1;

0 otherwise;

(
(3)

in such a way that a direction-coherent cluster is a union of adjacent maps with the same value of dðjÞn .
In Fig. 2 we superposed two spatial profiles for two successive times and after a large number of transients

have decayed, for a lattice of coupled chaotic logistic maps, where the directions are indicated by arrows. On
the basis of the previous definition we can say that between the times at which both profiles were generated, all
sites in Fig. 2 are direction-coherent. For further times, a certain number of the sites (or the entire lattice) may
remain coherent or become non-coherent. If the only relevant information one needs is whether or not the site
amplitudes are increasing or decreasing, this definition of direction is sufficient.

We denote by Nð0Þ
n ¼

PN
j¼1ðd

ðjÞ
n ¼ 0Þ and Nð1Þ

n ¼
PN

j¼1ðd
ðjÞ
n ¼ 1Þ the number of lattice sites at a time n with

directions dn equal to 0 and 1, respectively, and define a coherence ratio rn as [29,30]

rn �
1

N
maxðNð0Þ

n ;N
ð1Þ
n Þ, (4)

in such a way that, if the directions of all lattice sites flip randomly between 0 and 1, the ratio approaches a
constant value; whereas, if r ¼ 1, all lattice sites are direction-coherent. The minimum value for this ratio is
r ¼ 1

2
, a situation in which half of the sites have d ðjÞn ¼ 0.

As the lattice pattern evolves with time, this ratio may change in distinct ways. For some parameter values
(Fig. 3(a)) the ratio increases monotonically and saturates at unity after a number of iterations. On the other
hand, other parameter sets make the coherence ratio to vary in an intermittent fashion, as illustrated by
Fig. 3(b), where rn has laminar phases at 1:0 with irregular bursts of lower values. In order to analyze both
situations into a same framework we define the quantity F ¼ Nr=Dn, where Nr is the number of occurrences
of direction-coherent sites (i.e., for which rn ¼ 1) we find within a time interval Dn. We can thus interpret F as
the fraction of completely direction-coherent maps in a given time interval. For example, in Fig. 3(a), if we
1 110 230
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Fig. 2. Overlap of two spatial patterns at times n ¼ 14 431 and 14 432 for a scale-free lattice of N ¼ 230 maps with r ¼ 3:72 and � ¼ 0:9.
The arrows indicate the phase direction.
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Fig. 3. Time series of the direction-coherence ratio for N ¼ 230: (a) r ¼ 3:69, � ¼ 0:9; and (b) r ¼ 3:72, � ¼ 0:33831.
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Fig. 4. Fraction of time where all lattice sites are coherent versus coupling strength for a scale-free lattice with N ¼ 230: (a) r ¼ 3:69; (b)
r ¼ 3:77; and (c) r ¼ 4:00.
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consider the entire time interval Dn ¼ 10, we have a fraction of � 60% of times for which the lattice exhibits
direction-coherence. In Fig. 3(b) this fraction is considerably lower due to the many bursts for which rno1, in
the time interval Dn ¼ 1000.

The fraction of time where all lattice sites are coherent depends on the coupling strength � in a way showing
a critical transition, as depicted by Fig. 4(a), where, for coupled chaotic logistic maps with r ¼ 3:69, there is an
abrupt transition of F from zero to unity at �	 � 0:32. This means that, as we increase the coupling strength, a
completely non-coherent lattice can suddenly become completely coherent. There are actually two critical
points, since this transition is generally not so abrupt, occurring for other nonlinearity parameters, with
�c � 0:37 (Fig. 4(b)). In general we shall distinguish between �c, the value for which F ceases to be zero; and �	,
the value for which F becomes equal to unity (notice that, in Fig. 4(a), �c � �	). For other parameter values,
however, these transitions do not occur at all (Fig. 4(c)).

One of the key features we observed in our scale-free lattice is that, for �4�c, there is an intermittent
switching between laminar regions of r ¼ 1 and bursts with ro1, like those observed in Fig. 3(b). The laminar
phases have different lengths and their normalized histograms show, for two widely different post-critical
values of the coupling strength, a probability distribution well-fitted by an exponential PðtÞ�e�at (Fig. 5),
with values of a different according to the coupling strength.

The critical coupling strength �c does depend on the nonlinearity parameter r, but seems not to depend on
the lattice size, provided it is large enough. Fig. 6 plots the value of �c versus the lattice size N for r ¼ 3:72, and
we observe that �c exhibits fluctuations around 0:35 of less amplitude as N increases.
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Fig. 6. Critical coupling strength for the onset of intermittent behavior of the direction-coherence ratio versus lattice size N for r ¼ 3:72.
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The second transition we observed, namely from an intermittent switching between coherence and non-
coherence, to a completely coherent behavior, occurs for a value �	 of the coupling strength which increases
monotonically with the nonlinearity parameter r, as depicted in Fig. 7. Those values of r in Fig. 7 for which
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there are not �	-values, correspond to situations for which the system does not present such transition
(cf. Fig. 4(c) for an example).

4. Conclusions

We constructed a scale-free lattice of coupled chaotic logistic maps by adding new sites according to a
probability distribution dependent on the connectivity as a power law. The coupling prescription we used is
homogeneous albeit bidirectional, what rules out the possibility of having completely synchronized states. We
nevertheless observed a weaker form of collective behavior we called direction coherence, and which would
correspond to phase synchronization in continuous-time systems.

We found three possible situations, according to the values of the coupling strength and the nonlinearity
parameter of the maps: (i) the lattice can be completely direction-coherent, what means that the time evolution
of each site amplitude, although different, does share the same trend (i.e. they are either increasing or
decreasing); (ii) the lattice alternates between direction-coherent and incoherent phases in an intermittent
fashion; and (iii) the lattice amplitudes are totally incoherent.

The probability distribution of inter-burst intervals in the intermittent behavior case was found to obey an
exponential decay. Moreover, there are transitions between the three above-mentioned situations, which we
identify by computing the corresponding critical values. We still do not have a theory explaining such
transitional behavior, although some clues may be found in the previous studies we have made of regular
lattices with non-local coupling (the coupling strength decaying with the lattice distance as some negative
power) and small-world coupling . In the former case, we have found that such non-locally coupled lattices
may present completely synchronized states, and the transition to a non-synchronized behavior also occurs via

an intermittent scenario [31]. As for the latter case, we were able to identify synchronization transitions for
small-world lattices, although without noticeable intermittent behavior [22].

Scale-free lattices are not regular, since a given number of sites is randomly added. However, if the
connectivity is large enough, a scale-free lattice becomes increasingly similar to a globally coupled lattice,
where each site is coupled to the mean-field produced by all other sites [32]. We conjecture that this is also may
be the case in the system treated in this paper, i.e. a completely synchronized state being replaced to totally
direction-coherent sites. The main conclusion is that a scale-free network can enhance spatial coherence of
sites, just like strongly coupled regular lattices enhance synchronization. This has potentially far-reaching
consequences in the modeling of neuronal networks with scale-free lattices of the form we proposed in this
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work, since neurons—albeit chaotically oscillating—should produce coherent output through a kind of
synchronization or at least enhanced coherent behavior in the brain. Our work showed that this is possible for
the kind of models here considered.
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