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a b s t r a c t

In this paper, we study the effects of spike timing-dependent plasticity on synchronisation in

a network of Hodgkin–Huxley neurons. Neuron plasticity is a flexible property of a neuron

and its network to change temporarily or permanently their biochemical, physiological, and

morphological characteristics, in order to adapt to the environment. Regarding the plasticity,

we consider Hebbian rules, specifically for spike timing-dependent plasticity (STDP), and with

regard to network, we consider that the connections are randomly distributed. We analyse the

synchronisation and desynchronisation according to an input level and probability of connec-

tions. Moreover, we verify that the transition for synchronisation depends on the neuronal

network architecture, and the external perturbation level.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The human brain contains about 1011 neurons [1], and each neuron is connected to approximately 104 other neurons [2].

These connections called synapses, are arranged in a highly complex network. They are responsible for neuronal communication

and can be classified into two categories: electrical and chemical synapses [3,4]. In electrical synapses the transmission of infor-

mation from one neuron to another is directly performed from the pre-synaptic cell to the post-synaptic cell via gap junctions. In

chemical synapses, the process occurs via neurotransmitters, which cross the synaptic cleft and bind to receptors on the mem-

brane of the synaptic cell [5]. Neurotransmitters may increase or decrease the probability of an action potential of a post-synaptic

neuron, and the synapses are called excitatory or inhibitory, respectively [6]. Furthermore, the intensity of the chemical synapses

can be modified, in other words, they can be minimised or potentiated [7]. The mechanism responsible for these adjustments is

known as synaptic plasticity [8].
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The synaptic plasticity, that is, the ability of synapses to weaken or strengthen over time [9] is an important property of the

mammalian brain. In addition, the synaptic plasticity is also related to processes of learning and memory [10,11]. This adjustment

of the intensities of the chemical synapses can be correlated with phenomena of synchronisation of the neuronal firing [12].

Studies about synchronous behaviour has been shown to be of relevant importance in neuronal systems [13,14]. The occur-

rence of synchronisation in some specific areas of the brain may be associated with some diseases, such as the epilepsy and the

Parkinson’s disease [15–17]. On the other hand, it is also responsible for some vital brain functions, such as processing of sensory

information and motor function [18,19].

Methods to suppress synchronisation have been proposed in neuroscience, as the introduction of external perturbations

[20–23]. Tass and collaborators have verified the possibility of desynchronisation in hippocampal neuronal populations through

coordinated reset stimulation [25]. Meanwhile, Popovych and collaborators have found that the introduction of a perturbation

in a globally connected neuronal network combined with synaptic plasticity can provide a positive contribution to the firing

synchronisation [22].

In this work, we study firing synchronisation in a random Hodgkin–Huxley neuronal network with plasticity according to

spike timing-dependent plasticity (STDP). This synaptic plasticity model adjusts the connection strengths by means of the tem-

poral interval between pre-synaptic and post-synaptic spikes [26,27]. Bi and Poo have reported that the change in synaptic

efficiency after several repetitions of the experiment is due to the time difference of firing [28,29]. If one pre-synaptic spike

precedes a post-synaptic spike, a long-term potentiation occurs, otherwise, a long-term depression appears [30].

A computational neuronal network specifies the connection architecture among neurons. A globally coupled Hodgkin–Huxley

neuron model was also considered by Popovych and collaborators [22]. They studied the synchronisation behaviour considering

STDP, and found that the mean synaptic coupling presents a dependence on the input level. In this work, we consider a random

neuronal network with STDP, and input, where the connections are associated with chemical synapses [24]. One main result is

to show that spike synchronisation in a neuronal network, depending on the probability of connections, can be improved due to

spike timing-dependent plasticity. This improvement is also observed when an external perturbation is applied on the network.

Another important result is that the orientation of the connections among neurons with a different spike frequency affect the

synchronised behaviour.

This paper is organised as follows: in Section 2 we introduce the Hodgkin–Huxley neuronal model. In Section 3, we show the

random neuronal network. In Section 4, we study the synchronisation considering spike timing-dependent plasticity. Finally, in

the last Section, we draw the conclusions.

2. Hodgkin–Huxley neuronal network

2.1. Hodgkin–Huxley neuronal model

One of the most important models in computational neuroscience is the neuronal model proposed by Hodgkin and Huxley

[31,32]. In this model, the mechanism of generation of an action potential was elucidated in a series of experiments with the

squid giant axon. They found three different ions currents consisting of sodium (Na), potassium (K) and leak (L) mainly due to

chlorine. Moreover, there are voltage-dependent channels for sodium, potassium that control the entry and exit of these ions

through the cell. The model is composed of a system of four coupled differential equations given by

CV̇ = I − gKn4(V − EK) − gNam3h(V − ENa) − gL(V − EL), (1)

ṅ = αn(V)(1 − n) − βn(V)n, (2)

ṁ = αm(V)(1 − m) − βm(V)m, (3)

ḣ = αh(V)(1 − h) − βh(V)h, (4)

where C is the membrane capacitance (measured in μF/cm2), V is the membrane potential (measured in mV), the function m(V)

and n(V) are the variable of activation for sodium and potassium, and h(V) is the variable of inactivation for sodium. The functions

αn, βn, αm, βm, αh, βn are given by

αn(V) = 0.01V + 0.55

1 − exp (−0.1V − 5.5)
, (5)

βn(V) = 0.125 exp

(−V − 65

80

)
, (6)

αm(V) = 0.1V + 4

1 − exp (−0.1V − 4)
, (7)

βm(V) = 4 exp

(−V − 65

18

)
, (8)

αh(V) = 0.07 exp

(−V − 65

20

)
, (9)
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Fig. 1. Dynamic firing in the Hodgkin–Huxley model, where we consider I = 10 μA/cm2 that presents a regime with periodic firing.

Table 1

Parameters of the Hodgkin–Huxley neuronal model with a rest-

ing potential equal to −65 mV.

Description Parameter Values

Membrane capacity C 1 μF/cm2

Reversal potential for Na ENa 50 mV

Reversal potential for K EK −77 mV

Reversal potential for L EL −54.4 mV

Sodium conductance gNa 120 mS/cm2

Potassium conductance gK 36 mS/cm2

Leak conductance gL 0.3 mS/cm2

External current I 9.0 10.0 μA/cm2
βh(V) = 1

1 + exp (−0.1V − 3.5)
. (10)

The parameters g and E represent the conductance and reversal potentials for each ion, respectively, and the constant I is an

external current density (measured in μA/cm2). The Hodgkin–Huxley model was examined by Luccioli and collaborators [34]

in its three fundamental dynamical regimes: silence, bistability, and repetitive firing. For small values (I < 6.27 μA/cm2) the

Hodgkin–Huxley model is in a silent regime, namely the action potential is not initiated. In the interval 6.27 μ A/cm2 ≤ I ≤
9.78 μ A/cm2 the model presents bistability between silence and repetitive firing. The repetitive firing regime occurs for I >

9.78 μ A/cm2, as illustrated in Fig. 1 for I = 10 μ A/cm2. In our simulations, we consider the range 9 μ A/cm2 ≤ I ≤ 10 μ A/cm2.

For instance, I = 9.0 μ A/cm2 and I = 10.0 μ A/cm2 approximately correspond to 67 Hz and 70 Hz, respectively. Nevertheless,

due to the fact that we are considering coupled neurons, there are always time intervals in that the total current applied to each

neuron presents values larger than 9.78 μA/cm2. In our simulations, we use the fourth-order Runge–Kutta method with a fixed

step size equal to 10−2 ms, and we consider the parameters that are presented in Table 1 [33].

2.2. Network structure

Computational models of neuronal networks depend on the architecture, which specifies how neurons are connected and how

the dynamics is applied to each unit or node. In this work, we consider a random network, that is, the network is constructed by

connecting neurons randomly [35–37]. Each connection is included with probability independent from every other connection.

Fig. 2 exhibits a schematic representation of the neuronal network considered in this work. Each neuron is connected to others

by randomly chosen neurons with probability p. When p = 1 we have a global network, where all neurons are connected.

We consider a random neuronal network with chemical synapses where the connections are unidirectional, and the local

dynamics is described by the Hodgkin–Huxley model. The network is given by

CV̇i = Ii − gKn4(Vi − EK) − gNam3h(Vi − ENa) − gL(Vi − EL) + (Vr − Vi)

ω

N∑
j=1

εi js j + �i, (11)

where Vi is the membrane potential of neuron i (i = 1, . . . , N), Ii is a constant current density randomly distributed in the interval

[9.0, 10.0], ω is the average degree connectivity, and εij is the coupling strength from the pre-synaptic neuron j to the post-

synaptic neuron i. The values of εij are normally distributed with mean and standard deviation equal to 0.1 and 0.02, respectively,
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Fig. 2. Schematic representation of a network in which each neuron is connected to others by randomly chosen neurons with probability p.
when connections exist, otherwise εi j = 0 for lacking connections [30]. The lower and upper bounds of the synaptic weights are

equal to 0.0 and 0.5, respectively. We consider an external perturbation �i in that the value of γ is equal for all the neurons. In

each time step ρ equal to 10−2ms a random input with amplitude γ is applied to each neuron with a probability equal to ρ/14.

The value of 14 ms is approximately the inter-spike interval of a single neuron. In other words, throughout the simulation at each

time step one number is generated for each neuron from a random generator that returns a uniform random deviate between 0

and 1, and if this number is smaller than ρ/14, the neuron is perturbed. As a result, in the interval of 14 ms all the neurons are

perturbed. The neurons are excitatory coupled with a reversal potential Vr = 20 mV [22]. The post-synaptic potential si is given

by [38,39]

dsi

dt
= 5(1 − si)

1 + exp
(
−Vi+3

8

) − si. (12)

2.3. Spiking neurons synchronisation

When identical neurons are coupled, the network may exhibit a complete synchronisation among spiking neurons, i.e., all

neurons have identical time evolution of their action potential. We do not consider identical neurons here, and due to this fact, a

complete synchronisation is not possible. However, a weak synchronisation may be observed.

As diagnostic of spikes synchronisation we use the order parameter given by [40,41]

R =
∣∣∣∣∣

1

N

N∑
j=1

exp (iψ j)

∣∣∣∣∣, (13)

where

ψ j(t) = 2πm + 2π
t − t j,m

t j,m+1 − t j,m

, (14)

where tj,m denotes when a spike m (m = 0, 1, 2, . . . ) of a neuron j occurs (t j,m < t < t j,m+1). The beginning of each spike is consid-

ered when Vj > 0. If the spikes times are uncorrelated, their contribution to the result of the summation is small [42]. However,

in a globally synchronised state the order parameter magnitude asymptotes the unity.

Fig. 3 (a and b) present raster plots of spike onsets where the latter are indicated by dots. For p = 0.1 and without external

perturbation, shown in Fig. 3(a), the neuronal network presents asynchronous dynamics. Considering p = 1.0, we have globally

coupled neurons, and we can see that the network exhibits synchronised spiking, shown in Fig. 3(b). The time evolution of the

order parameter is plotted in Fig. 3(c). When p = 0.1 (black line), the network does not display synchronised behaviour, and as

a result the order parameter is typically small with R fluctuating around 0.1. However, synchronised behaviour is observed for

p = 1.0 with order parameter values near unity (red line).

We add an external perturbation (�i) to analyse its effects on the synchronous behaviour. This way we compute the time

averaged magnitude of the order parameter, given by

R̄ = 1

tfin − tini

tfin∑
t=tini

R(t), (15)
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Fig. 3. Raster plots of spike onsets where the latter are indicated by dots for N = 100, (a) p = 0.1, and (b) p = 1.0. In (c) the order parameter is calculated for

p = 0.1 (black line), and p = 1.0 (red line). The constant current density Ii is randomly distributed in the interval [9.0, 10.0], and for different initial conditions

we have obtained the same dynamical behaviour. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)
where the values of R̄ have been computed by averaging over a temporal length of 10 s after discarding a transient of 490 s

(tini = 490 s and tfin = 500 s). In Fig. 4 we can see the time averaged order parameter as a function of the probability for different

input amplitudes (γ ). When the neuronal network has no input, it is possible to observe synchronised behaviour if the probability

of connection is large enough (black circles). However, external inputs are able to desynchronise the spiking neurons, as shown

in Fig. 4 for γ = 5 (red triangles) and γ = 10 (blue squares), where the values of R̄ are less than 0.9.

3. Spike timing-dependent plasticity

One of the key principles of behavioural neuroscience is that experience can modify the brain structure, that is known as

neuroplasticity [43]. Although the idea that experience may modify the brain structure can probably be traced back to the 1890 s

[44,45], it was Hebb who made this a central feature in his neuropsychological theory [46].

With this in mind, we consider spike timing-dependent plasticity according to the Hebbian rule. In this plasticity the coupling

strength εij is adjusted based on the relative timing between the spikes of pre-synaptic and post-synaptic neurons [28],

�εi j =
{

A1 exp ( − �ti j/τ1) , �ti j ≥ 0

−A2 exp (�ti j/τ2) , �ti j < 0
, (16)

where �ti j = ti − t j = tpos − tpre. Fig. 5 exhibits the result that is obtained from Eq. (16) for A1 = 1.0, A2 = 0.5, τ1 = 1.8 ms, and

τ2 = 6.0 ms. The plasticity function (16) was obtained by Bi and Poo [47] from experimental results, where long-term depression

(�tij < 0) and long-term potentiation (�tij ≥ 0) windows were each fitted with an exponential function.

The initial synaptic weights εij are normally distributed with mean and standard deviation equal to 0.1 and 0.02, respectively.

Then, they are updated according to Eq. (16), where εi j → εi j + 10−3�εi j . In our simulations, we consider that the STDP update

rule is not applied to connections that are initially lacking, namely we do not consider the creation of synapses. In addition, if

neurons are disconnected, they will continue disconnected. In the absence of an external perturbation, we can verify by means of

Fig. 6(a) that the averaged synaptic weights can be depressed (p = 0.3) or potentiated (p = 0.5, p = 0.7, and p = 1.0) depending

on the probability of connections. The averaged synaptic weight is given by ε̄i j = (1/M)
∑

i, j∈
 εi j, where the synapse is from

neuron i to neuron j with both of them in a set 
 of synapses randomly distributed, and M is the total number of synaptic
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Fig. 4. Average order parameter as a function of the probability, for N = 100, for Ii randomly distributed in the interval [9.0, 10.0], for external perturbation with

γ = 0 (black circles), γ = 5 (red triangles), and γ = 10 (blue squares). The bars represent the standard deviation for different initial conditions. (For interpretation

of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Plasticity function (16) as a function of the difference of spike timing of post- and pre-synaptic neuron.
weights. If an input is applied on the neuronal network (Fig. 6(b)), the input can have a constructive effect on the synaptic

weights (p = 0.7 and p = 1.0) or destructive effect (p = 0.3 and p = 0.5), depending on the probability of connections.

The time averaged order parameter in terms of the probability of connection is showed in Fig. 7, considering with (black cir-

cles) and without (red triangles) STDP. Each point represents the mean of R̄ taken from different initial condition profiles, where

we consider 15 different initial conditions for the coupling strength and for the connections. In the case for without external per-

turbation (Fig. 7(a)) we can see that the values of R̄ without STDP are less than with STDP, namely STDP is producing a positive

effect on the synchronisation. A stronger coupling may lead to a stronger synchronisation for the unperturbed network. For a

large value of the probability of connections a stronger coupling leads to a stronger synchronisation. However, if the probability

of connections is not large, a stronger coupling may not lead to a stronger synchronisation. In this case, the synchronisation also

depends on the network architecture. Pade and Pereira [48] showed that improving the structure of a directed network can lead

to instabilities in the synchronised behaviour. In our results, we verify for the unperturbed network that the enhancing effect

of the STDP on the spike synchronisation, illustrated in Fig. 7(a), is approximately 14% for p = 0.5, 9% for p = 0.6, and 3% for
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a

b

Fig. 6. Time evolution of the averaged coupling strength for p = 0.3 (red line), p = 0.5 (green line), p = 0.7 (blue line), and p = 1.0 (black line), where it is

considered (a) γ = 0, and (b) γ = 5. The direction of the synapse is from the neuron i to the neuron j. The constant current density Ii is randomly distributed in

the interval [9.0, 10.0], and for different initial conditions we have obtained the same dynamical behaviour. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)
p = 1. Increasing the amplitude of the external perturbation, without spike timing-dependent plasticity, the desynchronisation

is induced in the neuronal network (Fig. 4). However, considering STDP in the perturbed network is possible to observe alter-

ations to the dynamic behaviour in relation to synchronised states. Fig. 7(b) shows that the STDP enhances the synchronisation

for p approximately greater than 0.5 due to a constructive effect on the dynamics of the synaptic weights. On the other hand, for

p less than 0.5 the STDP decreases the values of the time averaged order parameter, as a result of depressed synaptic weights.

Increasing the input intensity (γ = 5), it is possible to verify synchronisation when the network has neuroplasticity (Fig. 7(c)).

We can also see an abrupt transition from a desynchronised to a synchronised regime. When the input intensity increases, it is

necessary to increase the probability of connection for the STDP counteracts the suppression of synchronisation. Fig. 7(d) exhibits

a situation such that the synchronisation is only obtained when the neuronal network presents a global coupling (p = 1). With

a strong input, the STDP does not lead the network to a potentiation of synaptic weights, and this way the synchronisation is

suppressed by an external input.

The spike synchronisation depends on the probability of connections p in a way showing an abrupt transition. There is a

critical point for p = pc that can be found by means of the intersection between the curves of potentiation and depression.

Fig. 8(a) exhibits the point of intersection with value of �tij approximately equal to 1.8. For �tij > 1.8 the depression (red line)

of the synaptic strength is larger than the potentiation (black line), while that for �tij < 1.8 the potentiation is larger than the

depression. When phase-locked neurons fire with the time lag greater than 1.8 ms, the STDP depresses the coupling strength

and the neurons eventually desynchronise. With this value of �tij we can obtain pc plotting �̄ti j as a function of p, as shown

in Fig. 8(b). It can be seen that the value of �̄ti j decays, and when cross the value �̄ti j ≈ 1.8 we have the critical value of the

probability of connections. Moreover, when p increases not only �̄ti j decreases, but also the standard deviation of the inter-

spike intervals decreases. Then, we compute the critical probability as a function of the input level (Fig. 8(c)), where we verify a

linear increase given by the equation pc = 0.06γ + 0.37. The critical connection probability remains unchanged for other initial

conditions for coupling due to the fact that the average time difference (Fig. 8(b)) is calculated from different initial condition

profiles.

Fig. 7 (c) shows a discontinuous transition between the synchronised and the desynchronised regime. Our aim is to un-

derstand how this discontinuous transition appears when the probability of connections is varied. For this reason, we build a

network according to a schematic representation that is showed in Fig. 9. The scheme represents a network of neurons with high

(cyan ball) and low (yellow ball) spiking frequency. The red arrows represent the connections between neurons from high to low

frequency, while the black arrows represent the connections from low to high frequency.

Based on the schematic representation that is illustrated in Fig. 9, we consider a neuronal network with N = 100, p = 0.47,

and γ = 3. We separate the neuronal network into 50 neurons with high frequency (values of Ii within the range [9.0,9.1]) and

50 neurons with low frequency (values of Ii within the range [9.9,10]). Fig. 10 exhibits the time averaged coupling strength as

a function of the percentage of connections from neurons with high frequency to neurons with low frequency. We can see that

the time average coupling strength depends on the connections. Considering the case for a small percentage of connections from
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Fig. 7. Average order parameter versus probability of connection for the cases with (black circles) and without (red triangles) STDP, where we consider (a)

γ = 0, (b) γ = 3, (c) γ = 5, and (d) γ = 10. The constant current density Ii is randomly distributed in the interval [9.0, 10.0], and the bars represent the standard

deviation for different initial conditions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)
HFN to LFN, the average coupling is small, indicating absence of synchronisation, a situation that changes with increasing the

percentage of connections to a synchronised state. This means that, when the coupling strengths increase, a desynchronised

state can suddenly become synchronised. Consequently, the abrupt transition from desynchronised to synchronised state, that

is observed in Fig. 7, is due to directed synapses among spiking neurons with high and low frequency. Bayati and Valizadeh [49],

as well as Popovich and collaborators [22], showed that directed synapses from the high frequency neurons to the low frequency

neurons tend to be potentiated while the synapses from the low frequency neurons are weakened. They verified this behaviour

in an all-to-all network equipped with the STDP. In our simulations, we consider a random network with STDP and the novelty

is that due to directed synapses the neuronal network can present an abrupt transition to the spike synchronisation when the

probability of connections increases.

4. Conclusion

We have been studying a neuronal network model with spiking neurons. We have chosen, as local dynamics, the Hodgkin–

Huxley model due to the fact that it has essential features of spiking dynamics. The Hodgkin–Huxley model is a coupled set

of nonlinear differential equations that describes the ionic basis of the action potential. These equations are able to reproduce

biophysical properties of the action potential.

We have used a random coupling architecture where the connections are randomly distributed according to a probability.

When the probability is equal to unity we have a globally coupled network. The connections were considered unidirectional

representing excitatory chemical synapses.

We have studied the effects of spike timing-dependent plasticity on the synchronisation in a Hodgkin–Huxley neuronal

network. Studies about spike synchronisation are important to understand not only progressively degenerative neurological
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Fig. 8. (a) Absolute value of the plasticity function (16) as a function of the difference of spike timing of post- and pre-synaptic neuron, where the curves are

the potentiation (black line) and the depression (red line). (b) Average time difference versus probability of connections for γ = 0 (red circles), γ = 3 (blue

squares), γ = 5 (black triangles), and γ = 10 (green diamonds). (c) Critical probability pc as a function of the input level γ . The linear fit is given by the equation

pc = 0.06γ + 0.37. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
disorders, but also processing of the sensory information. Popovych and collaborators [22] showed that STDP combined with an

external perturbation can improve the spike synchronisation in a globally neuronal network. The novelty in this paper is that

we have considered a random neuronal network and we have verified that the spike synchronisation depend on the probabil-

ity of connections. Considering a strong external perturbation the spike synchronisation is suppressed. However, when there

is STDP, depending on the probability of connections, the synchronisation in the perturbed network can be improved due to a

constructive effect on the synaptic weights.

We have also shown that the direction of synapses has an important role on the effects of spike timing-dependent plasticity

on the synchronisation in a random Hodgkin–Huxley neuronal network. In addition, we have not observed any relationship

between the probability of connection and the percentage of connections from HFN to LFN. Certainly, this is due to the topology

of the neuronal network with random connectivity that we have considered in this work. We believe that other topologies may

present a relationship between the connectivity and this percentage.

We have carried out simulations considering a coupling strength normally distributed, and different initial profiles for the

connectivity. As a result, we have not verified any dependence on the initial conditions for the coupling, except for the value of

p where the transition from desynchronised to synchronised behaviour is abrupt (Fig. 7(c)). In this abrupt transition, we verify a

form of multistability due to the directed synapses. Therefore, in future works, we plan to study with more detail the existence

of multistability in the neuronal network model studied in this work.
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Fig. 9. Schematic representation of a network of neurons with high (cyan ball) and low (yellow ball) spiking frequency. The red arrows represent the connections

between neurons from high to low frequency, while the black arrows represent the connections from low to high frequency. (For interpretation of the references

to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Time averaged coupling strength versus percentage of connections from neurons with high frequency (HFN) to neurons with low frequency (LFN). We

consider p = 0.47 and γ = 3. The direction of the synapse is from the neuron i to the neuron j.
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