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Abstract-An ergodic magnetic limiter is a device whose main effect in a tokamak is to create a cold 
boundary layer of chaotic magnetic field lines. In order to study its effect we have used two 
approaches. The first is a description of magnetic island formation through an analytical method to 
describe its dimensions, results being in accordance with numerical Poincare maps for magnetic field 
lines. The second is a model which simulates the ergodic limiter action as a sequence of impulsive 
perturbations, enabling the derivation of analytical formulae for the Poincare maps. Copyright 0 
1996 Elsevier Science Ltd. 

INTRODUCTION 

The problem of the quality of plasma confinement in a fusion-oriented device like a 
tokamak has many facets, challenging us with both conceptual and technical difficulties to 
be solved. Thus, the presence of impurities in the confined plasma should be controlled to 
improve the confinement [l, 21. However, a common source of impurities in tokamak 
plasmas is the heat and particle loadings on the metallic inner wall, causing impurity 
release by sputtering processes. In the late seventies some authors [3, 41 proposed that a 
cold boundary layer of chaotic magnetic field lines could act as a plasma limiter, since it 
would uniformize these loadings, lowering the impurity levels within the plasma core. 

The ergodic magnetic limiter concept [5] is based on the idea that a chaotic boundary 
layer of field lines could appear as a result of magnetic island interaction in the peripheral 
region of the tokamak chamber. But these islands appear as a result of resonant magnetic 
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disturbing fields, acting on the equilibrium magnetic field which contains the plasma. The 
ergodic limiter consists of a grid-shaped coil wound around the tokamak vessel and 
conducting a current that generates these disturbing fields. This claim is supported by 
theoretical as well as experimental evidences [6]. 

One popular way to think of a magnetic field line flow, even in magnetostatic 
equilibrium configurations, like those expected for ideal tokamak operation, is the 
Hamiltonian description. It was first observed by Kerst [7], and later by many authors 
[S-16], that magnetic field line equations could be rewritten as Hamilton equations, where 
the role of time is played by an ignorable (cyclic) coordinate. 

Within this framework, the field line Hamiltonian is actually an invariant over the 
magnetic surfaces appearing in the MHD description of plasma equilibria. In dynamical 
systems language, they are KAM surfaces, and their existence depends on the symmetry of 
the equilibrium configuration [17]. The inverse winding numbers characterizing these 
surfaces are also known in the plasma literature as ‘safety factors’, since they are related to 
the stability of certain undesirable modes. According to this classification. magnetic 
surfaces are rationals (irrationals) if their safety factors are rationals (irrationals) likewise. 

A magnetostatic perturbation, like that due to an ergodic limiter, can be viewed as a 
Hamiltonian perturbation, whose effect depends on the character of the magnetic (KAM) 
surface. Rational surfaces will be destroyed, leaving a chain of Poincare-Birkhoff islands, 
whereas most of the irrational tori will survive, provided the hypotheses of the KAM 
theorem are fulfilled [18, 191. Note that it is essential that the perturbation causes 
symmetry breaking in the equilibrium configuration, otherwise the island chain destruction 
does not occur, and the island evolution may show a completely different behaviour [ZO]. 

A useful tool to study such near-integrable systems is the Poincare surface of section 
method. Magnetic (KAM) surfaces appear as invariant closed curves, and chaotic magnetic 
field lines yield area-filling orbits in Poincare sections [21]. In this paper we analyse the 
ergodic magnetic limiter action through a couple of approaches that use Poincare maps as 
preliminary diagnostics of chaos. 

The first approach describes magnetic island formation by means of a linearization of 
field line equations in the neighbourhood of a rational surface. The method is applicable to 
any magnetostatic perturbation, once its Fourier components are known. The net results 
are a reliable estimate of magnetic island width, which is an important ingredient in any 
global stochasticity prescription, like the Chirikov overlapping criterion. Results are 
compared with Poincare maps obtained through numerical integration of field line 
equations, showing a fairly good accordance. In this case. the ergodic limiter is modelled as 
a square-wave perturbation. 

The second way to generate Poincare maps in this context is to suppose that the ergodic 
lrmiter action on the field lines, which in the equilibrium twist freely on the magnetic 
surfaces, behaves as a periodic sequence of delta function pulses. This kind of procedure 
enables us to obtain analytical formulae for the Poincare maps [22]. However, in its 
original form, this map is not exactly area-preserving, so that we have to transform the 
Poincare map into a symplectic one, since it is needed to ensure flux conservation. 

This paper is organized as follows: in Section 2 we describe the basic geometry to be 
used, and present the equilibrium as well as perturbing fields; in Section 3 the construction 
of Poincare maps for field lines is carried out through the use of two methods-numerical 
integration of field line equations using an square-pulse waveform, and an impulsive 
perturbation leading to analytical expressions for the maps. The results concerning these 
two approaches are presented in Section 4. Section 5 is devoted to a detailed analysis of 
magnetic island width. Our conclusions are left to the final section. 
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TOKAMAK AND LIMITER MAGNETIC FIELDS 

A rokamak is a toroidal vessel in which a plasma is confined by the combined action of 
two basic magnetic fields: the toroidal field Br, generated by external coils, and the 
poloidal field BP, which is produced by the plasma current itself. The equilibrium magnetic 
field is thus B(O) = B, + BP. One of the convenient systems of coordinates to deal with 
tokamak geometry is the so-called local or pseudo-toroidal coordinate system (r, 0, CC), as 
depicted in Fig. l(a) [23]. In this system, the toroidal and poloidal fields are written as 
B, = B,?, and BP = B,i?,, respectively. 

The magnetic field line equations, namely, B x dl = 0, are given in this system by 

dr rd8 Rodv -z-r? 
4 B, 4 ’ 

where b(R,) is the minor (major) tokamak radius. The aspect ratio is defined as A = R,/b. 
and for large aspect-ratio tokamaks (R, >> b or A >> 1) it is possible to use a periodic 
cylindrical approximation (z = Roy, see Fig. l(b)). The effect of toroidal curvature is thus 
considered as a first-order correction of the toroidal field. 

The equilibrium magnetic field in the cylindrical approximation is given by B(O) = (0. 
B’,o’(r), B’,O’), where 

B(O) = Bo = 4, 
i 

1 + +cosn 1 + ECOS8’ 
0 

and E measures the strength of the toroidal effect, B, being the toroidal field intensity for 
E = 0. The effect of toroidal correction is thus more intense for a large radius r [24]. 

For obtention of the poloidal field component it is necessary to specify the plasma 
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Fig. 1. Essential geometry of the tokamak and ergodic magnetic limiter. 
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current density profile. We will concentrate on the so-called generalized parabolic model 
1231 for an axisymmetric plasma current density. namely 2 .I 

j:(r) = j. 1 - Y 1 01 ‘8;. 
a 

(3) 

where n is the plasma column radius (somewhat lower than minor radius): and j,,. 1’ are 
positive parameters, adjustable to fit typical tokamak discharges. Using Ampere’s law. 
equation (3) leads to 

By(r) = E&(1 - [l - (LJ~‘+lwa - 4); (4) 

provided ZP is the total plasmas current intensity. O(X) is the Heaviside unit-step function. 
An important quantity related to the magnetic (KAM) surfaces is the rotational 

transform 1(r), defined as the average poloidal angle of displacement of a given field line in 
the course of a complete toroidal turn around the tokamak. Hence 1 = 2?rd@/dy,. and using 
(1) and (4) gives for the cylindrical case (E = 0) 

where 1, = 10/(y + 1) and 1(, is the rotational transform at the magnetic axis (r = 0). In 
order to avoid kink instabilities, the Kruskal-Shafranov limit states that I d 27~ [23], so that 
we choose 1” = 277 and 1, = (y + 1))’ for kink-stable discharges. This means that y and I,, 
can be taken as independent parameters to specify plasma equilibrium. 

The ergodic magnetic limiter (EML) model to be considered in this paper is the same as 
that already considered by Martin and Taylor [S], apart from the basic geometry which we 
take as cylindrical instead of rectangular. It was employed by us in previous papers 125. 
261. One EML ring consists of a grid-shaped coil of width g (see Fig. l(a)) with I*/2 pairs 
of wire pieces oriented in the (toroidal) gl-direction. and carrying a current I. Adjacent 
conductors have currents flowing in opposite senses. and v;e ignore the contributions for 
the magnetic field from the pieces oriented in the (poloidal) H-direction. since their effect 
:.~n the equilibrium B, field is negligible. 

Since the plasma pressure is low. we can deal only with perturbing vacuum fields, 
without dynamical plasma response. Ignoring border effects. the perturbing field due to 
s;uch an EML device is written as B(” = (Bj”, Bj:‘, 0). where 

Bji:,(r. H. 7) = Ej.:j,(r. H)‘(r). !h! 

and Bj’:,( r, H) are evaluated supposing that the wire pieces are infinitely long, giving [26] 

Bj’)(r. H) = iZ!!&!-(n)“‘ml~i*~(“,‘) 

Ej/‘(r. H) = - &&L(.L)L’2- ‘c(+!). 

C7! 

These results were derived from the use of a cylindrical geometry. Toroidal corrections of 
these fields are neglected thereby, since the EML action is very localized on the toroidal 
curvature. 

The z-dependence of EML fields is described by the function ,f‘(z), and it distinguishes 
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the two kinds of mappings to be discussed in this work. Firstly, we can try a square-pulse 
waveform: 

f(z) = 1 

1 

1 if-+- g dZdf- 
2 (9) 

0 otherwise 

which assumes that the limiter field falls down very sharply out of ring extension. This case 
will be called the square-pulse map (SPM). 

Another possible form for f(z) is a periodic sequence of delta function pulses 

f(z> = g 5 6(z - 2aRoj') = 

j=-02 
&[I + $i,cOs(-gl~ (10) 

the latter form being its Fourier expansion, where the period is the tokamak length 2nR,. 
The map so obtained will be called the impulsive excitation map (IEM). Evidently, SPM 
and IEM cases are not mutually independent. A Fourier analysis of the square-pulse 
waveform (9) would render equation (10) for g << R. and small integer values of k’. Only 
within these limits is IEM suitable for description of EML action. 

We also consider the case of a number p > 1 of EML rings, equally spaced in the 
toroidal direction by an angle 2n/p. All EML rings are similar, the essential difference 
being that they have a mutual poloidal displacement, corresponding to the poloidal angle 
which would be completed by an equivalent helical winding. In numerical applications we 
restrict ourselves to the case p = 4. So, in the SPM case there will be four square pulses of 
width g centred at z = 0, nRo/2, nRO, 3~Ro/2 (cf. Fig. 2(a)). In the IEM case these are the 
points in which a delta-kick will act on the field lines (cf. Fig. 2(b)). 

OBTENTION OF POINCARI? MAPS 

Square-pulse map 

Obtention of PoincarC puncture-plot maps for field lines in the square-pulse case is only 
feasible by numerical integration of field line equations (l), with the help of equations (4) 
and (7)-(9). The system of first order equations is (with 2: = Roq as the independent 
variable) 

dr -= $f(z,i 1 + kcos 0) (11) 
dz 

d0 1 BP + B’ef(4 1 I r case -=- 
( I( 1. 

(12) 
dz r Bo Ro 

The PoincarC surface of the section will be located at z = g/2, irrespective of the number 
of coils p to be considered. Let (rn, 6,) denote the nth piercing of a given field line on this 
plane. We may also work with ‘rectangular’ coordinates defined by 

x,, = be,, y, = b - r,, , (13) 

describing the arc length at EML radius and the radial distance from the tokamak edge, 
respectively. 

Due to magnetic flux conservation within a magnetic (KAM) surface, which stems from 
the Hamiltonian nature of field line equations [18], we expect that SPM would be 
area-preserving in the PoincarC plane; but, in fact, due to the large aspect-ratio approxima- 
tion we made the system is only nearly conservative. 
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Impulsive excitation map 

The use of a periodic sequence of delta pulses enables us to obtain analytical expressions 
for Poincare maps. The basic idea is that the field line twists freely, according to 
B(O) x dl = 0, until it reaches the limiter at z = 0, 2aRo, . . . 2KnRo . . . (for p = 1 ring), or 
z = 0, 37R,,/2, nR, . . . K’nR0/2 . . . (for p = 4 rings), when it receives a kick. This kick 
instantaneously changes the z-derivatives of field line coordinates (l), but not the co- 
ordinates Y, 8 themselves; that is, the ‘velocities’ dr/dz and d6/dz are discontinuous at 
z = 2k’a, while the coordinates are continuous [27]. The final phase portraits are taken 
from the Poincare surface of the section located at z = 0, for any value of p, as in the 
previous case. 

Define discretized variables for radial and angular positions of the points on the Poincare 
surface of the section to be [22] 

r,, = Iii,<, = 2aRon + E), (14) 

rz = liir(z = 2?rRo(n + 1) - E), (15) 

8, = lii6(z = 2nR0n + E), (16) 

0: = liitl(z = 2nRo(n + 1) - E), (17) 

denoting the values of r and 8 just after the nth piercing of the z = 0 plane, and just 
before the (n + 1)th piercing, respectively. 

The part of IEM equations concerning the effect of delta kicks is [25] 

* rn+l = rn - - (18) 

m-2 

8 n+l cos(mOE), 

where we have defined 

km& 
C=Bn. . (20) 

0 

Since the effect of the kicks is instantaneous, between two successive kicks the field line 
equations are readily integrated, even in the presence of toroidal correction. In the case of 
the p = 1 limiter, we have the following expressions 1251. 

Cylindrical case (E = 0). 

r* = n r ?I? (21) 

0; = 8, + 
2nB(BO’(r,)Ro 

> 
Bo 

(22) 

where the equilibrium poloidal field is given by 4. The extension of these formulae for 
many limiters (p > 1) is straightforward. 

Toroidal case (E # 0). 

rn nT *=r 

6: = 2 arctan [A.(r,) tan (Q(r,) + arctan Z(r,, @,))I + 2n, 

(23) 

(24) 
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where we have defined the following auxiliary quantities: 

a(r ) = ~Ro&%J(~ - +hN 
n 

B0rn4rn> ’ 

1 - 44 

A(rn) = J/l - +J 

E:(m) = ’ -tan $- , 
4rrJ i 1 

c(r,) = -f$. 

0 

(25) 

The kick mapping (18), (19) can be rewritten in terms of the following adimensional 
parameters 

C = $42”-4 
b2 

R = ;*I 

b2’ 
Gw 

so that our equations for description of the field line displacement due to EML kicks are 
(R,+1)‘/2 = (R*)‘/” - @C(R*)h-l)i2 n n sin(mez), (27) 

8 n+l = 0; - C(R,1)(“‘2’-1~~~(mB,*). (28) 

We stress that, although the mapping between two successive kicks is exact (within the 
limitations of our model) the part that treats a kick is obtained through a kind of 
approximation. Hence, this second part of the map contains higher-order terms that 
introduce a small dissipative effect. So, the entire IEM equations are not strictly symplectic 
in their original form. In order to obtain an area-preserving form for IEM, let us maintain 
(28) and treat (27) as a canonical transformation of variables with generating function 
G(R,+I, Qz), so that the transformation equations 

(29) 

are the necessary and sufficient conditions to be fulfilled if the mapping (27) is symplectic. 
Substituting (29) in (27) we find that a generating function of the form 

G(R,+I, /3;) = R,+lO; - ~R;$os(md;) (30) 
m 

is suitable for this purpose. Putting (30) in (27) gives the new radial equation 

(R,)li2 = R,+l - 2C(R,*)‘“-“‘2sin(m6~). (31) 

This equation can be inverted for R,+l only for m = 2 or m = 4 cases. In any other 
situation, we are forced to use the Newton method to do so, using as an initial guess for 
R n+l the value of R,*. Actually the method converges very rapidly, yielding accurate results 
after no more than ten Newton method iterations. 

PHASE PORTRAITS 

In the numerical applications to be considered in this paper we take parameters from a 
small tokamak-the TBR-1, operating at the Physics Institiute of the University of Sao 
Paulo, Brazil. The main parameters are: R. = 0.30m (major radius); b = O.llm (minor 
radius); a = 0.08, (plasma radius); B. = 0.50T (toroidal field at magnetic axis); 1, = 2~7/5 
(rotational transform at plasma edge); 1. = 27r (rotational transform at plasma centre) [28]. 
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Let us concentrate on the case of one EML ring with m = L/2 = 6 pairs of wires; and 
suppose a ring length of g = 0.08m. The choice of L is motivated by the fact that a 
perturbation with such a value of m = L/2 will excite magnetic island formation in the 
location of magnetic surfaces characterized by rotational transforms L= 2nn/m, where 
n-1,2, . . . m. a result which follows from the Poincare-Birkhoff theorem. But we want 
to create these islands primarily in the peripheral region of the tokamak, which comprises 
the outer portion of the plasma column plus the vacuum region near the inner wall. 
Moreover since the field created by an EML ring decreases rapidly with the distance from 
the inner wall, those islands with high values of n are not of interest because they are in 
the plasma core. 

Hence, we need to know the radial profile of the rotational transform in order to specify 
a judicious choice of L required in the design of an EML experiment. Figure 3(a) is such a 
profile, obtained with the help of the TBR-1 parameters. It indicates that a convenient 
region to explore contains the rotational transforms 2rr(1/6) and 2a(2/6). so that an EML 
ring with L/2 = 6 would excite primarily those islands. 

This assumption is well supported by phase portraits obtained with the use of both SPM 
and IEM formulae. All parameters are taken from TBR-1. Figure 4 shows the case of the 
y = 1 limiter. carrying a current of I = 400 A and without toroidal correction (E = 0). The 
SPM (Fig. 4(a)) and IEM (Fig. 4(b)) phase portraits are very similar. Note that 1EM orbits 
are more well-defined than SMP due to the large number of iterations allowed by analytical 
mappings, in contrast with a map generated by numerical integration of field line 
equations. Nevertheless, two primary magnetic island chains are clearly observed-the 6,‘1 
chain, located roughly around the surface at .v,, = 0.025m (where .v(, = b - r,,); and the h/l! 
chain, located near the radial position of y(, = 0.0.50m. There is a little difference between 
SPlvI and IEM with respect to the numerical values for this location. Moreover, in both 
mooels the 612 resonances are substantially shorter than the 6:‘1 resonances. The reason for 
this fact is the abrupt decrease of the perturbing field with the distance from the inner wall. 
Hence. although more resonances are expected to appear. only these ones arc relv.anr in 
the analysis of EML performance. 

Figure 5 shows phase portraits for the p = 1 ring and I = 400 A, but with toroidal 
correction (2), i.e., (E f 0). Both maps, SPM (Fig. 5(a)) and IEM (Fig. 5(b)) show a richer 
variety of islands. in contrast with the previous case, where the pure cylindrical case was 
considered. Previous analysis of Poincare maps for field lines w-ith perturbations of a helical 
winding type [20. 291 shows the presence of ‘satellite’ or secondary island chains in the 
vicinity of the primary resonances; a fact already expected from theoretical arguments [30. 
-?I]. Apart from differences caused by graphical definition. both maps exibit satellite chains 
of IPI - 6, uz = 7 and even m = 8 in the vicinity of 6/l and 62 primary resonances ot the 
preceeding cast. 

The multiplicity of higher-order resonances leads to various overlappings between 
adjacent islands and field-line stochasticity. The chaotic nature of some orbits. whose initial 
conditions belong to stochastic layers, can be inferred from the power spectrum of the field 
line trajectories on the Poincare plane. Figure 6 shows such power spectra for an orbit 
generated by the point x,, = 0.34560m, y,, = O.O313Or?7, for SPM (Fig. 6(a)) and IEM 
(Fig. 6(b)). The presence of a broadband noise spectra highly concentrated at lov, 
frequencies indicates chaos. 

The case of p = 4 limiter rings and no toroidal effect (cf. Fig. 7(a)) for SPM and 
Fig. 7(b)) for IEM) leads to phase portraits qualitatively similar to those shown in Fig. 1 
(for 11 = l), but with larger resonances, for the same value of EML current (/ -- 400 A). 
This result stems from the theoretical formula to be derived in the next section, for the 
wid1.h of a primary magnetic island generated by EML field. Figure 8 exhibits the same 
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case, but now with toroidal correction (E # 0), which presents an enlarged stochasticity 
region in the peripheral region of the tokamak, according to the expected performance for 
EML. Only the IEM case is presented, since the numerical integration required for 
obtention of the SPM phase portrait is not convenient for magnification of finer details in 
the stochastic regions, when the perturbation strength is too high. This would be achieved 
introducing a symplectic integration procedure. 

MAGNETIC ISLAND WIDTHS 

The width of a magnetic island obtained in the SPM case can be estimated by the 
theoretical method developed by Matsuda and Yoshikawa to deal with general error fields 
[32]. We assume a cylindrical geometry (E = 0), but allow the existence of an arbitrary 
number p of EML rings. Let y. be the radial position of a given resonant magnetic surface. 
A set of islands will appear around this point, after a suitably chosen perturbation is 
switched on. Linearizing l(r) in the neighbourhood of this surface gives 

d6’ -z 
dv 

$(L, + I’X), 0’4 

where x = Y - yo, 1. = l(ro) and L’ = ( dl/dY),=,O. If the sought-for islands are small enough, 
we can neglect the radial variation of perturbing fields, and evaluate them at r = ro, such 
that (1) is written as 

(33) 

If the radial component of the perturbing field is periodic in 0 and 9, we can 
Fourier-expand it, as 

BZ1)(ro, 8, cp) = ~m,n~,nne’(mR-n~)r (34) 

but the relevant terms of this series are those which characterize resonances, so as to satisfy 
the relation 1. = 2rn/m, where m and n are co-prime positive integers. The remaining 
terms oscillate very fast and vanish when averaged over typical periods of motion. Taking 
only one mode m/n of the perturbing field, namely 

BZ’kr0, 0, cp) = b,,,(r0)sin(m~ - nq + P), (35) 

where b,,, and p are related to the Fourier coefficients of (39, equation (32) gives in the 
neighbourhood of the resonance at r = r. 

da 2rn --mm- 
dq 10 + L’X ’ 

where cv = m0 - nq + fi. Combining (36) with (33), when l’x/~~ << 1 one finds 

d2Lu - = -Asincu, 
de* 

where we have defined 

(36) 

(37) 

A=- 2nn~‘rob,,,(rd 
&?(,O)( ro) 

(38) 
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One recognizes (37) as the equation of a nonlinear pendulum, which is a paradigm for the 
motion around any type of resonance, as is shown in canonical perturbation theory [lg]. 
The advantage here is that (37) is obtained directly from the field line equations (1). A 
different approach would be the use of Hamiltonian perturbation theory for field lines. 
which gives essentially the same results [26]. The qualitative aspects of the solution curves 
of (37) are well known. Working with the adimensional parameter k2 = E/2A, where 
E = (l/2)( da/de);+ we have three distinct types of solutions, according to its value: 
rotation curves (k’ > l), liberation curves (k’ < 1) and a separatrix ( k2 = l), which bounds 
a magnetic island (in the Poincare plane q = 0). 

Furthermore, one can evaluate the island width &,,, (in tokamak coordinates) by 
integration of equation (33) over a complete turn of the phase N. Using (37) we obtain [32] 

In order to apply the above equation, it is necessary to know the appropriate Fourier 
coefficient of the radial error field from its double trigonometric series 

Bj.” = ,;,,{A,Fl,,~l,cos(~)cos(~) 

+ B,.,,,,,,sin(~)sin(~) + D.,,,,,,,cos(y)sin(y) (40) 

+ E,,,,,,,,sin(y)cos(y)}, 

where 7’, and Tz are the fundamental periods of variation for angle variables 0 and q. 
respectively. This form of Fourier expansion is related to the original series (34) by the 
following definitions: 

2nrn ’ 2i7n ’ 
n- (411 

TI T2 

If the rings are assembled with an angular displacement of 2n/p around the torus, B).” is 
symmetric by the change q--+ - (%, so that there is only one non-vanishing Fourier 
coefficient in (40), 

Taking into account the z-dependence characteristic of the square-pulse map (cf. Fig. 
3(a)). a simple integration gives 

E In’.11 = ~h(r,wL:,,,,~ (--$Jsin(:?). 

where 

(431 

(44) 

Now working with the safety factor q(r) = 2n/l(r), in the resonant surface we get 
m = q(ro)n, with m = m’ and n = pn’. The resonance conditions turn out to be 
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in such a way that the mode coefficient necessary for island width evaluation reads 

b,,,(r,) = -$$)($r-‘sin($). (46) 

Figure 9 shows a comparison between the theoretical prediction that we have been made 
with help of (39), for SQM constructed with p = 1 and p = 4 limiter rings. Parameters are 
taken from TBR-1, with the equilibrium model studied in Section 2. Island widths 
measured directly from phase portraits are indicated as boxes in the figure. The resonance 
width increases with the square root of the EML current as well as with the number of 
rings, and varies inversely with the magnetic shear. For instance, islands obtained with 
p = 4 limiters are twice as large as those obtained with only a p = 1 ring, for the same 
value of current intensity. 

The agreement between our theoretical model and Poincare maps of the SPM type is 
quite good, within the limitations inherent to the various approximate models involved. 
The small deviations can be partially explained by width measurements without taking 
account of the stochastic separatrix layer, because the separatrix itself is not well-defined in 
the presence of perturbations. 

CONCLUSIONS 

Poincare maps for magnetic field lines have been a useful theoretical tool for plasma 
physicists, since they reveal the basic dynamical phenomena without detailed description of 
the whole three-dimensional MHD problem. The most frequent method to generate these 
maps has been the numerical integration of field line equations, which is a time consuming 
task, and with cumulative numerical errors that introduce small deviations to the symplectic 
nature of the maps. Analytical expressions are thus of great interest, from the theoretical 
point of view. 

The ergodic magnetic limiter problem has been an important laboratory to study 
dynamical properties of maps, since it is designed to generate bounded chaotic field line 
layers. In this work we approach this problem from two ways, making comparisons 
between maps which have been obtained through numerical integration as well as analytical 
formulae. The basic difference between these cases is the form of toroidal dependence of 
the limiter perturbing field. Assuming a delta function shaped perturbation enables us to 
write explicit formulae for the map, which becomes rigorously symplectic after a canonical 
transformation is applied. 

Results are in good agreement with numerical maps which use square-pulse perturba- 
tions, provided the approximations we made remain valid in both cases. The main 
prediction of the ergodic limiter model, namely, the onset of a chaotic region of field lines, 
appears in the analysis of power spectra. Moreover, the magnetic island width and radial 
location of primary resonances generated by perturbation is estimated, results being in 
accordance with phase portraits of the square-pulse map. 

These results can be a basis for further investigations of field line diffusion in the 
peripheral region of the tokamak, in order to elucidate particle and heat transport 
properties in the plasma edge, where a very turbulent phase has been detected by many 
experiments. 
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