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a b s t r a c t

We review symplectic nontwist maps that we have introduced to describe Lagrangian
transport properties in magnetically confined plasmas in tokamaks. These nontwist maps
are suitable to describe the formation and destruction of transport barriers in the shearless
region (i.e., near the curve where the twist condition does not hold). The maps can be used
to investigate two kinds of problems in plasmas with non-monotonic field profiles: the first
is the chaotic magnetic field line transport in plasmas with external resonant perturba-
tions. The second problem is the chaotic particle drift motion caused by electrostatic drift
waves. The presented analytical maps, derived from plasma models with equilibrium field
profiles and control parameters that are commonly measured in plasma discharges, can be
used to investigate long-term transport properties.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Symplectic maps have been for a long time used as models of Hamiltonian systems [1]. Such maps may arise from inter-
sections of phase space trajectories with a given surface of section, or also may appear as stroboscopic samplings of a tra-
jectory of a time-dependent system at fixed time intervals [2]. If the time dependence is a periodic sequence of delta
function kicks it is possible to obtain explicit formulas for the maps [1,3]. Symplectic maps are convenient systems to inves-
tigate, inasmuch we can compute a large number of iterations using a short CPU time and practically without propagating
numerical errors. This is particularly important in investigations of Hamiltonian transport requiring computation of phase
space trajectories during a very long time interval.

Traditionally studies of symplectic maps deal with twist maps for which the rotation number varies monotonically. Many
important theoretical results, like Kolmogorov–Arnold–Moser (KAM) and Poincaré–Birkhoff theorems, and Aubry–Mather
theory are stated for two-dimensional symplectic maps [2].

Recently there is a growing interest in nontwist maps, for which the twist condition is not fulfilled for all points in the
domain of interest [2,4]. Nontwist maps are of mathematical interest because only a few rigorous results exist for them
[5–9].

Moreover, nontwist maps also appear in many dynamical systems of physical interest, often related to continuous
systems like fluids and plasmas, such as magnetic field lines in toroidal plasma devices with reversed magnetic shear
[4,10–14], advection by incompressible shear flows [15], traveling waves in geophysical zonal flows [16,17], and the
E � B drift motion of charged particles in a magnetized plasma under the action of a time-periodic electric field from an
. All rights reserved.
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electrostatic wave [18–21]. Nontwist maps have also been investigated in particle motions described by certain Hamiltoni-
ans in molecular physics [22,23].

Here, we review examples of nontwist maps that we have proposed, some of them in collaboration with Phil Morrison.
For magnetically confined plasmas in tokamaks, nontwist maps are introduced to describe the presence of Lagrangian chaos
at the plasma edge. Initially we consider the Lagrangian description of magnetic field lines in tokamaks [10,21]. In this
description the field lines for a confined plasma with a non-monotonic electric current density are mapped into a two-
dimensional Poincaré surface of section with a nontwist rotation number radial profile. This nontwist condition at the plas-
ma edge creates a barrier to the field line that attenuates the plasma transport, so improving plasma confinement [24].

In the second place we consider the chaotic motion of particles at the plasma edge in an equilibrium electric field with
non-monotonic radial profile perturbed by drift waves [16,18,20]. For these profiles the particle trajectories can be also
mapped in to a two-dimensional Poincaré section with a nontwist rotation number radial profile, a result similar to that ob-
tained for magnetic field lines. To illustrate that we present a new nontwist drift map obtained for a nonmonotonic electric
potential that creates a transport barrier in the nontwist region.

This paper is organized as follows: in Section 2 we introduce the symplectic nontwist maps through its most studied
example, the standard nontwist map introduced by Phil Morrison and his collaborators. Sections 3 and 4 present, respec-
tively, the nontwist maps we derived for magnetic field lines and particle transport in tokamaks. Our conclusions are left
to the final Section.
2. Nontwist symplectic maps

Let (xn,yn) be the normalized angle and action variables, respectively, of a phase space trajectory at its nth piercing with a
Poincaré surface of section, such that yn 2 R and xn 2 (�1/2,1/2]. We will consider two-dimensional symplectic maps of the
form
ynþ1 ¼ yn þ f ðxnÞ; ð1Þ
xnþ1 ¼ xn � gðynþ1Þ; ðmod1Þ ð2Þ
where f(xn) is a period-1 function of its argument, standing for the perturbation strength. We assume that the time-depen-
dence of the perturbing term can be modeled by a periodic delta function. Moreover g(yn+1) is the winding number of the
unperturbed trajectories, its derivative being the so-called shear function. If g is a monotonically increasing or decreasing
function the corresponding shear does not change sign, giving the twist condition:
jg0ðynþ1Þj ¼
@xnþ1

@yn

����
���� P c > 0; ð3Þ
where c 2 R.
However, for a non-monotonic g-profile the twist condition is not satisfied at some point ys and g0(ys) = 0 determines the

shearless curve. If the winding number g(y) has only one extremum at the shearless curve y = yS, we can expand this function
in the vicinity of this point. The lowest-order approximation for g(y) is thus a quadratic function. On keeping one Fourier
mode in the perturbation term of (1) and (2), we obtain the standard non-twist map (SNTM) [16]
xnþ1 ¼ xn þ að1� y2
nþ1Þ; ð4Þ

ynþ1 ¼ yn � b sinð2pxnÞ; ð5Þ
where a 2 (0,1), and b > 0.
The mathematical properties of SNTM have been extensively investigated by Phil Morrison and his collaborators over the

past two decades [25]. In the following we outline some of these properties, referring to the literature for a more complete
coverage of them. In the unperturbed case (b = 0) the twist condition (3) is violated at the point yS = 0, what defines a she-
arless curve {y = yS = 0}. The quadratic form of g around yS = 0 leads to two invariant curves located at y = ±y0 and with the
same winding number að1� y2

0Þ at both sides of the shearless curve.
As the perturbation becomes nonzero (b – 0) two periodic island chains appear at the two invariant curve locations, and

the former shearless curve becomes a shearless invariant tori separating these two island chains [16]. There are also chaotic
layers attached to the ‘‘separatrices’’ of both island chains, as expected from the presence of homoclinic crossings therein.
These chaotic layers are not connected, though, as far as there are invariant curves near the shearless invariant tori acting
as dikes, preventing global transport [26].

A representative example of this scenario is provided by Fig. 1(a), where a phase portrait of the SNTM is depicted for
b = 0.410 and a = 0.700. We observe two island chains with three islands each and the same winding number. The local max-
ima of the perturbed winding number profile define a shearless invariant curve, which existence can be inferred between the
two island chains. The island chains bordering the shearless invariant curve are transport barriers, since chaotic trajectories
above and below do not mix. If, however, the parameters are further modified, another noteworthy feature of nontwist maps
can emerge, depending on the parameter space region. In one scenario (generic reconnection) the island chains with the
same winding number approach each other and their unstable and stable invariant manifolds suffer a (non-dissipative)
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Fig. 1. Phase portrait of the standard non-twist map (4) and (5) for b = 0.410 and (a) a = 0.700; (b) a = 0.690.
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reconnection. The latter can be recognized in Fig. 1(b), the phase portrait obtained for the same value of the parameter b of
Fig. 1(a) but changing the parameter a to 0.690.

In the region between the chains, there appear new invariant tori called meandering curves (which are not KAM tori,
though, since the latter must be a graph over x, while meanders are not). The remaining periodic orbits eventually coalesce
and disappear, leaving only meanders and the shearless torus. This set of curves turns out to be a robust transport barrier, as
illustrated by Fig. 2(a), where three chaotic orbits at different sides of the barrier are kept segregated by a shearless curve
[27]. The other possible reconnection scenario, described in Ref. [28] is non-generic and involves the formation of vortex
pairs, that is possible only in nontwist maps with certain symmetries. Further growth of b-parameter causes the breakup
of the transport barrier and the consequent mixing of the chaotic orbits formerly segregated at both sides of the shearless
invariant torus Fig. 2(b).
3. Magnetic field line maps in tokamaks

In the program to develop controlled thermonuclear fusion, tokamaks have been used to carry out experiments with mag-
netically confined plasmas. In the last years it became evident that the plasma confinement strongly depends on the confin-
ing magnetic field spatial profiles at the plasma edge [29]. The influence of these fields on the plasma-wall interactions, the
plasma edge electrostatic turbulence, and the anomalous particle transport induced by this turbulence are nowadays under
intense investigation in all tokamaks [30]. In tokamaks, the magnetic field at the plasma edge is made chaotic to control the
ELM instability [31] and to smear out large heat and particle loads on the wall [32]. However, in the chaotic field region the
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Fig. 2. Phase portrait of the standard non-twist map (4) and (5) for a = 0.700 and (a) b = 0.412; (b) b = 0.414.
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lines escape to the wall through a fractal like structure and, for some discharge parameters, the line escape gives rise to a
footprint with high concentration of heat and particle loadings on the tokamak wall [31,32].

Before presenting tokamak maps which have been constructed to evidence the above-mentioned effects, let us describe
very briefly the tokamak geometry and how the magnetic field lines are characterized. The tokamak is a toroidal vessel with
major radius R0 and minor radius b, its aspect ratio being b/R0. The major radius defines a magnetic axis, with respect to
which a field line is described using three ‘‘local’’ coordinates: a radius r, a poloidal angle h and a toroidal angle u [29]. A
Poincaré surface of section is a plane where u is a constant, intersecting the field line at a point with coordinates (rn,hn),
n being an integer. Actually, (rn,hn) are not canonical coordinates themselves, but we can construct such an action-angle pair,
depending on the specific case. Nevertheless the field line maps so obtained are symplectic thanks to the solenoidal condi-
tion r � B = 0 [29].

The equilibrium magnetic field in a tokamak leads to helical magnetic fields lying on nested tori concentric with the mag-
netic axis. Each torus can be characterized by its safety factor q(r,h) = du/dh. If q is a rational (irrational) number the corre-
sponding torus is likewise rational (irrational)[29]. Nontwist maps arise from non-monotonic safety factors, as we shall see.

3.1. Ullmann map

If the aspect ratio is large, we can use a periodic cylinder approximation and add toroidicity effects later on as a perturb-
ing term. In this spirit the Ullmann map (UM) [24] models the magnetic fields in a tokamak with an ergodic limiter [33–35].
It can be obtained from a second kind generating function and was inspired by an earlier model [37]. The UM satisfies the
conditions for a tokamak model outlined in [36], further including toroidal effects and presenting the advantage of having its
parameters directly related to experimental ones.

The UM is given as a composition of two maps:the equilibrium map
1 For
rnþ1 ¼
rn

1� a1 sin hn
; ð6Þ

hnþ1 ¼ hn þ
2p

qeqðrnþ1Þ
þ a1 cos hn ðmod 2pÞ; ð7Þ
and the perturbation map
rn ¼ rnþ1 þ
mC�b
m� 1

rnþ1

b

� �m�1
sinðmhnÞ; ð8Þ

hnþ1 ¼ hn � C�
rnþ1

b

� �m�2
cosðmhnÞ; ð9Þ
where the parameter a1 gives the strength of the toroidal correction in the cylindrical equilibrium, and � is proportional to
the current in the limiter, quantifying the perturbation strength due to the magnetic ergodic limiter (m and C are geometrical
factors) [37].

The freely adjustable equilibrium safety factor profile qeq(r) appearing in Eq. (7) is an additional advantage of the UM and
the following expression describes in a satisfactory way typical non-monotonic q-profiles for plasma discharges in tokamak
experiments [24]
qðrÞ ¼ qa
r2

a2 1� 1þ b0
r2

a2

� �
1� r2

a2

� �lþ1

Hða� rÞ
" #�1

; ð10Þ
where a is the plasma radius; qa, c, b, and l are parameters that can be chosen to fit experimentally observed plasma profiles
(b0 = b(l + 1)/(b + l + 1)), and H is the unit step function. With this profile the UM becomes a nontwist one.

Giving that the UM is intended to study the tokamak edge, r and h being planar coordinates in the rectangular approx-
imation, it is convenient to consider normalized coordinates: y = 1 � r/b and x = h/2p, so that the tokamak wall lies at
y = 0. In Fig. 3 we show phase portraits for UM, highlighting the invariant curves [depicted in red1) between the island chains
involved in the reconnection scenario typical of nontwist maps. In Fig. 3(a) we have two island chains separated by invariant
curves, whereas in Fig. 3(b) there occurs a heteroclinic connection. After a further increase of the perturbation the hyperbolic
(saddle) points of the island chains interchanged Fig. 3(c). Even after an island chain disappears through a saddle-center bifur-
cation, the transport barrier still persists [depicted in red in Fig. 3(d)].

It is worth considering the detailed structure of the region near the shearless curve before and after the transport barrier
has been destructed. Fig. 4(a) shows a magnification of the barrier region depicting in red the island chains inside the barrier.
The region around the islands left after the destruction of the barrier is shown in Fig. 4(b). The concentration of orbit points
in this region characterizes the stickness phenomenon, which is the tendency of chaotic orbits near the remaining island to
stay there for a long time before being returning to the chaotic sea. These sticky regions exert a strong influence on the trans-
port properties of Hamiltonian systems, since they act as dynamical traps, in such a way that the transport becomes
anomalous.
interpretation of colour in Figs. 3 and 4, the reader is referred to the web version of this article.



Fig. 3. Phase portraits for UM for (a) � = 0.05; (b) � = 0.0635; (c) � = 0.10; (d) � = 0.30.
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In Fig. 5(a) we display a magnification of the effective barrier region showing different regions in the chaotic sea sepa-
rated by broken invariant lines, the cantori, just after the invariant barrier destruction. For a slightly higher perturbation va-
lue, [Fig. 5(b)] this region acts less like a barrier to the transport.

3.2. Two-mode map

In the UM the dynamical variables are the coordinates (r,h) of the intersection of a magnetic field line with a Poincaré
surface. This rather simplified description has two problems: (i) the toroidicity effect is treated phenomenologically, i.e. it
does not come from first principles; (ii) the variables are not canonically conjugate.

Both problems can be solved simultaneously by using a Hamiltonian description for field lines and a convenient coordi-
nate system. The latter should provide naturally the toroidicity effect, such as the so-called toroidal polar coordinates
(rt,ht,u), as described in Ref. [38]. The coordinate surfaces are tori whose axes are displaced from the magnetic axis (located
at R00, which is slightly different from the major radius R0), so emulating the Shafranov shift of magnetic surfaces. In the large
aspect ratio approximation the toroidal polar coordinates reduce to the local coordinates used in the UM.

From the toroidal polar coordinate one can define canonically conjugate action-angle variables as [39]
JðrtÞ ¼
1
4

1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

rt

R00

� �2
s2

4
3
5; ð11Þ

#ðrt; htÞ ¼ 2 arctan
1

XðrtÞ
sin ht

1þ cos ht

� �� 	
; ð12Þ
where
XðrtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2rt=R00
1þ 2rt=R00

s
: ð13Þ



Fig. 4. Magnification of a region of a phase portraits for UM for (a) � = 0.3029, and (b) � = 0.3031.

Fig. 5. Magnification of a region of a phase portraits for UM (a) � = 0.3031, and (b) � = 0.3040.
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On considering the field line Hamiltonian in terms of these action and angle variables, we expand the unperturbed Ham-
iltonian around a given magnetic surface with action J = J0 and a rational winding number X0 = n/m, where n and m are two
integers. Nontwist maps arise from non-monotonic radial profiles for the winding number, such as
H0ðDJÞ ¼ 1
2
ðDJÞ2 � a

3
ðDJÞ3; ð14Þ
where DJ = J � J0 and a ¼ H00ðJ0Þ=2H000ðJ0Þ, such that the winding number is X0 = dH0/d(DJ) [40–42].
We are interested, like in the UM, to describe the perturbation of a magnetic ergodic limiter on the integrable Hamilto-

nian described above. The two dominant resonant modes excited by such a perturbation have poloidal wave numbers equal
to m and m + 1, respectively, representing the main resonant island and its bigger satellite island. The interaction between
these two island chains reproduces quite well the transition to field line chaos.

While the UM assumes the existence of only one ergodic limiter at a fixed position u = 0, we can describe an arbitrary
number Nr of limiters, each of them located at toroidal positions n(2p/Nr), where n = 0,1,2, . . . ,Nr � 1. We consider the
map of a field line from the k-th surface of section to the following one as
ðDJÞkþ1 ¼ ðDJÞk þmb sinðm#kþ1Þ þ ðmþ 1Þg sinððmþ 1Þ#kþ1 þ ntkþ1Þ; ð15Þ
#kþ1 ¼ #k þ
2p
Nr
ððDJÞk � aðDJÞ2kÞ; ðmod 2pÞ; ð16Þ
tkþ1 ¼ tk þ
2p

mNr
; ð17Þ
which, despite being described by three equations, is still a two-dimensional symplectic map [41,42].
In Fig. 6(a) we show a phase portrait of the two-mode map (15)–(17) which illustrates a non-twist equilibrium field line

structure with two isochronous resonances with winding number 1/3. The latter have already reconnected and dimerized,
being separated by a set of meandering invariant curves. Such curves encircle both sets of island chains and can appear only
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for nontwist maps near the shearless curve. Fig. 6(b) shows that the region near the shearless curve acts as an internal trans-
port barrier separating two chaotic areas and avoiding the radial diffusion.

Although the exact numerical integration of the magnetic field line equation yields Poincaré maps that reflect in a rather
precise way the nontwist dynamics, this procedure is a very time-consuming computational task. Many studies of long-term
behavior of this system, as analyzes of diffusion, escape or loss of field lines, require a computationally fast and reliable
scheme of numerical integration. Instead of obtaining numerically the Poincaré maps, we can resort to the impulsive nature
of the ergodic limiter to obtain a local analytical approximation of the exact mapping.

Comparing the numerical results obtained with the maps of Sections 3 and 4 we recognize that, taking only one resonant
term may be not enough, for some equilibrium parameters, to form inside the tokamak plasma the large chaotic region
numerically obtained even for large amplitude perturbations. Hence, in the two-mode map we also take into account a sec-
ond resonant mode from the infinite number of Fourier harmonics generated by the ergodic limiter. Consideration of addi-
tional resonances would improve our description of the chaotic region, but they are not necessary to study the transport
barrier in the shearless region where the two considered modes are dominant.

4. Drift wave maps

Experiments indicate that in tokamaks the plasma confinement depends on the anomalous particle transport at the plas-
ma edge caused by the electrostatic turbulence [43]. Thus it is important to estimate the contribution to this transport due to
the chaotic particle orbits driven by the turbulent fluctuation. The transport of particles in a magnetically confined plasma,
due to electrostatic drift waves, has been investigated [18]. The model describes the trajectory of the guiding center of a plas-
ma particle in a uniform magnetic field perpendicular to a radial electric field perturbed by drift waves, using the Hamilto-
nian description for the guiding center trajectory [43].

The E � B-drift produced by the equilibrium radial electric field and a dominant wave is described by the integrable part
of the Hamiltonian, while the other part contains the perturbation representing the fluctuating electric field associated to
other drift waves. Within this framework the Lagrangian chaotic transport of the guiding centers of ions is calculated and
proposed to interpret the anomalous plasma edge transport observed in tokamaks [18]. Resonances and island chains cre-
ated at the plasma edge depend on the main plasma parameters and the radial electric field and plasma flow radial profiles
[20]. We use the chaotic orbits to determine the particle radial transport.

In the model considered in this work, single particle motion in the equilibrium plasma is described by an integrable
Hamiltonian system and can be solved analytically. However for the plasma perturbed by a set of coherent drift waves
the Hamiltonian is no longer integrable. Thus, qualitative features of this transport can be approximated by a low-
dimensional dynamical system with island chains in phase space due to the superposition of many dominant waves.

The drift velocity of the guiding centers is given by:
Fig. 6
v ¼ �r/� B
B2 ; ð18Þ
which is equivalent to the following set of differential equations:
vx ¼
dx
dt
¼ � 1

B0

@/
@y

; ð19Þ

vy ¼
dy
dt
¼ 1

B0

@/
@x

; ð20Þ
representing canonical equations obtained from a drift-wave Hamiltonian H(x,y, t) = /(x,y, t)/B0. The electric potential is gi-
ven by
. Phase portraits for the two-mode map with m = 3, a = 160.15, (a) b = �4.96 � 10�5, g = 2.29 � 10�5 and (b) b = �1.30 � 10�4, g = 1.15 � 10�4.



Fig. 7. Phase portrait for the nontwist drift wave map (23) and (24) with a1 = 0.384 and b1 = 0.1.

Fig. 8. Phase portrait for the nontwist drift wave map (23) and (24) with b1 = 0.1 and (a) a1 = 0.455; (b) a1 = 0.460; (c) a1 = 0.464.
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/ðx; y; tÞ ¼ /0ðxÞ þ
Xþ1

j¼�1
A cosðkyy� jx0tÞ: ð21Þ
We can choose a non-monotonic x-profile for the equilibrium electric potential /(x) and integrate Eq. (21) to obtain a non-
twist drift map.

In this work we introduce a nontwist map that could be used to simulate local transport barriers observed at the plasma
edge. For that, we identify an observed radial transport barrier as resulting from a nontwist map that locally describes the
particle trajectories around the transport barrier. To obtain such map, we choose an equilibrium electric potential that gives
a proper nonmonotonic electric field corresponding to a nonmonotonic flow simulating a localized transport barrier in the
nontwist region. This local nontwist property would be created by an instability or a local flow at the plasma edge that lo-
cally taylors the electric field radial profile. A convenient potential for that is
/0 ¼
�ax4 if x < 0;
ax4 if x P 0:

(
ð22Þ
for which we obtain a nontwist drift wave map, given by
xnþ1 ¼ xn þ a1 sinð2pynÞ; ð23Þ
ynþ1 ¼ yn þ b1jxiþ1j3; ðmod 1Þ; ð24Þ
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where the parameters a1 and b1 are determined from the equilibrium and perturbing quantities.
Fig. 7 shows a representative phase portrait of the dynamics generated by this nontwist drift wave map. For the param-

eters chosen we observe the formation of an internal transport barrier between two regions almost completely chaotized.
This barrier, on its hand, has been formed thanks to the meandering curves appearing near the shearless curve in a recon-
nection process very similar to that described in the previous section for a field line map. Inside the transport barrier shown
in Fig. 7 we identify invariant curves and island chains embedded on it. These chains with a large number of dimerized is-
lands appear on both sides of the invariant curves (in fact, one of these invariant curves is a shearless curve).

In Fig. 8(a)–(c) we can recognize the barrier breakup process observed by keeping a constant b1-value and changing the
parameter a1 from 0.455 to 0.464. On increasing the control parameter a1, the barrier becomes thinner and changes until it
breaks up in a scenario of successive bifurcations that gives rise to a sequence of new island chains. After the barrier breakup
two dimerized island chains survive further for a small parameter a1-variation.

The drift map may be useful to investigate the sudden onset of a plasma edge transport barrier. This is a local alteration in
the plasma in contrast with the barrier created by magnetic resonances whose modes have a global influence on the Poincaré
surfaces described by the maps of Sections 2 and 3.
5. Conclusions

Nontwist symplectic maps have been intensively studied in the past years due to their intrinsic mathematical appeal
(KAM theorem, for example, does not hold for them) as well as their occurrence in many problems of physical interest, par-
ticularly in plasma physics. In this work we reviewed nontwist symplectic maps that we have introduced to describe chaotic
Lagrangian transport in plasmas confined in tokamaks. The presented maps are derived from plasma models with non-
monotonic equilibrium field profiles and control parameters that are commonly measured in plasma discharges. Moreover,
these analytical maps can be used to investigate long-term transport properties, by replacing lengthy numerical integrations
of the magnetic field line equations by faster map iterations.

The maps describe two kinds of transport at the plasma edge, namely, the escape of chaotic magnetic field lines from the
plasma to the wall, as well as the chaotic anomalous particle transport due to the E � B drift motion associated to the elec-
trostatic fluctuations. Initially, we presented two maps that we have used to describe barriers that obstruct or reduce the
magnetic field line transport due to resonant perturbations at the plasma edge created by an ergodic limiter. After that,
we present a new map that describes the particle drift transport associated to the electrostatic drift waves.

In all maps we presented in this work, we focused on the formation and destruction of transport barriers in the shearless
region. Such transport barriers are desirable in tokamaks because they reduce particle losses and improve plasma confine-
ment. The barriers were found to be very robust, demanding strong perturbations to destroy them. Furthermore we de-
scribed how an effective barrier reduces the transport across the shearless region. This behavior is caused by the higher
order island chains present in the shearless region, due to the non-monotonicity of the equilibrium field profiles. The main
transport properties observed in the nontwist tokamak maps are common to those observed in the standard nontwist map,
some of them having been analytically predicted in the literature, especially in the papers of Phil Morrison and his
collaborators.
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