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Abstract— Nowadays, divertors are used in the main tokamaks
to control the magnetic field and to improve the plasma con-
finement. In this paper, we present analytical symplectic maps
describing Poincaré maps of the magnetic field lines in confined
plasmas with a single-null poloidal divertor. Initially, we present
a divertor map and the tokamap for a diverted configuration.
We also introduce the Ullmann map for a diverted plasma, whose
control parameters are determined from tokamak experiments.
Finally, an explicit, area-preserving, and integrable magnetic field
line map for a single-null divertor tokamak is obtained using a
trajectory integration method to represent toroidal equilibrium
magnetic surfaces. In this method, we also give examples of
onset of chaotic field lines at the plasma edge due to resonant
perturbations.

Index Terms— Divertor, magnetic surfaces, symplectic map.

I. INTRODUCTION

TOKAMAKS are the most promising devices to confine
fusion plasmas [1], [2]. The plasma confinement depends

on the magnetic field, which determines the particle trans-
port [3]. To the leading order approximation, the charged
particles follow the magnetic field lines [2], [3]. Thus, the par-
ticle transport can be controlled by properly modifying the
magnetic field as a result of electrical currents in external coils
and also by installing poloidal divertors [1], [4]. Such divertors
are used to control the plasma impurity content [5], [6]
and have a special magnetic configuration created by electric
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currents in external coils, such that the field lines have escape
channels, through which plasma particles can be diverted out
of the tokamak wall and redirected to divertor plates.

Divertors are essential components in modern tokamaks,
such as International Thermonuclear Experimental Reac-
tor (ITER) [1], [7]. The overlap of the magnetic fields created
by the divertor with the magnetic field of the plasma creates
a hyperbolic fixed point where the poloidal magnetic field is
null. The hyperbolic point is in the separatrix, the invariant line
separating the plasma, with stable and unstable manifolds [8],
[9]. Outside the separatrix, the magnetic field lines intersect
the collector plates [1].

The tokamak map trajectories can be obtained by directly
integrating the field line differential equations, but the inte-
gration requires a time-consuming calculation, which may not
be appropriate for studying long term of the field behavior.
Therefore, approximated maps have to be considered if one
wants to have the advantage of much shorter computa-
tion times [3], [10], [11]. Analytical tokamak maps can be
derived from physical models and mathematical approxima-
tions applied to the field line equations or even can be ad hoc
maps to obtain a qualitative or quantitative description of the
physical situation that they describe [11]–[13].

Magnetic field lines are, in general, orbits of Hamiltonian
systems of one-and-a-half degrees of freedom with a timelike
periodic coordinate. Consequently, the field line configuration
can be represented in Poincaré sections at a fixed toroidal
angle, equivalent to 2-D area-preserving maps [3], [10], [11].
Thus, we can use such maps to qualitatively represent the
magnetic configurations of tokamak plasmas [14]. In this
paper, we present maps proposed to investigate the fun-
damental features of the magnetic field line dynamics in
tokamaks with the divertor. We introduce new versions of the
tokamap and the Ullmann map for tokamaks with the divertor
and review the divertor map and an integrable map for an
equilibrium divertor configuration in toroidal geometry.

This paper is organized as follows. In Section II, we show
the tokamak divertors. In Section III, we introduce three
symplectic maps: the divertor map, the tokamap for divertor
configuration, and the Ullmann map for the divertor. We also
give examples of these maps to show their dynamical char-
acteristics. In Section IV, we introduce an integrable map to
simulate toroidal magnetic surfaces modified by a divertor.
Section V contains the conclusions.

II. DIVERTOR

In tokamaks, a material limiter separates the plasma column
from the wall. However, to improve the plasma isolation
and eliminate impurities, divertors have been used in several
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Fig. 1. (Color online) Schematic view of a tokamak divertor equilibrium
configuration with intersection of invariant magnetic surfaces on a plane
determined by a specific toroidal angle. The red line indicates the magnetic
separatrix, while the contours are magnetic surfaces.

Fig. 2. (Color online) Schematic view of a tokamak vacuum chamber (A)
and the external coils (B), responsible for the resonant magnetic field (C).
Blue lines indicate the perturbing external currents, and the red vectors
indicate the nonaxisymmetric field perturbation.

modern tokamaks and will be used in ITER [7]. Divertors
consist of conductors arranged externally that carry specific
electric currents to create X-point (or hyperbolic fixed point),
where the poloidal magnetic field is null, due to the overlap of
the magnetic fields of the conductors with the magnetic field
of the plasma.

In Fig. 1, we present an example of the magnetic surfaces
in a tokamak with the divertor. In Fig. 1, the separatrix in red
line, with one hyperbolic point, separates the internal toroidal
magnetic surfaces with quasi-periodic lines of the external
surfaces with open field lines. Moreover, the X-point arises
from a separatrix with two manifolds, one stable and the other
unstable.

Several tokamaks with divertors have nonaxisymmetric res-
onant perturbation coils designed specifically to modify the
plasma magnetic field [1], [2]. One of the actions of the
resonant perturbations created by these coils is to create
chaotic magnetic field layers in the peripheral region of the
plasma column [7], [11], [13].

In Fig. 2, we show an example of this kind of coils
arranged around a tokamak chamber, similar to the coils used

Fig. 3. (Color online) Detail of the Poincaré map of the perturbed field
lines in the magnetic saddle region. The magnetic perturbation leads to the
formation of a peripheral chaotic layer and magnetic islands (A). Chaotic field
lines now cross the symmetric separatrix (C), and the open field lines intersect
the tokamak chamber (B) in asymmetric patterns controlled by the invariant
manifolds of the saddle.

in DIII-D tokamak [15]. To show how the tokamak equilibrium
is perturbed by the coils in Fig. 2, we present in Fig. 3,
the transversal cross section of the diverted tokamak magnetic
field lines for a set of control parameters commonly found in
tokamak discharges [15], [16]. In Fig. 3, we can see chaotic
lines and magnetic islands around the divertor hyperbolic
point, the separatrix of the unperturbed diverted field, and the
divertor plates where the chaotic lines intersect the tokamak
chamber.

The chaotic layer at the plasma edge affects the plasma
confinement [17] and can be controlled by the perturbation
introduced by the divertor [7]. The chaotic layer in this region
is mainly determined by the manifolds from the hyperbolic
point [18].

III. SYMPLETIC MAPS

Symplectic maps have been commonly used in physics to
describe Poincaré sections of dynamical systems [19]–[21].
In plasma physics, a pioneer symplectic map to describe
particle orbits for stellarators was introduced in [22]. After
that, symplectic maps have been used to investigate par-
ticle transport in magnetically confined plasmas [23]–[25].
Symplectic maps have also been introduced to investigate
the chaotic field lines in tokamaks. The first one was the
Martin–Taylor map introduced to describe the perturbation
created by the ergodic magnetic limiter in tokamaks [26].

In this section, we present symplectic maps to describe the
diverted magnetic field lines in tokamaks: the divertor map
introduced in [27] and the new versions of the tokamap [28]
and Ullmann’s map [29] for divertors. These maps are nonin-
tegrable and describe plasma equilibrium with chaotic layers,
around the hyperbolic point, due to resonant perturbations.

A. Divertor Map

The first divertor map has been presented as the simplest
model for the magnetic configuration of a tokamak equipped
with a divertor. The map simulates Poincaré sections of field
lines [27].
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Fig. 4. Poincaré map of the divertor map for k = 0.6, depicting the stable
fixed point at (0, 0) and some invariant curves. Closed invariant lines are
separated from open lines (not shown) by the separatrix, which includes the
hyperbolic point at (0, 1).

The divertor map introduced in [27] is

xn+1 = xn − kyn(1 − yn)

yn+1 = yn + kxn+1 (1)

where (xn , yn) are the rectangular coordinates on the poloidal
surface of the section, and the control parameter k determines
both the safety factor and the strength of toroidal asymmetries
in the magnetic field. In this map, the equilibrium and per-
turbation expressions cannot be separated, and consequently,
we cannot describe the equilibrium without perturbation. For
the small values of the control parameter k, the map shows
the formation of a thin chaotic layer in the separatrix region,
whose chaotic orbits eventually reach the plates, which are
set in the numerical simulations at yplate = 1. One example is
in Fig. 4 for k = 0.6.

B. Tokamap for Diverted Plasmas

The tokamap has been introduced to describe field lines of
a tokamak equilibrium modified by a resonant perturbation.
There are several versions of this map to account for different
equilibria and perturbations. Here, we consider the following
version of the map for tokamak plasmas [28]:

ψk+1 = ψk − L

2π

ψk+1

1 + ψk+1
sin(2πθk)

θk+1 = θk + 1

q(ψk+1)
− L

2π

1

(1 + ψk+1)2
cos(2πθk) (2)

where L is a control parameter that simulates the resonant per-
turbation amplitude and q is the safety factor that characterizes
the tokamak equilibrium.

We use rectangular coordinates x = (θ/2π) and
y = 1 − (�/�a), where �a = � at the plasma edge.
We choose a safety profile divergent near the plasma edge
(x = 1 at the plasma edge and x = 0 at the plasma center).
The considered profile is shown in Fig. 5. In Fig. 6, we show
invariant and chaotic lines, around the hyperbolic point, for
the control parameter L = 0.1. The observed chaotic layer
appears in the resonant region.

Fig. 5. Safety factor profile considered for the tokamap to obtain Fig. 6.
The coordinate y corresponds to the radial coordinate used in large aspect-
ratio tokamaks.

Fig. 6. Invariant magnetic surfaces and chaotic field lines obtained from the
tokamap for L = 0.1.

C. Ullmann Map for Diverted Plasma

A special set of coils, known as the ergodic limiter, have
been proposed to create a chaotic layer at the tokamak plasma
edge in order to separate the plasma from the wall [4]. Since
then, different kinds of limiters were installed in tokamaks to
control the plasma confinement [12], [13], [30].

In [29], a symplectic map was proposed to describe
tokamak field lines perturbed by an ergodic limiter. The
map is valid for large aspect-ratio tokamaks with toroidal
correction. In this approximation, the toroidal coordinate is
related to z. In the model, the topology of the magnetic
field lines is described by a Poincaré map in the section
z = constant, with variables rn and �n denoting the coordi-
nates of the nth intersection of the field line on the considered
section [12], [29].

The analytical expressions for the Poincaré map is obtained,
for the equilibrium with toroidal correction, by the generating
function

GTO(rn+1, θn) = Gcil(rn+1, θn)

+
∞∑

l=1

al

(
rn+1

R0

)l

cos(lθn) (3)
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Fig. 7. Analytical safety factor profile, with a divergence near the plasma
edge, and the safety factor profile calculated numerically, for fixed θ .
The coordinate r is normalized to a (plasma radius).

and the following relations:
rn = ∂GTO(rn+1, θn)

∂θn
(4)

θn+1 = ∂GTO(rn+1, θn)

∂rn+1
(5)

where Gcil is the generating function corresponding to the
cylindrical equilibrium. From (4) and (5), we obtain the map
expressions

rn+1 = rn

1 − a1 sin θn
(6)

θn+1 = θn + 2π

q(rn+1)
+ a1 cos θn (7)

where a1 is small and determined by the inverse of the
tokamap aspect ratio, and q(r) is the safety factor profile.
The toroidal correction introduces a poloidal angle θ depen-
dence on the map. Such correction, considered in the model,
takes into account the outward magnetic surface displacement,
a characteristic of tokamak equilibrium in toroidal geom-
etry. The constant a1 = −0.04 was fit to reproduce the
observed tokamak magnetic surface displacements [29]. Since
the map is derived from a generating function, interpreted
as a canonical transformation between the previous and the
next coordinates, the Jacobian for this map is unitary, and
consequently, the map is symplectic [12], [29].

We consider the Ullmann map with the safety factor pro-
file used in the tokamap without the toroidal corrections,
i.e., a1 = 0, which is integrable. This is compared with the
safety factor profile of the nonintegrable case with toroidal cor-
rection a1 = −0.04. The latter must be obtained numerically
by inverting the rotation number of an appropriate collection
of initial conditions. This is accomplished using the relation

q = 1

l
→ q ≡ lim

k→∞
2πk

∑k
j=0(θ j+1 − θ j )

. (8)

In Fig. 7, we have the analytical safety factor profile
obtained from this definition and, for initial conditions with
fixed θ , the modified safety factor calculated numerically
for 100 values of r between 0 and 1. We see in Fig. 7
the difference between the original profile inserted in (7)
and the one calculated, considering the toroidal correction,
by applying (8). The profiles are the same in the plasma center
and differ at the plasma edge. As shown in [12] and [29],

Fig. 8. (a) Potential used to obtain the magnetic surfaces. (b) Schematic
of a separatrix in rectangular coordinates indicating the meaning of each
geometric parameter related to V (y) for the normalized geometric parameters
xmax = −2, xmin = −1, ymin = 7, ymax = 4, yH 1 = 5, yH 2 = 2.75, yS = 4,
and y0 = 6.

we can add another symplectic map as an external perturbation
to obtain a chaotic layer on the resonant region.

IV. INTEGRABLE MAP FOR TOROIDAL

MAGNETIC SURFACES

In this section, we introduce a procedure to obtain an
integrable map simulating a plasma equilibrium for a diverted
tokamak [31]–[33].

To obtain the desired map, it is necessary, initially, to find
a potential V (y) that produces a topology with an X-point,
with Hamiltonian ψ given by

ψ = x2

2
+ V (y). (9)

In the plasma map, this Hamiltonian will be the flux
function. We choose a double-well shaped potential to create
curves in phase space that exhibit two closed regions delimited
by a separatrix between them with an X-point. The expression
for V (y) with the desired properties will be written as a
set of six parabolas, indicated in Fig. 8(a), joined smoothly
the connection points. In Fig. 8(a), each portion between
two dashed lines has its own parameters, and then, there
are six different parabolas joining smoothly at the dashed
lines. Fig. 8(a) shows the chosen potential profile used in this
paper [31]. A higher number of parabolas could be used to
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adapt the plasma shape to a desired boundary. Three parabolas
are the minimum to reproduce the divertor configuration with
one hyperbolic and two elliptic points. The position y = 0
corresponds to the plasma center. In Fig. 8(b), we present
the separatrix for the orbits obtained for the chosen potential
of Fig. 8(a). This separatrix determines, in the map, the last
closed magnetic surfaces inside the plasma.

We choose an analytical expression for the potential rep-
resented in Fig. 8(a). For this potential, the trajectory corre-
sponding to the separatrix is shown in Fig. 8(b), for ITER
parameters.

The next step is to solve Hamilton’s equations to get x and y
in terms of their initial conditions (x0, y0) and time t

dx

dt
= −∂ψ

∂y
(10)

dy

dt
= ∂ψ

∂x
. (11)

The continuous equations are transformed into a discrete
map, where the continuous-time parameter t is turned into a
discrete-time step �

x(x0, y0, t) = xn+1(xn, yn,�) (12)

y(x0, y0, t) = yn+1(xn, yn,�). (13)

To obtain the magnetic surfaces, we choose � given by the
inverse of the safety factor

� = T (ψ)

q(ψ)
(14)

where T (ψ) is the rotation period of the invariant curves
associated with the continuous system and q(ψ) is the safety
factor of the magnetic surface we intend to represent by the
invariant curve [31], [33].

We choose a monotonic safety factor profile similar to the
one used before in Sections III-B and III-C expressed in terms
of the function ψ [31]

q(ψ) =
{

q0 + c1ψ + c2ψ
2, ψ ≤ ψ95

α ln(ψS − ψ)+ β, ψ > ψ95.

In the numerical examples, we choose the safety factor
parameters, such that the equilibrium magnetic shear at the
reference surface, defined as

ŝ95 = r95

q95

dq

dr

∣∣∣∣
r95

(15)

is ŝ95 = 110.8 and q95 = 3.3.
For each line, the value of ψ is given by ψ = ψ(x0, y0).

At each point (x0, y0), ψ determines the � value

� = �(ψ). (16)

The map gives the Poincaré map on the surface ϕ = 0

M�(xn, yn) = (xn+1, yn+1). (17)

The magnetic surfaces are shown in Fig. 9.
To perturb the divertor integrable map, we apply the

symplectic Martin–Taylor map [26] that simulates the effect
of an ergodic limiter in large aspect-ratio tokamaks, which

Fig. 9. (Color online) Invariant magnetic surfaces obtained from the
integrable map for the chosen parameters indicated in the text.

introduces external symmetry-breaking resonances, to generate
a chaotic region near the separatrix passing through the
X-point.

For each toroidal turn, the Martin–Taylor map is applied at
the ϕ = 0 surface as a kick perturbation

(x∗, y∗) = M�n (xn, yn) (18)

(xn+1, yn+1) = P(x∗, y∗). (19)

Thus, the map used to describe the perturbation of an
external resonant helical perturbation due to a magnetic limiter
is given by [26]

xn+1 = xn − me− myn
rm cos

(
mxn

rm

)
(20)

yn+1 = yn + rm

m
log

{
cos

[
mxn

rm
− me− mxn

rm cos

(
mxn

rm

)]}

rm

m
log

{
cos

(
mxn

rm

)}
(21)

where the parameter m quantifies the perturbation strength,
proportional to the current in the limiter coils, s is the magnetic
shear at the plasma edge, and rm is the plasma radius. The
composed field line map is used to obtain the perturbed
field line configurations, as shown in Fig. 10, with different
magnetic shear profiles at the plasma edge for the control
parameters s = 1.9 and s = 2.5 for m = 3. The current
in the ergodic limiter is the same in Fig. 10(a) and (b).

The introduced nonaxisymmetric stationary magnetic per-
turbation leads to the formation of homoclinic tangles near
the divertor magnetic saddle [18]. These tangles intersect the
divertor plates in static helical structures.

In Fig. 10, we see that the size of the chaotic area near
the hyperbolic point depends on the magnetic shear. This
dependence is shown in Fig. 11, where we present the chaotic
width, the distance from the hyperbolic point to the border of
the chaotic region (computed at y = ys) as a function of the
parameter s in the interval 1.5 < s < 2.8, for two different
m values. The chaotic area increase should correspond to
higher average diffusion time for magnetic field lines to cross
the chaotic region. The width increase is not monotonic due
to a series of bifurcations that occurs for increasing shear.
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Fig. 10. (Color online) Phase portrait for the total field line map. (a) s = 1.9
and m = 3. (b) s = 2.5 and m = 3.

Fig. 11. Normalized width of chaotic area as a function of the magnetic
shear s, for m = 3 and m = 5 and the same parameters of Fig. 10.

V. CONCLUSION

To describe Poincaré sections of diverted magnetic field
lines, we presented 2-D symplectic maps, in the limit of large
aspect ratio simulating the alterations, the magnetic topology
caused by the divertor.

These maps can be used to investigate the main char-
acteristics of the chaotic layer around the hyperbolic point
introduced by divertors, and how these characteristics change
with the equilibrium and perturbation control parameters. The
tokamap and the Ullmann map were presented in new versions
for tokamaks with the divertor. We also presented a map
describing magnetic surfaces in toroidal geometry.

All the maps introduced in this paper are useful for studying
different aspects of the field line dynamics and transport in
tokamaks with the divertor. Extensions of the presented maps
could be derived to include additional effects not considered in
this paper, such as the particle’s finite Larmor radius [34], [35]
and the screening caused by the plasma response to resonant
magnetic perturbations [36], [37].

REFERENCES

[1] C. W. Horton, Jr., and S. Benkadda, ITER Physics, 1nd ed. Singapore:
World Scientific, 2015, p. 248.

[2] C. W. Horton, Turbulent Transport in Magnetized Plasmas, 1st ed. NJ,
USA: World Scientific, 2012, p. 520.

[3] R. D. Hazeltine and J. D. Meiss, Plasma Confinement, 1nd ed.
New York, NY, USA: Dover, 2003, p. 480.

[4] F. Karger and K. Lackner, “Resonant helical divertor,” Phys. Lett. A,
vol. 61, pp. 385–387, Jun. 1977.

[5] F. Wagner et al., “Regime of improved confinement and high beta in
neutral-beam-heated divertor discharges of the ASDEX tokamak,” Phys.
Rev. Lett., vol. 49, no. 19, pp. 1408–1414, Nov. 1982.

[6] M. Kikuchi, K. Lackner, M. Q. Tran, Fusion Physics, 1st ed. Vienna,
AT, USA: IAEA, 2012, p. 1129.

[7] ITER Physics Expert Group on Divertor, “Power and particle control,” in
Nuclear Fusion, vol. 39. Vienna, Austria: Nuclear Fusion IAEA, 1999,
ch. 4, pp. 2391–2469.

[8] T. E. Evans, R. A. Moyer, and P. Monat, “Modeling of stochastic
magnetic flux loss from the edge of a poloidally diverted tokamak,”
Phys. Plasmas, vol. 9, pp. 4957–4967, Nov. 2002.

[9] E. C. da Silva, I. L. Caldas, R. L. Viana, and M. A. F. Sanjuán, “Escape
patterns, magnetic footprints, and homoclinic tangles due to ergodic
magnetic limiters,” Phys. Plasmas, vol. 9, pp. 4917–4928, Nov. 2002.

[10] P. J. Morrison, “Magnetic field lines, Hamiltonian dynamics, and non-
twist systems,” Phys. Plasmas, vol. 7, pp. 2279–2289, May 2000.

[11] S. S. Abdullaev, Construction of Mappings for Hamiltonian Systems and
Their Applications, vol. 691. 2nd ed. Berlin, Germany: Springer-Verlag,
2006, p. 379.

[12] J. S. E. Portela, I. L. Caldas, and R. L. Viana, “Tokamak magnetic field
lines described by simple maps,” Eur. Phys. J. Special Topics, vol. 165,
pp. 195–210, Dec. 2008.

[13] I. L. Caldas et al., “Control of chaotic magnetic fields in tokamaks,”
Braz. J. Phys., vol. 32, no. 4, pp. 980–1004, Dec. 2002.

[14] S. R. Barocio, E. Chávez-Alarcón, C. Gutierrez-Tapia, “Mapping the
intrinsic stochasticity of tokamak divertor configuration,” Brazilian J.
Phys., vol. 36, no. 2B, pp. 550–556, Jun. 2006.

[15] D. Ciro, T. E. Evans, and I. L. Caldas, “Modeling non-stationary, non-
axisymmetric heat patterns in DIII-D tokamak,” Nucl. Fusion, vol. 57,
no. 1, p. 016017, 2017.

[16] C. G. L. Martins, M. Roberto, and I. L. Caldas, “Delineating the
magnetic field line escape pattern and stickiness in a poloidally diverted
tokamak,” Phys. Plasmas, vol. 21, no. 8, p. 082506, Jul. 2014.

[17] A. Vannucci, I. L. Caldas, and I. C. Nascimento, “Disruptive instabilities
in the discharges of the TBR-1 small tokamak,” Plasma Phys. Control.
Fusion, vol. 31, no. 2, p. 147, Feb. 1989.

[18] A. Wingen, T. E. Evans, and K. H. Spatschek, “High resolution numer-
ical studies of separatrix splitting due to non-axisymmetric perturbation
in DIII-D,” Nucl. Fusion, vol. 49, no. 5, p. 055027, Apr. 2009.

[19] J. D. Meiss, “Symplectic maps, variational principles, and transport,”
Rev. Mod. Phys., vol. 64, no. 3, pp. 795–848, Jul. 1992.

[20] J. M. Greene, “A method for determining a stochastic transition,”
J. Math. Phys., vol. 20, no. 6, pp. 1183–1201, Jun. 1979.

[21] B. V. Chirikov, “A universal instability of many-dimensional oscillator
systems,” Phys. Rep., vol. 52, no. 5, pp. 263–379, May 1979.

[22] M. D. Kruskal, “Some properties of rotational transforms,” Princeton
Univ. Forrestal Res. Center, Princeton, NJ, USA, Project Matterhorn
Rep. NY0-998, PM-S-5, 1952

[23] C. W. Horton, H.-B. Park, J.-M. Kwon, D. Strozzi, P. J. Morrison, and
D.-I. Choi, “Drift wave test particle transport in reversed shear profile,”
Phys. Plasmas, vol. 5, no. 11, pp. 3910–3917, Nov. 1998.

[24] D. del-Castillo-Negrete and P. J. Morrison, “Chaotic transport by Rossby
waves in shear flow,” Phys. Fluids A, vol. 5, no. 4, pp. 948–965,
Apr. 1993.

[25] D. del-Castillo-Negrete, J. Greene, and P. J. Morrison, “Area preserving
nontwist maps: Periodic orbits and transition to chaos,” Physica D,
vol. 91, pp. 1–23, Mar. 1996.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CALDAS et al.: SYMPLECTIC MAPS FOR DIVERTED PLASMAS 7

[26] T. J. Martin and J. B. Taylor, “Ergodic behaviour in a magnetic limiter,”
Plasma Phys. Control. Fusion, vol. 26, pp. 321–340, Mar. 1984.

[27] A. Punjabi, A. Verma, and A. Boozer, “Stochastic broadening of the
separatrix of a tokamak divertor,” Phys. Rev. Lett., vol. 69, no. 23,
pp. 3322–3325, Dec. 1992.

[28] R. Balescu, M. Vlad, and F. Spineanu, “Tokamap: A Hamiltonian twist
map for magnetic field lines in a toroidal geometry,” Phys. Rev. E, Stat.
Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 58, pp. 951–964,
Jul. 1998.

[29] K. Ullmann and I. L. Caldas, “A symplectic mapping for the ergodic
magnetic limiter and its dynamical analysis,” Chaos, Solitons Fractals,
vol. 11, no. 13, pp. 2129–2140, Oct. 2000.

[30] Ph. Ghendrih, A. Grosman, and H. Capes, “Theoretical and experimental
investigations of stochastic boundaries in tokamaks,” Plasma Phys.
Control. Fusion, vol. 38, no. 10, pp. 1653–1724, 1996.

[31] T. Kroetz, M. Roberto, I. L. Caldas, R. L. Viana, and P. J. Morrison,
“Divertor map with freedom of geometry and safety factor profile,”
Plasma Phys. Control Fusion, vol. 54, no. 4, p. 045007, Mar. 2012.

[32] T. Kroetz, M. Roberto, I. L. Caldas, R. L. Viana, P. J. Morrison, and
P. Abbamonte, “Integrable maps with non-trivial topology: Application
to divertor configurations,” Nucl. Fusion, vol. 51, no. 034003, Feb. 2010.

[33] G. Roberson, M. Roberto, I. L. Caldas, T. Kroetz, and R. L. Viana,
“Shaping diverted plasmas with symplectic maps,” IEEE Trans. Plasma
Phys., vol. 45, no. 3, pp. 356–363, Feb. 2017.

[34] J. J. Martinell and D. del-Castillo-Negrete, “Gyroaverage effects on
chaotic transport by drift waves in zonal flows,” Phys. Plasmas, vol. 20,
no. 022303, Feb. 2013.

[35] J. D. da Fonseca, D. del-Castillo-Negrete, and I. L. Caldas, “Area-
preserving maps models of gyroaveraged E×B chaotic transport,” Phys.
Plasmas, vol. 21, p. 092310, Sep. 2014.

[36] A. Wingen et al., “Connection between plasma response and resonant
magnetic perturbation (RMP) edge localized mode (ELM) suppression
in DIII-D,” Plasma Phys. Control. Fusion, vol. 57, no. 10, p. 104006,
Sep. 2015.

[37] A. C. Fraile, Jr., M. Roberto, I. L. Caldas, and C. G. L. Martins,
“Plasma response to resonant magnetic perturbations in large aspect ratio
tokamaks,” IEEE Trans. Plasma Sci., vol. 45, no. 11, pp. 2906–2912,
Oct. 2017.

Iberê Luiz Caldas was born in Santos, Brazil,
in 1948. He received the B.S. and Ph.D. degrees in
physics from the Institute of Physics, University of
São Paulo (IF-USP), São Paulo, Brazil, in 1970 and
1979, respectively.

In 1977–1979, 1983, 1984, and 1988, he was
a Guest Scientist with the Max-Planck-Institut für
Plasmaphysik, Garching bei München, Germany.
Since 1995, he has been a Full Professor with
IF-USP. His current research interests include
plasma physics and chaos.

Bruno F. Bartoloni received the Ph.D. degree in
plasma physics from the Institute of Physics, Uni-
versidade de São Paulo, São Paulo, Brazil, in 2016.

He has been a Professor with the Physics
Department, Faculdade de Tecnologia de São Paulo,
São Paulo, since 2017. His current research interests
include different current density profiles applied in
symplectic maps to study the magnetic field lines in
a plasma confined in a tokamak.

David Ciro received the B.S. degree from the
University of Antioquia, Medellín, Colombia, USA,
in 2010, and the M.Sc. and Ph.D. degrees from the
Universidade de São Paulo, São Paulo, Brazil, in
2012 and 2016, respectively, all in physics.

In 2015, he was a Visiting Researcher with the
DIII-D Facilities, General Atomics, San Diego, CA,
USA. He is currently a Post-Doctoral Researcher of
nonlinear dynamics applied to plasma physics with
the Department of Physics, Federal University of
Paraná, Curitiba, Brazil.

Geraldo Roberson received the B.Sc. degree in
physics from the Federal University of Pernambuco,
Recife, Brazil, and the M.Sc. degree in plasma
physics from the Aeronautics Institute of Technol-
ogy, São José dos Campos, Brazil, where he is
currently pursuing the Ph.D. degree in sciences and
space technologies.

Adriane B. Schelin received the Ph.D. degree in
physics from the Institute of Physics, University of
São Paulo, São Paulo, Brazil, in 2009.

From 2009 to 2010, she was a Visiting Researcher
with the Heinrich-Heine-Universität Düsseldorf,
Düsseldorf, Germany. In 2011 and 2012, she was
a Professor with the Physics Academic Depart-
ment, Universidade Tecnológica Federal do Paraná,
Curitiba, Brazil. She has been a Professor with the
Institute of Physics, University of Brasília, Brasilia,
Brazil, since 2013.

Tiago Kroetz received the Ph.D. degree in plasma
physics from the Instituto Tecnolgico de Aeronáu-
tica, São José dos Campos, Brazil, in 2010.

Since 2010, he has been involved in research
about nonlinear dynamics applied to plasma physics
and mechanical systems, and also extended to the
field of research on the physics education. He has
been a Professor with the Physics Academic Depart-
ment, Federal Technological University of Paraná,
Pato Branco, Brazil, since 2012.

Marisa Roberto received the B.S. degree in
physics from the Catholic University of São Paulo,
São Paulo, Brazil, in 1982, the M.S. degree from
the Space Research Institute, São José dos Campos,
Brazil, in 1986, and the Ph.D. degree in plasma
physics from the Aeronautics Institute of Technol-
ogy (ITA), São José dos Campos, in 1992.

In 1999 and 2004, she was a Visiting Scholar with
the University of California at Berkeley, Berkeley,
CA, USA. She is currently a Full Professor with
the Physics Department, ITA. Her current research

interests include plasma physics for technological applications and chaos.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON PLASMA SCIENCE

Ricardo Luiz Viana received the Ph.D. degree in
plasma physics from the Institute of Physics, Uni-
versidade de São Paulo, São Paulo, Brazil, in 1991.

In 1987, he was a Visiting Scholar with the Insti-
tute for Physical Science and Technology, University
of Maryland, College Park, MD, USA. He has been
a Professor with the Physics Department, Federal
University of Paraná, Curitiba, Brazil, since 1989.
He has authored 190 papers and supervised 10 doc-
toral theses, and 3 post-doctoral works.

Kelly Cristiane Iarosz received the Ph.D. degree in
science/physics from the State University of Ponta
Grossa, Ponta Grossa, Brazil, in 2013.

In 2014, she was a Visiting Researcher with
the Institute for Complex Systems and Mathemat-
ical Biology, Aberdeen University, Aberdeen, U.K.,
where she has been an Honorary Researcher since
2015. In 2017, she was an Academic Visitor with
the Institute of Complex Systems and Control, Xi’an
University of Technology, Xi’an, China. She is a
Visiting Researcher with Humboldt-Universität zu

Berlin, Berlin, Germany, and the Potsdam Institute for Climate Impact
Research, Potsdam, Germany. She is currently a Post-Doctoral Researcher
with the Institute of Physics, São Paulo University.

Antonio Marcos Batista received the Ph.D. degree
in physics from the Federal University of Paraná,
Curitiba, Brazil, in 2001.

From 2014 to 2015, he was a Visiting Researcher
with the Institute for Complex Systems and Math-
ematical Biology, Aberdeen University, Aberdeen,
U.K., where he has been an Honorary Researcher
since 2015. He was a Visiting Scholar with the
Potsdam Institute for Climate Impact Research,
Potsdam, Germany, in 2016, and the Xi’an Univer-
sity of Technology, China, in 2017. He has been an

Associate Professor with the Mathematics and Statistics Department, State
University of Ponta Grossa, Ponta Grossa, Brazil, since 1997.

Philip J. Morrison has investigated the nonlinear
Hamiltonian dynamics of few and infinite degree-of-
freedom systems for many years. As a member of the
Institute for Fusion Studies, The University of Texas
at Austin, Austin, TX, USA, he has been involved in
basic and applied plasma physics problems. He has
been associated with the Geophysical Fluid Dynam-
ics Program for 20 years, and as a member of its
faculty, he is involved in basic and applied fluid
mechanics problems. He has also been involved in
developing and applying advanced computational

algorithms, in part through affiliation with the ICES Applied Mathematics
Group, University of Texas at Austin. He is a Mathematical and Theoretical
Physicist with broad interests.


