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| — Rota para o Caos:
Intermiténcia do Tipo 1

Ruelle, D. & Takens, F. 1971. On the nature of turbulence. Communications in
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Exemplo a seguir:
Mapa unidimensional

U=u+e+u?
€. parametro de controle



We consider the instability of a Poincaré map due to the crossing of the unit
circle at (+1) by an eigenvalue of the Floquet matrix.

This corresponds to the specific case of Type [ intermittency.

Let u be the coordinate in the plane of the Poincaré section that points in
the direction of the eigenvector whose eigenvalue A crosses +1.

The lowest-order approximation of the 1-D map constructed along this line
1S

u' = A(r)u. (39)
Taking A(7;) = 1 at the intermittency threshold, we have

u' = A(ri)u = u. (40)



Origem do Mapa

We consider this to be the leading term of a Taylor series expansion of u'(u, r)
in the neighborhood of u = 0 and r = r;.

Expand to first order in (r — r;) and second order in u:

ou’
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u'(u,r) =2 u'(0,15) +u - + (r — 14)
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Evaluating equation (39), we find that the first term vanishes:




Finally, rescale u such that

and set
£ox (r—r;).

The model now reads
u = u+ e+

where £ is now the control parameter.



o =<0 1e 1<y U=uU+€+u?2
e u_ is stable fixed point.

e u_ is unstable.

e £t =0 1e. r=r;.

e u_ = u, = 0 is marginally stable.

i e v’ is tangent to indentity map.

o = >0 1e 17>y

e no fixed points.




For £ < 0, the iterations look like

e u_ is an attractor for initial conditions
U < Ug.

e For initial conditions u > wu_, the itera-
tions diverge.




u=u+&€+u?

The situation changes for € > 0, i.e. T > ry:

e No fixed points.

e Iterations beginning at u < 0 drift towards
u > 0.




However, when £ > 0, there is no fixed point, and thus no periodic solution.

The iterations eventually run away and become unstable—this is the inter-
mattent burst of noise.

How does the laminar phase begin again, or “relaminarize”?

Qualitatively, the picture can look like




behavior is called intermittency by Pomeau & Manneville {1980}, who were the first to
describe the scaling of the time spent in the laminar phase. They looked at the average
time T4 spent by solutions in the laminar phase as a function of the parameter r close
to the value r., at which the saddlenode bifurcation occurs. A simple argument based
on the passage time of a trajectory of a map close to a tangency with the diagonal
(the condition for the saddlenode bifurcation) establishes that the average time in the
laminar phase diverges as a power law:

Ty~ |r — 1|75 (6)



Note that the precise timing of the turbulent burst is unpredictable.

The discontinuity is not inconsistent with the presumed continuity of the
underlying equations of motion—this is a map, not a flow.

Moreover the Lorenz map itself contains a discontinuity, corresponding to the
location of the unstable fiixed point.



Rotas Para o Caios Via Intermiténcia

Figure 8.6 Schematic
illustration of the three
types of intermittency

transitions to chaos. 1YPel:

orbit

Type I1I:




Permanéncia Média no Regime Laminar

(p — pp)~'"* for Type I,
(p) ~< (p—pgy)” "+ for Type II,
(p —po) ' for Type III.
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Il — Rota para o Caos:
Dobramento de Periodos

Feigenbaum, M.J. 1978, Quantitative universality for a class of nonlinear transforma-
tions. Journal of Statistical Physics, 19: 25-52



Tpr1 = TZa(1 —2,)

As r increases, the periodic orbit of period 2" is created from the orbit of period 271
by a period-doubling bifurcation. If this bifurcation occurs with r = r,, then r, — r.
geometrically as n — oo, with

Fy — T

lim nl _ § = 4.66020 e, . ~T.— K0T
n—oo 'r':r..+1 — T n

r. 7= 3.560046.



i llv\ reduced by o

e ——

reduced by &

These quantitative results hold if a qualitative condition—the maximum of f
must be locally quadratic—holds.



That is, each increment in gy from one doubling to the next is reduced in size
by a factor of 1/4, such that

5. — fnil — Hn
n =
Hn+2 — Hn41

— ¢ for large n.

The truly amazing result, however, is not the scaling law itself, but that

d = 4.669. ..

is universal, valid for any unimodal map with quadratic maximum.



The quantitative universality in parameter space described by the secaling 4 has a
counterpart in phase space. If z,, denotes the point on the periodic orbit of period 271
that is closest to the critical point (or turning point) of the map with r = r,,, then

lim T TE (3)
2

n—oo P —
L]

where « 1s another universal constant, which, for maps with a quadratic turning point,
takes the value o = 0.3995 = 1/2.50.. ..



1/2

Define d,, = distance from = = 1/2 to nearest value of = that appears in the

superstable 2" cycle (for p = fi,).

From one doubling to the next, this separation is reduced by the same scale

factor:

dn
dn+1
The negative sign arises because the adjacent fixed point is alternately greater
than and less than z =1/2.

o~ —.

We shall see that a is also universal:

a=2.502..,



Il - Surgimento de Orbitas
Periodicas
no Mapa Logistico



For 1 < r < 3,xn grows as n increases,
reaching a non-zero steady state.
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For larger r (e.g. r = 3.3) x, eventually
oscillates about the former steady state =

period-2 cycle.
10 1 r=33

*n
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At still larger r (e.g. r = 3.5), =, approaches
a cycle which repeats every 4 generations =

period-4 cycle.
1.0 r=35

Xn

0.5

0 20 30 40 50



Further period doublings to cycles of period

3, 16, 32...

OCCUr as r increases. Computer

experiments show that

r1
T2
3
T4

3 (period2isborn)

3.449... (period4isborn)
3.54409... (period8isborn)
3.5644... (period1l6isborn)

3.569946... (periodocisborn)



T he successive bifurcations come faster
and faster as r Iincreases.

The r, converge to a limiting value ra.

For large n, the distance between suc-
cessive transitions shrinks by a constant
factor

5= lim .»—'"=1 _ 41669...

n— 00 | o
n41 n




Chaos and periodic windows

What happens for » > r?¢ The answer is
complicated! For many values of r, the se-
quence {zn} never settles down to a fixed
point or a periodic orbit - the long term be-
haviour is aperiodic.

o0l r=39
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blown-up
version around
r=3.85



At »r = 3.4 the attractor is a period-2
cycle.

AsS r increases, both branches split, giving
a period-4 cycle - 1.e. a period-doubling
bifurcation has occurred.

A cascade of further period-doublings oc-
Curs as r increases, until at r = ro ~
3.57, the map becomes chaotic and the
attractor changes from a finite to an in-
finite set of points.



For r > roc, the orbit reveals a mixture of
order and chaos, with periodic windows
interspersed with chaotic clouds of dots.

T he large window near r ~ 3.83 contains
a stable period-3 cycle. A blow-up of part
of this window shows that a copy of the
orbit diagram reappears in miniature!



Logistic Map: analysis

COﬂSIder ;Ijﬂr_l_l — '?“;1371(1 — ;ETL); O S In, g 1
and 0 <r < 4.

Fixed points z* = f(z*) = rz*(1 — z*)
—z*=0o0r1—1/r.

e r* =0 is a fixed point for all r

e z°=1—1/r is a fixed point only if » > 1
(recall 0 <z, <1).



Stability depends on f/(z*) = r — 2ra*

™ = 0 is stable for r < 1 and unstable for
r > 1.

r*=1-—1/risstablefor -1 < (2—-r) <1,
l.e. for 1 <r < 3, and unstable for r > 3.



n+l

r=1

r<l

At r = 1, =™ bifurcates from the origin in
a transcritical bifurcation.

AS r increases beyond 1, the slope at =~
gets increasingly steep. T he critical slope
f'(z*) = —1 is attained when r = 3 -
the resulting bifurcation is called a flip
bifurcation = 2-cyclel



We now go on to show that the logistic map
has a 2-cycle for all » >3 ...

A 2-cycle exists if and only if there are two
points p and g such that f(p) = ¢qg and f(q) =
p. Equivalently, such a p must satisfy f(f(p)) =
p where f(z) = rxz(1 — x). Hence, p is a
fixed point of the second iterate map f2(z) =
f(f(z)). Since f(x) is a quadratic map, f2(z)
IS a quartic polynomial. Its graph for r > 3
IS. ..

(%)




We must now solve f2(z) = z.

z* =0 and z* =1 — 1/r are trivial solutions.
The other 2 solutions are

r+1+/@—3)(r+1)
2r :

P94 —

wich are real for » > 3.



Hence a 2-cycle exists for all r > 3 as claimed!

A cobweb diagram reveals how flip bifurca-
tions can give rise to period-doubling. Con-
sider any map f, and look at the local picture
near a fixed point where f/(z*) ~ —1...

slope=—1
hY




A partial bifurcation diagram for the logistic

map based mainly on the results so far ook
like ...

stable
unstable
stable
unstable

stable

unstable
stable

stable unstable




Periodic Windows

We now consider periodic windows for r > ro
e.g. the period-3 window that occurs near
3.8284 < r < 3.8415 [the same mechanism
will account for the creation of all other sim-
ilar windows!]

Let f(z) = rxz(1l —x) so that the logistic map
S Ln4+1 — f(zn). Then Ln—l—? = f(f(zn))
or more S|mply, Tyt = f2(zn). Similarly
Tp43 = f (zr). This third-iterate map is the
key to understanding the birth of the period-
3 cycle.



Any point p in a period-3 cycle repeats ev-
ery three iterates, so such points satisfy p =
3(p). Consider f3(x) for r = 3.835...

(%)




Of the 8 solutions, two are period-1 points
for which f(x*) = z*. The other six are
shown on Fig. 7.4.1.

Black dots are stable period-3 cycles
Open dots are unstable period-3 cycles

Now suppose we decrease r towards the chaotic

regime. ..
Consider r = 3.8...
e
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The 6 solutions have vanished! [only the 2
period-1 points are left]

Hence for some r where 3.8 < r < 3.835 the
graph of f3(z) must have become a tangent
to the diagonal = stable and unstable period-
3 cycles coalesce and annihilate in a tangent
bifurcation. This transition defines the be-
ginning of the periodic window.



Intermittency

For r just below the period-3 window one
finds. ..

period-3 chaos r=73.8282
i — - -
0
0 50 100 150
part of a n
stable 3-cycle?

Fig. 7.4.3

where black dots indicate part of the orbit
which looks like a stable 3-cycle. This is
spooky, since the 3-cycle no longer exists...?
We are seeing the "ghost” of the 3-cycle...
since the tangent bifurcation is essentially
just a saddle-node bifurcation.



The new feature is that we have intermit-
tent behaviour of nearly period-3 — chaos —
nearly period-3 because...

0.6 }

fx)
04

0.2 blow-up of (a)




Such intermittency is fairly common. The
time between irregular bursts in experimen-
tal systems is statistically distributed, much
like @ random variable, even though the sys-
tem is completely deterministic! As the con-
trol parameter is moved further away from
the periodic window, the irregular bursts be-
come more frequent until the system is fully
chaotic. This progression is known as the
intermittency route to chaos.



Period-doubling in the window

Recall Fig. 7.2.7 where a copy of the orbit
diagram appears in miniature in the period-3
window. T he same mechanism operates here
as in the original period-doubling cascade,
but now produces orbits of period 3 -2". A
similar period-doubling cascade can be found
in all of the periodic windows.



IV = Universalidade
(Dobramento de Periodos)

Consider the sine map xp41 = rsinmzy for
O<r<land 0<z<1.

|




It has qualitatively the same shape as the
logistic map - such maps are called unimodal.

We now compare the orbit diagrams for the
sine map and the logistic map...

the resemblance is quite amazing...
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The qualitative dynamics of the two maps
are identical! Metropolis (1973) proved that
all unimodal maps have periodic attractors
(i.e. stable periodic solutions) occurring in
the same sequence. This implies that the
algebraic form of the map f(x) is irrelevant
- only its overall shape matters!

There is an even more amazing quantitative
universality in 1-dimensional maps...



In 1975, Mitch Feigenbaum was trying to de-
velop a theory to predict rn, the value of
r where a 2"-cycle first appears. He found
that, no matter what unimodal map is iter-
ated, the same convergence rate appears!

. ] Ty — Ty —

e.d= lim "1 _4660...
ﬂ_}mrn—l—l — T'n

IS universal! It is a new mathematical con-

stant, as basic to period-doubling as m is to

circles.




At first glance this result may appear to pertain only to mathematical maps.
However we have seen that more complicated systems can also behave as if
they depend on only a few degrees of freedom. Due to dissipation, one may
expect that a one-dimensional map is contained, so to speak, within them.

The first experimental verification of this idea was due to Libchaber, in a
Rayleigh-Bénard system.

As the Rayleigh number increases beyond its critical value, a single convection
roll develops an oscillatory wave:

N

° probe

Ra=Ra, Ra>Ra

A probe of temperature X () is then oscillatory with frequency fi and period

1/ f1.



Successive increases of Ra then yield a sequence of period doubling bifurca-
tions at Rayleigh numbers

Ra; < Ras < Rag < ...

Identifying Ra with the control parameter p in Feigenbaum’s theory, Libcha-
ber found
0 ~4.4

which is amazingly close to Feigenbaum’s prediction, 6 = 4.669.. ..



He explained why ¢4 is universal, based on
the idea of renormalization from statistical
physics. He thereby found an analogy be-
tween o and the universal exponents observed
in experiments on second-order phase tran-
sitions in magnets, fluids and other physi-
cal systems. This has been confirmed in
experiments...



What do 1-D maps have to do with science?

Real systems often have tremendously many
degrees of freedom. How can all that com-
plexity be captured by a 1-dimensional map?
To try and answer this, we start by consider-
ing the so-called Rossler model. ..



The Rossler model is a set of 3 differential
equations designed to exhibit the simplest
possible strange attractor

r = —y—=z
i = o+ay
z = b+ z(x—¢)

where a,b,c are parameters. The term zx is
the only nonlinear term (recall that Lorenz
has two!)

We consider the RoOssler system with a = b =
0.2 held fixed, and vary c
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c = 2.5 - attractor is a simple limit cycle

c = 3.5 - period-doubling in a continuous-
time system! Hence, a period-doubling
bifurcation of cycles must have occurred
somewhere between 2.5 and 3.5

c = 4 - another period-doubling bifurca-
tion creates the 4-loop shown at ¢ =4

c = b - after an infinite cascade of further
period-doublings, one obtains the strange
attractor shown at ¢ = 5.



To compare these results to those for 1-dimensional
maps, we use Lorenz’'s trick for obtaining a

map from a flow (see Lecture 6). For a given

c, record successive local maxima of xz(t) for

a trajectory on the strange attractor. Then

plot Tpit1 VS Tn where z,, denotes the nth

local maximum.

14 . e

Xpax(N+ 1)

0 — " ) 14
0 Xmax (N)

Data points fall very nearly onto a 1-D curve
- note uncanny resemblance to the (unimodal)
logistic map!



To compute an orbit diagram for the Rossler
model, we allow ¢ to vary. Above each c
we plot all the local maxima z, on the at-
tractor for that value of ¢. The number of
different maxima tells us the " period” of the
attractor...

14 . + -

xl'l'llt

25 ) o 6-0



Now we can see why certain physical sys-
tems are governed by Feigenbaum’'s univer-
sality theory - if the system’'s Lorenz map is

nearly one-dimensional and unimodal, then
the theory applies!

For the Lorenz map to be almost 1-dimensional,
the strange attractor has to be very flat i.e.
only slightly more than 2-dimensional. This
requires the system to be highly dissipative,

only 2 or 3 degrees of freedom are truly ac-
tive - the rest follow on slavishly.



1/2

Define d,, = distance from = = 1/2 to nearest value of = that appears in the

superstable 2" cycle (for p = fin).

From one doubling to the next, this separation is reduced by the same scale
factor:

dn
P —a.
The negative sign arises because the adjacent fixed point is alternately greater
than and less than z =1/2.

We shall see that « is also universal:

a=2.502..,


















