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Abstract-Chaos around the separatrices of resonant chains during the reconnection process in 
Tokamaks with non-monotonic profiles is analysed. To characterize the extension of chaos in the 
system, we estimate the convergence of the chaotic lines by computing the winding number profiles in 
the neighborhood of the separatrices. Some simulations were performed and we have detected. for 
these non-twist mappings, a reduction of chaos during the reconnection process. A theoretical 
interpretation based on the overlapping of resonance pictures is proposed in order to explain the 
decrease of chaos. These results may contribute to interpret the recently observed improvement in 
reversal magnetic shear in Tokamaks. 0 1997 Elsevier Science Ltd 

1. INTRODUCTION 

Reconnection in a phase space is defined as a process where the number and the index of the 
fixed points remain the same, but the trajectories assume a new arrangement [l-3]. In this 
paper we focus attention on the relation between the reconnection process and chaos. As we 
shall see, the stochastic layer diminishes during the reconnection process. We present a 
theoretical interpretation in order to explain the decrease of chaos during the reconnection 
based on the overlapping of resonance pictures (ORP). The paper of Chirikov [4] presents a 
method to obtain an analytical estimate of the transition to chaos established in the ORP. 
The creation of a stochastic layer can be understood in the Chirikov picture; according to 
that picture, chaos in nonlinear Hamiltonian systems is originated from overlapping of 
adjacent resonant island chains in the phase space. Whenever the amplitude of the resonant 
islands increases, they will become larger and overlap each other. The ORP will be used in 
order to understand chaos during the reconnection. 

Two papers have already treated the relationship between reconnection process and 
chaos. One of these [5] deals with a continuous Hamiltonian that represents a reconnection 
process, but in this work the reconnection is generated by increasing the amplitude of the 
islands. As one increases the island amplitude the stochastic layer naturally increases [4], 
hiding the most important phenomenon. The reconnection picture we use in this paper, 
contrary to Ref. [5], is that caused by the approximation of the island chains without 
increasing the amplitude. The other paper [6] deals with a non-twist map and uses the 
residue criterion to compute the critical value for the destruction of the KAM curves. It is 
concluded that the transition to chaos in this class of systems is different from the twist maps. 
In this work we emphasize the behavior of the stochastic layer, keeping the island amplitude 
constant. 

The physical reconnection model used in this work is extracted from the magnetic 
confined plasma context. MHD equilibrium plasmas with central hole current density 
profiles confined in Tokamaks present reconnection of the magnetic field lines when 
perturbed by resonant fields. Although these perturbations can be due to natural plasma 
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oscillations or other external perturbations, for numerical applications we consider only 
those created by external resonant helical windings [7, $1. The reconnection of magnetic 
islands is important in the analysis of the stability of plasma confinement and in the 
disruption of equilibrium plasmas [9]. Particularly, the magnetic field configuration chosen 
for our numerical application corresponds to the reversed magnetic shear in Tokamaks. 
which has been obtained by a new improved confinement regime [lo, 111. 

The paper is therefore organized as follows: in Section 2 we define the physical model and 
discuss some features related to non-monotonic profiles in Tokamaks; in Section 3 we 
analyze the behavior of the stochastic layer during the reconnection process; in Section 4 we 
present some results of numerical simulations; and in Section 5 we conclude the paper. 

2. THE PHYSICAL MODEL 

We consider MHD equilibrium plasmas confined in Tokamaks. If the configuration of the 
magnetic field, which confines the plasma, presents any spatial symmetry, the magnetic field 
line trajectories lie on magnetic surfaces of constant Hamiltonian [12]. 

We consider non-monotonic winding number p radial profile plasmas, or reversed 
magnetic shear, which correspond to the initial and final stages of the Tokamak discharge 
191. Recently, this magnetic configuration has also been used as an alternative to improve 
plasma confinement [lo, 111. Also, a large aspect-ratio Tokamak (R >>a, where R is the 
major radius of the Tokamak and a is the plasma column radius) is considered, with m pairs 
of external helical winding conductors wound along the vessel. This arrangement is 
illustrated in Fig. 1. 

In this case, the description of the Hamiltonian of the system is made by the sum of an 
integrable part, due to the cylindrical approximation of the equilibrium plasma in the torus 
wound by the helices, and a non-integrable part, which corresponds to the toroidal 
correction [9]: 
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Fig. I. Scheme of a Tokamak in the cylindrical approximation. 



Minimixing chaos during reconnection 

L 2.7,,3 ’ -’ 0.5 0.7 

r/a 
Fig. 2. Non-monotonic radial profile showing the inverse of winding number l/p. safety factor, for the total plasma 
current 1, = 9300 A, I,, = 9200 A and I,, = 9120 A. The line corresponding to the resonance l/3 is indicated in the 

figure. 

where the control parameters are Ii,, the total plasma current, and Z,,, the helical current. 
The magnetic surfaces of the system are described by Poincare maps. Considering first the 

PoincarC maps of the system under cylindrical approximation, the unperturbed equilibrium 
KAM surfaces constitute a family of nested cylindrical surfaces. 

The effect of the integrable helical perturbation is the creation of two main twin island 
chains with m islands at the two resonant surfaces with p = n/m (n, m integers), presented 
by the non-monotonic safety factor profile plasma, that is equal to the inverse of the winding 
number, as we can see in Fig. 2. In this work, we use m = 3. The toroidal correction breaks 
the integrability of the system and gives rise to a stochastic layer mainly concentrated in the 
neighborhood of the separatrices. 

The reconnection process can be achieved in one of two ways: by the variation of the 
parameter I,, that increases the amplitude of the islands and approximates the chains, or by 
the variation of Zp that only approximates the islands. In this work we will decrease Zp, thus 
approximating the chains and keeping the amplitude of the islands constant. Since an 
increase in the amplitude of the islands produces a known effect of increasing the stochastic 
layer [4], in order to observe the chaotic behavior due only to the reconnection, we will keep 
Z,, constant during the reconnection process. 

3. THE STOCHASTIC LAYER DURING RECONNECTION 

In this chapter we will expose a theoretical interpretation based on the ORP in order to 
explain the decrease of chaos during the reconnection process. We begin with an analysis of 
the resonances and the route to chaos according to ORP. 

After some canonical transformations, the Hamiltonian (1) that describes the 
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reconnection of magnetic lines can be cast in the form H = H,,(Z) + EH,(I,QJ) [9]. In the 
toroidal section of the Tokamak the variable action is directly related to the radius of the 
section, the angle variable to the polar angle, and the canonical time to the toroidal angle of 
the Tokamak. 

This Hamiltonian has a natural frequency w,,(Z) = 8,H,, that explicitly depends on the 
action 1. A resonance is fulfilled in the Hamiltonian when 

where we have used the notation J,,, to denote the value of the action at the resonance p/y. 
and o for the perturbing frequency of H,. 

According to the PoincarC-Bendixon theorem (131, for each rational value p/q of the 
frequency in the phase space a resonant island chain appears with winding number 
p = w,,(&,,). In this way a nonlinear Hamiltonian phase space is populated by a denumerable 
set of resonant island chains. The ratio between the number of resonant chains in an interval 
and the corresponding interval of action defines the density of chains. 

If one varies a parameter that increases the amplitude of the islands, they will become 
larger and eventually overlap with each other, developing chaos. However, there are two 
main factors that can enlarge the overlapping of resonances in a Hamiltonian system: an 
increase in the amplitude of the islands of the resonant chains and an increase in the density 
of chains. 

In Fig. 2 we can observe a curve of the inverse of the winding number, the safety factor, 
versus the plasma radius, for the unperturbed equilibrium plasma. The slope of the curve is 
proportional to the density of the island chains. The higher the slope of the curve, the higher 
the amount of rational numbers p/q in an interval of radius, and consequently the density of 
chains. The two main resonant chains with winding number p. = l/3 that suffer reconnection 
are also indicated in this figure. They are placed in the intersection between the line l/p = 3 
and the winding curve. 

As analyzed in Refs [9,14,15], a reconnection process always presents a non-monotonic 
behavior in the winding number relative to the action. So the function p(l) has a point, in 
the middle of the two main chains, where lj = dpldl = 0, as can be seen in Fig. 2. As the 
quantity p is related to the density of resonant island chains, we can say that close to the 
reconnection process, the phase space presents a local decrease in the number of resonant 
chains. In the context of Tokamak literature, i, is named the magnetic shear, and the 
minimum of p is a region of small shear. 

The stochastic layer in the separatrix of a resonant chain is generated by a local 
overlapping of resonant chains close to the separatrix [13]. We can expect that in the 
reconnection process the chaos will locally decrease due to a decrease of overlapping among 
the main resonant chains and their neighbor chains. 

An analogous dependence between decreasing of chaos and i, can be seen in the classical 
overlapping of resonance criteria presented in Appendix A. This analytical criterion remains 
for the case where p = 1 and q is large in the resonance condition (2). Under these 
circumstances the criterion says that the Hamiltonian phase space becomes chaotic when 

- 

1< d 
Fp 
0’ (3) 

In fact, the Chirikov criterion of overlapping of resonances says that the increasing of 
chaos is proportional not only to the square of the amplitude of the chains, but also to the 
density of chains p. This fact also suggests that during the reconnection process. as the 
density of chains decreases, the stochastic layer consequently diminishes. 



Minimixing chaos during reconnection 1 x9.5 

4. NUMERICAL SIMULATIONS 

In this section we present the results of some numerical simulations in order to illustrate 
the behavior of the stochastic layer during reconnection. The magnetic field line trajectories 
are characterized by a constant Hamiltonian (1). We obtain Poincare plots by numerical 
integration of the expression 

dr rdO dz --=- 
B,- B, B,’ 

For the following components: 

Bo= Bo,+$-,$cosO - - 

where the components of B” correspond to the equilibrium plasma in cylindrical approxima- 
tion, @ corresponds to the potential of the helical current windings and E = r/R precedes the 
toroidal correction terms [9]. 

In Fig. 3 we can see the Poincare maps of the system for three values of the parameter Z,,, 
the plasma current, corresponding to evolving stages of the reconnection process. The axes 
correspond to the normalized radius r/a and the angle 0. 

We can observe in the Poincare plots shown in the last figure a weak decrease in the 
stochastic layer as one approximates to the separatrix. In order to estimate with greater 
accuracy the width of the stochastic layer, we will compute the winding number of the closed 
trajectories adjacent to the separatrix. The winding number is defined in Ref. [13] and 
characterizes the frequency of the movement of a closed trajectory. A definite winding 
number computed for a given initial condition indicates that there is a regular trajectory 
through this point. On the other hand, non-converging numerical results for a set of 
continuous initial conditions indicate the existence of a chaotic region in that interval. 

In Fig. 4 we can see the inverse of the winding number p radial profile computed for initial 
points along the 0 = 2x/3 line, which includes the hyperbolic point of the separatrix, 
showing the evolving stages of the reconnection process. We can observe in this figure a 
decrease of the width of the stochastic layer as the reconnection evolves. 

The same plot for other initial points along the other hyperbolic points is shown in Fig. 5, 
here 0 = 7r/3. This winding number profile presents another behavior different from that 
observed in Fig. 4. We can observe that the points in this profile present a decreasing 
dispersion as one approximates to the reconnection point, Fig. 5(c). This phenomenon is 
interpreted as a regularization in the phase space. What we are seeing in this figure is that 
the points are converging to a devil staircase that is more regular than a stochastic layer [13]. 

5. FINAL REMARKS 

To summarize, we present the reconnection of magnetic island chains in a Tokamak, 
focusing attention on the behavior of the stochastic separatrix and in the decrease of chaos 
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Fig. 3. Poincart? maps of the system for decreasing values of the total plasma current: (a) I,, = 9300 A. (b) 

I,,=92OOA and(c) l,=9120A. 
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Fig. 4. l/p Radial profiles of the system for decreasing values of the total plasma current: (a) lP = 9300 A, (b) 
I, = 9200 A and (c) I, = 9120 A; 0 = 21~13. 
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Fig. 5. I/p Radial profiles of the system for decreasing values of the total plasma current: (a) I,, = 9300 A, (b) 
I,, = 9200 A and (c) I, = 9120 A: 0 = x/3. 
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during the process. Two distinct numerical simulations were done in order to detect the 
phenomenon of regularization during the reconnection. First we integrate the equations of 
movement and construct a PoincarC plot. Also, we estimate the winding number, a tool that 
permits one to observe closely the stochastic layer. 

During the reconnection process the amplitude of the chains remains constant, but fi, the 
density of chains, diminishes. In the reconnection process a diminution of the neighbor 
chains works out as a decrease of the resonance overlap among the main resonant chains and 
their neighborhood. The decrease of the width of the stochastic layer is due to the decrease 
of overlapping among the resonant chains adjacent to the main resonances that suffer 
reconnection. 

Numerical simulations were performed, and a decrease of chaos was found during the 
reconnection process in the reversed magnetic shear region. Even if no evident reconnection 
process takes place, the region of small magnetic shear, minimum for the safety factor 
profile, presents less resonant chains and develops less chaos than in regions of higher 
magnetic shear, as can be concluded by eqn (3). So the configuration of non-monotonic 
profiles suggests an improvement of the confinement in Tokamaks. Some experimental 
evidence for this point may exist [lo, 111. In fact, in the new improved confinement Tokamak 
regimes, obtained with reversed magnetic shear, a transport barrier was identified in the 
small shear region, improving the confinement parameters in the plasma center. 

A~knol~/~~y~~zr7t.~--Wc arc indebted to Dr Ricardo E. de Carvaiho (UNESP). Dr Felipe B. Rizzato (IJFRGS) and 
Kai lJllmann (USP) for useful discussions. We also acknowledge partial support by CNPq and FINEP. 
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APPENDIX A 

The Chirikov criterion can bc found in Refs [4] and [13]. and a clear application for a continuous system. 
analogous to that treated here. in Ref. [I(?]. 
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w 
Fig. Al. A sketch of the phase space with three resonant chains. the amplitude of the islands is .U and they arc 

separated by 6/. 

In Fig. Al we can visualize the most important aspects of the criterion from the situation of two resonant chains 
with amplitude N and separated by a distance 61. The stochastic parameter r~ is defined by 

251 
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One says that the system is strongly chaotic when n > 1. 
Let us estimate the value of n for a Hamiltonian that presents the form 

fX 
H = H,,(I) + E 2 H,(l)cos(l& - or) 

,= 7 

where H,,(I) is the integrable part of H and H,(I) are the Fourier modes of the perturbative part. The local 
Hamiltonian H,,, that describes a single resonance y  = 1 and any p in eqn (2). is written as 

H,, = ;I2 - F cos(p@) 

where G - d’H,,/dl” = dw,,/dl, / is the deviation of the action from the fixed point I = f,,,,,. F = e/-/,(I). and 
fb - (p$ - cot). 

The Hamiltonian (4) represents a resonant chain, the amplitude of each island is found from [ 131 

If we suppose that the values of p are large, the distance between two adjacent resonant chains can be found from 

We will take SW = 1. choosing as adjacent chains the resonances p and p + 1. 
LJsing the relations cited above, we finally achieve an estimate for the stochastic parameter 

From this relation we can see that if dw,,/dl+O, then n --to and the system will never become chaotic. The 
interpretation is simple: the condition do,,/dI -PO is equivalent to an increase in the distance between adjacent 
resonances, that makes difficult the overlapping of resonances. 


