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Abstract

The localization of the last invariant spanning curve – also known as
the last invariant tori – in a family of generalized standard mappings
is discussed. The position of the curve dictates the size of the chaotic
sea hence influencing the scaling properties observed for such region.
The mapping is area preserving and is constructed such its dynamical
variables are the action, J, and the angle θ . The action is controlled
by a parameter ε, controlling the intensity of a generic nonlinear
function, which defines a transition from integrable for ε = 0 to non
integrable for ε = 0. The angle is dependent on a parameter γ. If
γ > 0, the angle has the property that it diverges in the limit of
vanishingly action and is added, by a finite function dependent on
a free parameter γ, when the action is larger than zero. The case
γ = −1 reproduces the expression of the angle for the traditional
standard mapping. The phase space is mixed and shows, for certain
ranges of control parameters, a set of periodic islands, chaotic seas
and invariant spanning curves. Statistical properties for an ensemble
of noninteracting particles starting in the chaotic sea with very low
action is considered and we show: (i) the saturation of chaotic orbits

grows with εα ; (ii) the regime of growth scales with nβ ; and (iii) the
regime that marks the changeover from the diffusive dynamics to the
stationary state scales with εz. The exponents α and z depend on γ
and are independent of the nonlinear function f while β is universal.
To illustrate the theory here proposed, we obtain an estimation for the
critical parameter Kc for a generalized standard mapping considering
three different periodic functions. We also find α, β and z for different
nonlinear functions.
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After the seminal paper from Moser [1] discussing the conditions for the existence of invariant curves for
area preserving mappings of an annulus, the subject and interest for the topic increased significantly.
The invariant curve has the property of separate different portions of the phase space. Therefore it
blocks the passage of particles through it. Because of its crucial importance in transport properties
and on the scaling in chaotic seas, among other applications, many different recent investigations
were carried out. As for example, the Slater criteria [2], which precedes to Moser results, was used
to estimate the breakup of invariant curves in dynamical systems [3] and to prove the existence of
non-twist phenomenon in reversible non Hamiltonian systems [4]. Moreover, elementary proofs of the
existence and of some properties of non autonomous analogues of rotational tori are discussed in [5]
while the construction of a tori in the phase space and the inverse problem of Poincaré was made
in [6]. Analytical results were made also to understand the topic, particularly the works of Wang [7],
who has made investigation of the destruction of invariant circles for Gevrey area preserving twist
map, Gentile [8] studying invariant curves for exact symplectic twist maps of the cylinder with Bryuno
rotation numbers and Kaloshin and Zhang [9] who gave a proof of a strong form of Arnold diffusion
for smooth convex Hamiltonian systems.

In this letter we describe how to construct a family of generic mapping by using a Hamiltonian
formalism similar as the one used in [10]. We consider a function describing the angle with the following
properties: (i) is a continuous function; (ii) is controlled by a parameter γ . For γ =−1 the expression
of the angle for the standard map [11] is recovered and; (iii) for γ > 0 the angle diverges in the limit
of vanishingly action. The variable action is dependent on a parameter ε controlling the intensity of a
generic nonlinear function f which is smooth, continuous, infinitely many differentiable and periodic.
Our main goal is to understand, obtain and describe how the position of the lowest action invariant
spanning curve influences the scaling features of the chaotic sea in the low energy regime particularly

focusing on the description of the observable Jrms =


J2 at the short, intermediate and long time
dynamics. As we will see, three control parameters are important in order to understand the behaviour
of Jrms, named α , β and z. We will show how to find them for any nonlinear function chosen. In order
to to this, it is necessary to obtain an estimation for the critical parameter Kc for a generalized standard
mapping.

To start we consider the following Hamiltonian H(J1,J2,θ1,θ2) = H0(J0,J1)+εH1(J0,J1,θ0,θ1), where
the variables Jl and θl with l = 1,2 correspond respectively to the action and angle [10]. The term
H0 corresponds to the integrable part of the Hamiltonian while H1 is a non integrable contribution.
The parameter ε controls a transition from integrability, from ε = 0, to non integrability with ε = 0.
Because the Hamiltonian is time independent, one of the four variables can be eliminated, say J2,
and only three are left. A Poincaré surface of section defined by the plane J1 × θ1 at θ2 constant
(mod 2π) is considered. As a result, the perturbed twist mapping is given by Jn+1 = Jn − ε f (Jn+1,θn)
and θn+1 = θn +κ(Jn+1)+ εg(Jn+1,θn), where f and g are periodic functions in θ . The function F2 =
Jn+1θn +A(Jn+1)+ ε f̃ (Jn+1,θn) generates the previous mapping, with κ = dA/dJn+1, f = ∂ f̃ /∂θn and

g = ∂ f̃/∂Jn+1. For area preservation, the expression ∂g
∂θn

− ∂ f
∂Jn+1

= 0 needs to be satisfied. For many

mappings g(Jn+1,θn) = 0 ( f̃ is independent of Jn+1), therefore the following mapping is obtained [10]

T :


Jn+1 = Jn − ε f (θn),
θn+1 = θn +κ(Jn+1) mod(2π). (1)

When g = 0 and f̃ (θn) = cos(θn), many applications can be found in the literature [10]. To illustrate
few of them, the standard mapping is reproduced considering κ(Jn+1) = Jn+1 [11]. For κ = 2/Jn+1 the
Fermi-Ulam model is reproduced [12, 13]. κ = ζJn+1, where ζ is a constant, describes the bouncer
model [14]. For κ(Jn+1) = Jn+1 + ζJ2

n+1, the logistic twist mapping is obtained [15]. An application
merging properties of the Fermi-Ulam [12] and bouncer [14] leading to a the hybrid Fermi-Ulam bouncer
model can be seen in [16].
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Fig. 1 Plot of: (a) Jrms vs. n for different values of ε and considering f̃ = cos(θ ) in mapping (1). (b) After a
properly rescale in the axis, all curves overlapped onto each other in a single and hence universal curve. The
parameters used were γ = 1 and M = 1000 different initial conditions chosen as J0 = 10−3ε and θ0 ∈ [0,2π).

As one of the properties of f , we assume it is a smooth and periodic function such that f (θ) =
f (θ + 2π). For κ(Jn+1) = Jn+1, and choosing f̃ = cos(θ) the standard map is recovered [10]. For
ε < Kc ∼= 0.9716 . . ., the standard map has invariant spanning curves which prevent the chaos to diffusing
unlimitedly. For ε > Kc a chaotic sea can widespread unlimitedly from ±∞ in action axis. In our
approach we consider that κ(Jn+1) = −|Jn+1|−γ in the mapping (1), where γ is a control parameter.
γ = −1 yields the standard mapping [11] while γ = 1 gives the Fermi-Ulam [12, 13]. For γ = 3/2 the
Keppler map is recovered [17]. The phase space of the mapping is mixed and contains periodic islands,
invariant spanning curves and chaotic seas. We are interested in the scaling properties of the chaotic
sea considering γ > 0. Then, we describe the dynamics under three regimes: (i) short time; (ii) long
time and; (iii) intermediate time.

We begin with case (i). For short time and starting the dynamics using an ensemble of initial
conditions in the low action regime along the chaotic sea, the ensemble of particle evolves using mapping
(1). The first equation of mapping (1) is written as J2

n+1 = J2
n − 2Jnε f (θn)+ ε2 [ f (θn)]

2, where f (θn)
attends to the conditions above. Moreover, it has a well defined average so that averaging the equation
over an ensemble of θ ∈ [0,2π], we obtain J2

n+1 = J2
n +

ε2

2π c( f ), where c( f ) is a constant that depends

on the f chosen and is written as c( f ) =
´ 2π

0 [ f (θn)]
2 dθn. An important observation that needs to

be taken into account is that
´ 2π

0 [ f (θn)]dθn = 0 for any function f . For sufficiently small ε , we use

the following approximation J2
n+1 − J2

n =
J2

n+1−J2
n

(n+1)−n
∼= dJ2

dn = ε2

2π c( f ). After a direct integration we have

Jrms(n) =


J2
0 +

ε2

2π c( f )n.

Figure 1(a) shows a plot of Jrms vs. n. We see that for short n, Jrms can be described as Jrms ∝ nβ .
A power law fit for short n gives β ≈ 0.5. For large enough n the regime of growth is changed to a

saturation. In our simulations Jrms was obtained as Jrms =


J2 =


1
M ∑M

i=1[
1
n ∑n

j=1 J2
i, j], where M is the

number of different initial conditions. Analyzing Jsat , where the subindex sat indicates saturation, as
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Fig. 2 Plot of the functions fi(θ ) against θ for θ ∈ (0,2π ] with i = 0,1,2.

function of the parameter ε , a law Jsat ∝ εα is obtained. Therefore, the saturation of J has a link to the
position of the first invariant spanning curve, indeed a fraction of it, which depends on the parameter
γ and not on the function f̃ . Our simulations for γ = 1 lead to an exponent α ∼= 0.5.

Let us now discuss the saturation given by case (ii), i.e., large enough time. The exponent α
indirectly controls the position of the lowest invariant spanning curve denoted as J∗. Near the spanning
curve, the dynamics of the mapping can be made locally via a connection with the generalized standard
mapping. We assume then Jn+1 = J∗+ΔJn+1 where ΔJn+1 is a small perturbation of the curve. We stress
J∗ > 0 and ε > 0 so that the absolute value of |Jn+1| is simply written as Jn+1. Considering the second
equation of Map (1) and Taylor expanding under the limit ΔJn+1/J∗ → 0 we end up with θn+1 = θn+ In+1,
where In+1 = γΔJn+1(J∗)−(1+γ)− (J∗)−γ .

Rewriting the first equation of mapping (1), multiplying both sides by γJ∗−(1+γ), adding −J∗−(1+γ)

in both sides of the equation and rearranging the terms, the following expression is obtained In+1 =
In − γεJ∗1+γ f (θn). These changes lead to the following map

⎧
⎨
⎩

In+1 = In −
γε

J∗(1+γ) f (θn),

θn+1 = (θn + In+1) mod 2π.
(2)

This mapping is structurally the same of the generalized standard mapping and the term γε/J∗(1+γ)

corresponds to a local parameter Kc( f ) in the generalized standard mapping which marks the transition
from local to global chaos Kc = γεJ∗−(1+γ).

For each given function f a different Kc is obtained. Therefore, the position of the first invariant

spanning curve is J∗ = [ γε
Kc( f ) ]

1
(1+γ) . In a more simplified way, it is written as J∗ ∝ ε

1
1+γ . This expression

allows an immediate comparison with the exponent α , so that α = (1+ γ)−1, resulting in J∗ ∝ εα , as
mentioned in [18].

When the regime of growth meets with the saturation, case (iii) applies. Matching the equation

of growth with the one marking the saturation we end up with
nx=

2π
c( f ) [γ

Kc( f )]
2

(1+γ) ε
−2γ
1+γ

. As it is known in the

literature [18], nx ∝ ε z, hence z = −2γ
1+γ which also proves that z is independent on the function f .

After obtaining the values of α and z, all curves in Fig. 1(a) overlap onto each other in a single
and universal curve with the following scaling transformations n → n/ε z and Jrms → Jrms/εα as shown
in Fig. 1(b).

Let us now discuss the localization of the invariant spanning curve for a more general func-
tion f , hence considering a generalized standard mapping with γ = −1. We consider the follow-
ing cases f (θ) = fi(θ), with i = 0,1,2, hence f0(θ) = cos(θ), f1(θ) = 1

2 [cos(θ)+ cos(2θ)] or f2(θ) =
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Fig. 3 Plot of the phase space for: (a) f0(θ ) and ε = 1.2; (b) f1(θ ) and ε = 0.5; (c) f2(θ ) and ε = 0.24. The
parameter γ was fixed at γ = 1. The mixed structure of the phase space is evident in both figures.

1
3 [cos(θ)+ cos(2θ)+ cos(3θ)]. A pure cosine function (i = 0) is our reference, as shown in Fig. 2. Fig-
ure 3(a) shows a phase space for f = f0 and considering ε = 1.2. The phase space is clearly mixed-type,
containing periodic islands and a large chaotic sea. This parameter produces a global chaos because
unlimited diffusion in the action may occurs, while only limited diffusion is observed for ε < Kc. We
then search for values of Kc in the different functions fi chosen.

A phase space for f = f1 and ε = 0.5 is shown in Fig. 3(b), and the red crosses mark a period 2
fixed point. The period of the lowest periodic fixed point depends on which i is used. For example, if
f = f0 the period is one (see Fig. 3(a)), but for f = f2 and ε = 0.24 the period is three (see the red
crosses in the Fig. 3(c)).

We used the following procedure to estimate numerically Kc for the different function fi. The method
consists of iterate the initial conditions up to nmax = 1011 times for different values of the parameter
ε . The algorithm stores the minimum value of J of the trajectory associated to the initial condition
(θ0,J0) = (10−6,10−6) and, similarly, the maximum value of J of the orbit associated to (θ0,J0) =
(10−6,2π − 10−6). If the minimum and maximum reach the value J = π, then we conclude spanning
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Fig. 5 Plot of: (a) Approximated position for the minimum of the lowest invariant spanning curve (J∗) as

function of the control parameter ε. The orbits were iterated up to 1011, and we have considered J0 = θ0 = 10−6

and γ = 1. (b) Rescale in the vertical axis of item (a) J∗ → γεJ∗−(1+γ), where the dashed lines are the values of
Kc( fi) found numerically for the generalized standard mapping.

curves do not exist in phase space. Therefore ε ≥ Kc and the iteration process of the corresponding
trajectory is interrupted. Otherwise, both trajectories are iterated up to nmax. When parameter ε is
chosen such that a crossing from J = π happens, another ε must be taken (500 different values of ε
were selected in our simulations). In Fig. 4 we present the results for orbits iterated up to nmax times
for f = f0. The orbits touch J = π simultaneously at ε ∼= 0.9728. This value is approximately the same
found using Greene’s residue criterion [19], which is equal to Kc = 0.9716 . . .. The same procedure was
used for the functions f1 and f2 leading to the values Kc = 0.42 . . . and Kc = 0.219 . . ., respectively.

Now we estimate the position of the lowest action invariant spanning curve. For this, we divide
θ ∈ (0,2π] in a stripe of 103 equally spaced cells. For each cell, the highest value of J in the chaotic
sea is collected after a long run of nmax iterations of the mapping. With this, an inferior limit for
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the invariant spanning curve is obtained numerically. Figure 5(a) shows J∗ as a function of ε for the
initial conditions J0 = θ0 = 10−6. The curves are described by a power law of ε with slope α ∼= 1/2
(the values found were 0.505(1), 0.508(1) and 0.510(3) respectively for f0, f1 and f2. Other values of γ
where tested too and result is in good agreement with the theory. Figure 5(b) shows the rescaled axis
J∗ → γεJ∗−(1+γ) as a function of ε for the different functions fi considered. The dashed lines are the
critical values Kc found for the generalized standard mapping considering each function fi. As seen the
numerical results are in agreement with the analytical ones (dashed lines). The larger ε the worse is
the approximation for Kc.

As a short summary, we obtained the localization of the last invariant spanning curve in a family of
generalized standard mappings. An estimation for the critical parameter Kc considering three different
periodic functions was found. Theses values were used to compare with the result obtained from
theoretical prediction. We also obtain the exponents α , β and z describing the curves of Jrms for
different values of fi. We demonstrated that the critical exponents α and z depend on γ and are
independent of the nonlinear function f while β is universal.
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