Applications of Finite Time Lyapunov Exponents in Hamiltonian Systems

José Danilo Szezech^a

Departament of Mathematics and Statistics State University of Ponta Grossa Ponta Grossa,PR, Brazil.

> April, 2014 IFUSP

^aemail:jdanilo@gmail.com

Collaborators

Systems J.D.Szezech

Applications of FTLE in

Hamiltonian

Hamiltonian Systems and Dynamical Traps

Ergodic hypothesis

Finite Time Lyapunov Exponents (FTLE)

Non Twist Systems

Lagragian Coherent Structures and FTLE

- I. L. Caldas- Universidade de São Paulo, São Paulo, Brasil.
- S. R. Lopes-Universidade Federal do Paraná, Curitiba, Brasil.
- R. L. Viana- Universidade Federal do Paraná, Curitiba, Brasil.
- A. B. Schelin- Universidade de Brasilia, Brasilia, Brasil.
- P. J. Morrison- The University of Texas at Austin, Austin, USA.

Presentation Outline

J.D.Szezech

Hamiltonian Systems and Dynamical Traps

Ergodic hypothesis

Finite Time Lyapunov Exponents (FTLE)

Non Twist Systems

Lagragian Coherent Structures and FTLE

- Hamiltonian Systems and Dynamical Traps
- Ergodic hypothesis ?
- Finite Time Lyapunov Exponents (FTLE)
- Non Twist Systems
- Lagragian Coherent Structures and FTLE

J.D.Szezech

Hamiltonian Systems and Dynamical Traps

Ergodic hypothesis

Finite Time Lyapunov Exponents (FTLE)

Non Twist Systems

Lagragian Coherent Structures and FTLE

Introduction and Motivation

General characteristics of non-integrable Hamiltonian systems of 2 degrees of freedom

- The dynamics is neither entirely regular, nor entirely chaotic
- The boundaries between regular and irregular motion has a complicated surface
- Presence of sticks domains in phase space

J.D.Szezech

Hamiltonian Systems and Dynamical Traps

Ergodic hypothesis

Finite Time Lyapunov Exponents (FTLE)

Non Twist Systems

Lagragian Coherent Structures and FTLE

Dynamics of standard map

The standard map represents the discrete form of the equations for the kicked rotor characterized by the Hamiltonian

$$H(p,x,t) = \frac{1}{2}p^2 - K\cos x \sum_{n=-\infty}^{\infty} \delta(t-n), \qquad (1)$$

where p and x are the rotor angular momentum and positions, and K is the so-called non-linearity parameter.

$$p_{n+1} = p_n - K \sin x_n,$$

 $x_{n+1} = x_n + p_{n+1},$ (2)

J.D.Szezech

Hamiltonian Systems and Dynamical Traps

Ergodic hypothesis

Finite Time Lyapunov Exponents (FTLE)

Non Twist Systems

Lagragian Coherent Structures and FTLE

Dynamics of standard map

J.D.Szezech

Hamiltonian Systems and Dynamical Traps

Ergodic hypothesis

Finite Time Lyapunov Exponents (FTLE)

Non Twis Systems

Lagragian Coherent Structures and FTLE

Infinite Time Lyapunov Exponent

Maximum Lyapunov exponent as function of parameter K

J.D.Szezech

Hamiltonian Systems and Dynamical Traps

Ergodic hypothesis

Finite Time Lyapunov Exponents (FTLE)

Non Twist Systems

Lagragian Coherent Structures and FTLE

The same previous case of K = 1.5 but for longer times of iteration.

Sticky regions

However...

J.D.Szezech

Hamiltonian Systems and Dynamical Traps

Ergodic hypothesis

Finite Time Lyapunov Exponents (FTLE)

Non Twist Systems

Lagragian Coherent Structures and FTLE

Ergodic hypothesis

The idea behind the ergodic hyphotesis is that trajectories in phase space Γ pass near every point in phase space if you wait long enough.

J.D.Szezech

Hamiltonian Systems and Dynamical Traps

Ergodic hypothesis

Finite Time Lyapunov Exponents (FTLE)

Non Twist Systems

Lagragian Coherent Structures and FTLE

Ergodic hypothesis

The idea behind the ergodic hyphotesis is that trajectories in phase space Γ pass near every point in phase space if you wait long enough.

How much is long enough?

J.D.Szezech

Hamiltonian Systems and Dynamical Traps

Ergodic hypothesis

Finite Time Lyapunov Exponents (FTLE)

Non Twist Systems

Lagragian Coherent Structures and FTLE

Ergodic hypothesis

The idea behind the ergodic hyphotesis is that trajectories in phase space Γ pass near every point in phase space if you wait long enough.

How much is long enough?

Could we compute the Lyapunov Exponents?

J.D.Szezech

Hamiltonian Systems and Dynamical Traps

Ergodic hypothesis

Finite Time Lyapunov Exponents (FTLE)

Non Twist Systems

Lagragian Coherent Structures and FTLE

Finite-time Lyapunov Exponents (FTLE)

We define the k-th time-n Lyapunov exponent associated with the point (p_0, x_0) as

$$\lambda_k(p_0, x_0, n) = \frac{1}{n} \ln(||D\mathcal{M}^n(p_0, x_0)\mathcal{U}_k||) \ (k = 1, 2)$$
(3)

The FTLEs depend on the initial condition (p_0, x_0) , whereas their infinite-time counterparts

$$\lambda_k = \lim_{n \to \infty} \lambda_k(p_0, x_0, n) \tag{4}$$

J.D.Szezech

Hamiltonian Systems and Dynamical Traps

Ergodic hypothesis

Finite Time Lyapunov Exponents (FTLE)

Non Twist Systems

Lagragian Coherent Structures and FTLE

Finite-time Lyapunov Exponents (FTLE)

J.D.Szezech

Hamiltonian Systems and Dynamical Traps

Ergodic hypothesis

Finite Time Lyapunov Exponents (FTLE)

Non Twist Systems

Lagragian Coherent Structures and FTLE

Total trapping time

Behavior of the finite-time Lyapunov exponent distribution as a function of the parameter K.

Standard Nontwist Map

J.D.Szezech

Systems and Dynamical Traps

Ergodic hypothesis

Finite Time Lyapunov Exponents (FTLE)

Non Twist Systems

Lagragian Coherent Structures and FTLE

Standard nontwist map

The equations of the so-called nontwist map

$$y_{n+1} = y_n - b\sin(2\pi x_n),$$

 $x_{n+1} = x_n + a(1 - y_{n+1}^2),$

where $x \in [-1/2, +1/2)$ and $y \in \mathbb{R}$ the Hamiltonian with kicks corresponding to the map is

$$H(x, y, n) = ay\left(1 - \frac{y^2}{3}\right) - \frac{b}{2\pi}\cos(2\pi x)\sum_{m=-\infty}^{\infty}\delta(n-m).$$

For all next results we will keep the parameter b = 0.6 and take *a* as our tunable parameter.

J.D.Szezech

Hamiltonian Systems and Dynamical Traps

Ergodic hypothesis

Finite Time Lyapunov Exponents (FTLE)

Non Twist Systems

Lagragian Coherent Structures and FTLE

Phase Space for the two cases

a = 0.80552

J.D.Szezech

Hamiltonian Systems and Dynamical Traps

Ergodic hypothesis

Finite Time Lyapunov Exponents (FTLE)

Non Twist Systems

Lagragian Coherent Structures and FTLE

 $[-0.5, 0.5] \times [-0.9, 0.9]$ reach $y_b = \pm 2.0$

Transmissivity \longrightarrow number of the trajectories that cross the barrier

J.D.Szezech

Hamiltonian Systems and Dynamical Traps

Ergodic hypothesis

Finite Time Lyapunov Exponents (FTLE)

Non Twist Systems

Lagragian Coherent Structures and FTLE

Mean escape time and transmissivity

J.D.Szezech

Hamiltonian Systems and Dynamical Traps

Ergodic hypothesis

Finite Time Lyapunov Exponents (FTLE)

Non Twist Systems

Lagragian Coherent Structures an FTLE

Phase Space for the two cases

High transmissivity a = 0.80552

Persistent Barrier a = 0.80630

J.D.Szezech

Hamiltoniar Systems and Dynamical Traps

Ergodic hypothesis

Finite Time Lyapunov Exponents (FTLE)

Non Twist Systems

Lagragian Coherent Structures and FTLE

Time escape for the two cases

High transmissivity a = 0.80552

Persistent Barrier a = 0.80630

J.D.Szezech

Hamiltoniar Systems and Dynamical Traps

Ergodic hypothesis

Finite Time Lyapunov Exponents (FTLE)

Non Twist Systems

Lagragian Coherent Structures and FTLE

Time escape for the two cases

High transmissivity a = 0.80552

Persistent Barrier a = 0.80630

J.D.Szezech

Hamiltonian Systems and Dynamical Traps

Ergodic hypothesis

Finite Time Lyapunov Exponents (FTLE)

Non Twist Systems

Lagragian Coherent Structures and FTLE

Comparison between a Sticky trajectory and FTLE

Persistent Barrier Case (a = 0.8063)

Space Phase and FTLE time series

Lagrangian Coherent Structures

J.D.Szezech

Hamiltonian Systems and Dynamical Traps

Ergodic hypothesis

Finite Time Lyapunov Exponents (FTLE)

Non Twist Systems

Lagragian Coherent Structures and FTLE

Lagrangian Coherent Structures (LCS)

- LCS are structures which separate dynamically distinct regions in systems.
- Finite-time Lyapunov Exponents can be used to find LCS, which are often analogous to stable and unstable manifolds of time-independent systems.
- These structures divide dynamically distinct regions in the phase space.

J.D.Szezech

Hamiltonian Systems and Dynamical Traps

Ergodic hypothesis

Finite Time Lyapunov Exponents (FTLE)

Non Twist Systems

Lagragian Coherent Structures and FTLE

Comparison between manifolds and FTLE

High transmissivity case (a = 0.80552)

Manifolds

FTLE

J.D.Szezech

Hamiltonian Systems and Dynamical Traps

Ergodic hypothesis

Finite Time Lyapunov Exponents (FTLE)

Non Twist Systems

Lagragian Coherent Structures and FTLE

Comparison between manifolds and FTLE

Persistent Barrier Case (a = 0.8063)

Manifolds

FTLE

J.D.Szezech

Hamiltonian Systems and Dynamical Traps

Ergodic hypothesis

Finite Tim Lyapunov Exponents (FTLE)

Non Twis Systems

Lagragian Coherent Structures and FTLE >

(a) Δ B Х

Dominant Intercrossing

Schematic depiction

X

J.D.Szezech

Hamiltonian Systems and Dynamical Traps

Ergodic hypothesis

Finite Time Lyapunov Exponents (FTLE)

Non Twist Systems

Lagragian Coherent Structures and FTLE

Ridges of FTLE

- Marked in Blue Ridges of FTLE.
- Marked in Red The trajectories transmitted.
 - High Transmissivity a = 0.80552

Persistent Barrier Case a = 0.8063

Conclusions

Systems J.D.Szezech

Applications of FTLE in

Hamiltonian

Hamiltonian Systems and Dynamical Traps

Ergodic hypothesis

Finite Time Lyapunov Exponents (FTLE)

Non Twist Systems

Lagragian Coherent Structures and FTLE

- FTLE distributions can be useful to analyze the influence of trapping domains.
- When we look to distribution of the orbits that suffer trapping effects, they develop a mode near zero in FTLE.
- Even after the barrier breakdown, the region of the shearless curve continues to reduce transport.
- Manifold intercrossings increase the transmissivity. Otherwise, the manifold intracrossings slow down the transmissivity and increase the average escape time.

References:

Applications of FTLE in Hamiltonian Systems

J.D.Szezech

Hamiltonian Systems and Dynamical Traps

Ergodic hypothesis

Finite Time Lyapunov Exponents (FTLE)

Non Twist Systems

Lagragian Coherent Structures and FTLE

- Szezech, J.D. ; Schelin, A.B. ; Caldas, I.L. ; Lopes, S.R. ; Morrison, P.J. ; Viana, R.L. . Finite-time rotation number: A fast indicator for chaotic dynamical structures. Physics Letters. A, v. 377, p. 452-456, 2012.
- Caldas, I.L.; Viana, R.L.; Szezech, J.D.; Portela, J.S.E.; Fonseca, J.; Roberto, M.; Martins, C.G.L.; da Silva, E.J.. Nontwist symplectic maps in tokamaks. Communications in Nonlinear Science Numerical Simulation, v. 17, p. 2021-2030, 2012.
- Caldas, I.L.; Szezech, J.D.; Kroetz, T.; Marcus, FA.; Roberto, M.; Viana, R. L.; Lopes, S. R. Transport barriers in plasmas. Journal of Physics. Conference Series (Print), v. 370, p. 012001, 2012.
- Szezech Jr., J.D.; Caldas, I. L.; Lopes, S. R.; Morrison, P. J.; Viana, R.L. Effective transport barriers in nontwist systems. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics (Print), v. 86, p. 036206, 2012.
- Szezech, J. D.; Caldas, I. L.; Lopes, S. R.; VIANA, R. L.; Morrison, P. J. Transport properties in nontwist area-preserving maps. Chaos (Woodbury, N.Y.), v. 19, p. 043108, 2009.
- Szezech Jr, J. D. ; Lopes, S ; Viana, R . Finite-time Lyapunov spectrum for chaotic orbits of non-integrable Hamiltonian systems. Physics Letters. A (Print), v. 335, p. 394-401, 2005.

Thank You!

