Applications of Finite Time Lyapunov Exponents in Hamiltonian Systems

José Danilo Szezech

Departament of Mathematics and Statistics
State University of Ponta Grossa
Ponta Grossa, PR, Brazil.

April, 2014
IFUSP

email: jdanilo@gmail.com
Collaborators

- I. L. Caldas- Universidade de São Paulo, São Paulo, Brasil.
- S. R. Lopes-Universidade Federal do Paraná, Curitiba, Brasil.
- R. L. Viana- Universidade Federal do Paraná, Curitiba, Brasil.
- A. B. Schelin- Universidade de Brasilia, Brasilia, Brasil.
- P. J. Morrison- The University of Texas at Austin, Austin, USA.
Applications of FTLE in Hamiltonian Systems

J.D. Szezech

Presentation Outline

• Hamiltonian Systems and Dynamical Traps
• Ergodic hypothesis ?
• Finite Time Lyapunov Exponents (FTLE)
• Non Twist Systems
• Lagragian Coherent Structures and FTLE
Introduction and Motivation

General characteristics of non-integrable Hamiltonian systems of 2 degrees of freedom

- The dynamics is neither entirely regular, nor entirely chaotic
- The boundaries between regular and irregular motion has a complicated surface
- Presence of sticks domains in phase space
Dynamics of standard map

The standard map represents the discrete form of the equations for the kicked rotor characterized by the Hamiltonian

\[H(p, x, t) = \frac{1}{2}p^2 - K \cos x \sum_{n=-\infty}^{\infty} \delta(t - n), \quad (1) \]

where \(p \) and \(x \) are the rotor angular momentum and positions, and \(K \) is the so-called non-linearity parameter.

\[p_{n+1} = p_n - K \sin x_n, \]

\[x_{n+1} = x_n + p_{n+1}, \quad (2) \]
Dynamics of standard map

Phase space for the standard map for

\[K = 1.5 \quad \text{and} \quad K = 6.0 \]
Infinite Time Lyapunov Exponent

Maximum Lyapunov exponent as function of parameter K

$$\lambda_{1,2} = \lim_{n \to \infty} \frac{1}{n} \ln(||D M^n(p_0, x_0) U_k||)$$
The same previous case of $K = 1.5$ but for longer times of iteration.

Sticky regions
Ergodic hypothesis

The idea behind the ergodic hypothesis is that trajectories in phase space Γ pass near every point in phase space if you wait long enough.
The idea behind the ergodic hypothesis is that trajectories in phase space Γ pass near every point in phase space if you wait long enough.

How much is long enough?
The idea behind the ergodic hypothesis is that trajectories in phase space Γ pass near every point in phase space if you wait long enough.

How much is long enough?

Could we compute the Lyapunov Exponents?
Finite-time Lyapunov Exponents (FTLE)

We define the k-th time-n Lyapunov exponent associated with the point (p_0, x_0) as

$$\lambda_k(p_0, x_0, n) = \frac{1}{n} \ln(||D\mathcal{M}^n(p_0, x_0)\mathcal{U}_k||) \quad (k = 1, 2) \quad (3)$$

The FTLEs depend on the initial condition (p_0, x_0), whereas their infinite-time counterparts

$$\lambda_k = \lim_{n \to \infty} \lambda_k(p_0, x_0, n) \quad (4)$$
Finite-time Lyapunov Exponents (FTLE)

Finite-time Lyapunov distribution for the standard map for:

$K = 1.5$

$K = 6.0$
Applications of FTLE in Hamiltonian Systems

J.D. Szezech

Hamiltonian Systems and Dynamical Traps

Ergodic Hypothesis

Finite Time Lyapunov Exponents (FTLE)

Non Twist Systems

Lagrangian Coherent Structures and FTLE

Total trapping time

Behavior of the finite-time Lyapunov exponent distribution as a function of the parameter K.

![Graphs showing the behavior of the finite-time Lyapunov exponent distribution as a function of K.](image)
Standard Nontwist Map
Standard nontwist map

The equations of the so-called nontwist map

\[\begin{align*}
 y_{n+1} &= y_n - b \sin(2\pi x_n), \\
 x_{n+1} &= x_n + a(1 - y_{n+1}^2),
\end{align*} \]

where \(x \in [-1/2, +1/2) \) and \(y \in \mathbb{R} \) the Hamiltonian with kicks corresponding to the map is

\[H(x, y, n) = ay \left(1 - \frac{y^2}{3}\right) - \frac{b}{2\pi} \cos(2\pi x) \sum_{m=-\infty}^{\infty} \delta(n - m). \]

For all next results we will keep the parameter \(b = 0.6 \) and take \(a \) as our tunable parameter.
Applications of FTLE in Hamiltonian Systems

J.D. Szezech

Hamiltonian Systems and Dynamical Traps

Ergodic hypothesis

Finite Time Lyapunov Exponents (FTLE)

Non Twist Systems

Lagrangian Coherent Structures and FTLE

Phase Space for the two cases

\[a = 0.80552 \]

\[a = 0.80630 \]
Mean escape time and transmissivity

Escape time \rightarrow average time of a square of initial conditions

$[-0.5, 0.5] \times [-0.9, 0.9]$ reach $y_b = \pm 2.0$

Transmissivity \rightarrow number of the trajectories that cross the barrier

![Graph showing mean escape time and transmissivity](image)
Mean escape time and transmissivity

High transmissivity

Persistent Barrier

![Graph showing mean escape time and transmissivity](attachment:image.png)
Phase Space for the two cases

High transmissivity

\[a = 0.80552 \]

Persistent Barrier

\[a = 0.80630 \]
Applications of FTLE in Hamiltonian Systems

J.D. Szezech

Hamiltonian Systems and Dynamical Traps

Ergodic hypothesis

Finite Time Lyapunov Exponents (FTLE)

Non Twist Systems

Lagrangian Coherent Structures and FTLE

Time escape for the two cases

High transmissivity

\[a = 0.80552 \]

Persistent Barrier

\[a = 0.80630 \]
Applications of FTLE in Hamiltonian Systems

J.D. Szezech

Hamiltonian Systems and Dynamical Traps
Ergodic hypothesis
Finite Time Lyapunov Exponents (FTLE)
Non Twist Systems
Lagrangian Coherent Structures and FTLE

Time escape for the two cases

High transmissivity

\(a = 0.80552 \)

Persistent Barrier

\(a = 0.80630 \)
Comparison between a Sticky trajectory and FTLE

Persistent Barrier Case \((a = 0.8063)\)

Space Phase and FTLE time series
Lagrangian Coherent Structures
Lagrangian Coherent Structures (LCS)

- LCS are structures which separate dynamically distinct regions in systems.
- Finite-time Lyapunov Exponents can be used to find LCS, which are often analogous to stable and unstable manifolds of time-independent systems.
- These structures divide dynamically distinct regions in the phase space.
Comparison between manifolds and FTLE

High transmissivity case ($a = 0.80552$)

Manifolds

FTLE
Comparison between manifolds and FTLE

Persistent Barrier Case \((a = 0.8063) \)
Applications of FTLE in Hamiltonian Systems

J.D. Szezech

Hamiltonian Systems and Dynamical Traps

Ergodic hypothesis

Finite Time Lyapunov Exponents (FTLE)

Non Twist Systems

Lagrangian Coherent Structures and FTLE

Schematic depiction

Dominant Intercrossing

Dominant Intracrossing
Ridges of FTLE

- Marked in Blue - Ridges of FTLE.
- Marked in Red - The trajectories transmitted.

High Transmissivity

$$a = 0.80552$$

Persistent Barrier Case

$$a = 0.8063$$
Conclusions

- FTLE distributions can be useful to analyze the influence of trapping domains.
- When we look to distribution of the orbits that suffer trapping effects, they develop a mode near zero in FTLE.
- Even after the barrier breakdown, the region of the shearless curve continues to reduce transport.
- Manifold intercrossings increase the transmissivity. Otherwise, the manifold intracrossings slow down the transmissivity and increase the average escape time.
Applications of FTLE in Hamiltonian Systems

J.D. Szezech

Hamiltonian Systems and Dynamical Traps

Ergodic hypothesis

Finite Time Lyapunov Exponents (FTLE)

Non Twist Systems

Lagrangian Coherent Structures and FTLE

References:

Thank You!