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• Finite Time Lyapunov Exponents (FTLE)
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Introduction and Motivation

General characteristics of non-integrable Hamiltonian systems of 2
degrees of freedom

• The dynamics is neither entirely regular, nor entirely chaotic

• The boundaries between regular and irregular motion has a
complicated surface

• Presence of sticks domains in phase space
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Dynamics of standard map

The standard map represents the discrete form of the equations for
the kicked rotor characterized by the Hamiltonian

H(p, x , t) =
1

2
p2 − K cos x

∞∑
n=−∞

δ(t − n), (1)

where p and x are the rotor angular momentum and positions, and K
is the so-called non-linearity parameter.

pn+1 = pn − K sin xn,

xn+1 = xn + pn+1, (2)
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Dynamics of standard map

Phase space for the standard map for

K = 1.5 K = 6.0
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Infinite Time Lyapunov Exponent

Maximum Lyapunov exponent as function of parameter K

λ1,2 = lim
n→∞

1

n
ln(||DMn(p0, x0)Uk ||)
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However...

The same previous case of K = 1.5 but for longer times of iteration.

Sticky regions
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Ergodic hypothesis

The idea behind the ergodic hyphotesis is that trajectories in
phase space Γ pass near every point in phase space if you wait
long enough.
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Ergodic hypothesis

The idea behind the ergodic hyphotesis is that trajectories in
phase space Γ pass near every point in phase space if you wait
long enough.

How much is long enough?
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Ergodic hypothesis

The idea behind the ergodic hyphotesis is that trajectories in
phase space Γ pass near every point in phase space if you wait
long enough.

How much is long enough?

Could we compute the Lyapunov Exponents?
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Finite-time Lyapunov Exponents
(FTLE)

We define the k-th time-n Lyapunov exponent associated with the
point (p0, x0) as

λk(p0, x0, n) =
1

n
ln(||DMn(p0, x0)Uk ||) (k = 1, 2) (3)

The FTLEs depend on the initial condition (p0, x0), whereas their
infinite-time counterparts

λk = lim
n→∞

λk(p0, x0, n) (4)
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Finite-time Lyapunov Exponents
(FTLE)

Finite-time Lyapunov distribution for the standard map for:

K = 1.5 K = 6.0



Applications
of FTLE in
Hamiltonian

Systems

J.D.Szezech

Hamiltonian
Systems and
Dynamical
Traps

Ergodic
hypothesis

Finite Time
Lyapunov
Exponents
(FTLE)

Non Twist
Systems

Lagragian
Coherent
Structures and
FTLE

Total trapping time
Behavior of the finite-time Lyapunov exponent distribution as a
function of the parameter K .
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Standard Nontwist Map
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Standard nontwist map

The equations of the so-called nontwist map

yn+1 = yn − b sin(2πxn),

xn+1 = xn + a(1− y2
n+1),

where x ∈ [−1/2,+1/2) and y ∈ R the Hamiltonian with kicks
corresponding to the map is

H(x , y , n) = ay

(
1− y2

3

)
− b

2π
cos(2πx)

∞∑
m=−∞

δ(n −m).

For all next results we will keep the parameter b = 0.6 and
take a as our tunable parameter.



Applications
of FTLE in
Hamiltonian

Systems

J.D.Szezech

Hamiltonian
Systems and
Dynamical
Traps

Ergodic
hypothesis

Finite Time
Lyapunov
Exponents
(FTLE)

Non Twist
Systems

Lagragian
Coherent
Structures and
FTLE

Phase Space for the two cases

a = 0.80552 a = 0.80630
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Mean escape time and
transmissivity

Escape time −→ average time of a square of initial conditions

[−0.5, 0.5]× [−0.9, 0.9]reach yb = ±2.0

Transmissivity −→ number of the trajectories that cross the barrier
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Mean escape time and
transmissivity
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Phase Space for the two cases

High transmissivity
a = 0.80552

Persistent Barrier
a = 0.80630



Applications
of FTLE in
Hamiltonian

Systems

J.D.Szezech

Hamiltonian
Systems and
Dynamical
Traps

Ergodic
hypothesis

Finite Time
Lyapunov
Exponents
(FTLE)

Non Twist
Systems

Lagragian
Coherent
Structures and
FTLE

Time escape for the two cases

High transmissivity
a = 0.80552

Persistent Barrier
a = 0.80630
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Time escape for the two cases

High transmissivity
a = 0.80552

Persistent Barrier
a = 0.80630
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Comparison between a Sticky
trajectory and FTLE

Persistent Barrier Case (a = 0.8063)

Space Phase and FTLE time series



Lagrangian Coherent Structures
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Lagrangian Coherent Structures
(LCS)

• LCS are structures which separate dynamically distinct
regions in systems.

• Finite-time Lyapunov Exponents can be used to find LCS,
which are often analogous to stable and unstable
manifolds of time-independent systems.

• These structures divide dynamically distinct regions in the
phase space.
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Comparison between manifolds
and FTLE

High transmissivity case (a = 0.80552)

Manifolds FTLE
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Comparison between manifolds
and FTLE

Persistent Barrier Case (a = 0.8063)

Manifolds FTLE
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Schematic depiction

Dominant Intercrossing Dominant Intracrossing
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Ridges of FTLE

• Marked in Blue - Ridges of FTLE.

• Marked in Red - The trajectories transmitted.

High Transmissivity
a = 0.80552

Persistent Barrier Case
a = 0.8063
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Conclusions

• FTLE distributions can be useful to analyze the influence of
trapping domains.

• When we look to distribution of the orbits that suffer trapping
effects, they develop a mode near zero in FTLE.

• Even after the barrier breakdown, the region of the shearless
curve continues to reduce transport.

• Manifold intercrossings increase the transmissivity. Otherwise,
the manifold intracrossings slow down the transmissivity and
increase the average escape time.
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