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Motivation

Homoclinic orbits (and surfaces) are structurally unstable in three
dimensional Hamiltonian systems.

The plasma edge of single
and double-null discharges
IS composed of homoclinic
or heteroclinic magnetic field
lines.

The geometry of the plasma
edge will change under any
symmetry break.

saddle orbit
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Saddles and Manifolds

Saddle orbits are structurally stable in three dimensions, but the
homoclinic surface splits into separated invariant manifolds.

° When axial symmetry breaks

& the magnetic perturbations
I o :

plasma destroy the homoclinic field lines.
The new invariant surfaces
define the plasma edge.
: 7 ) g - -
.. saddle orbit . 7 t The lobes define multiple strike
= ————==-X+-poin : : :

é//}\w’*\\\ regions with helical patterns.
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The non-axisym-
metric lobes have
been observed ex-
perimentally and
can be modeled
using vacuum field
perturbations.

B more than 1000 toroidal
cycles

B less than 1 toroidal cycle

A. Kirk et al, Phys. Rev. Lett. 108, 255003 (2012)

D. Ciro and I.L. Caldas (unpublished) |

B=Vy xVo+ F))Vy+ B, Anyasymmetric magnetic
perturbation creates the lobes.
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Coherent structures

If manifolds determine the plasma edge geometry for stationary
magnetic fields, it may do so for time-dependent fields.

MHD oscillations and instabilities
break the axisymmetry and evolve
in a regular fashion.

At each time-slice the magnetic
field pattern creates new invariant
manifolds.

Transition from one manifold geo-
metry to the next must be smooth.
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Experimental Signatures

 SHOT 158826, Bp Probes (gauss) . magnetic probes
In DIII-D discharge #158826 &~ "
the magnetic signals and :
divertor heat pattern evolu-
tion are synchronized.
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Modeling the plasma response

The perturbation field has internal and external sources but is do-
minated by the plasma response.

The magnetic probes reveal a dominant m=1, n=1 mode. It can be
due to an internal kink (ideal), tearing mode (resistive), or a helical
core.

The magnetic pattern appears to rotate toroidally with frequency
around 7Hz.

The amplitude of the fluctuations grows monotonically at a small rate!
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We consider that the response currents are concentrated in the =1
surface and that rotate toroidally at a constant angular frequency.

Ny,
55(F,t) =) Lib(7, )8 (F — (¢ — wt))
1=1

5}(77, t) : Plasma response current.

7n(¢0) : Helical filament starting on the LFS mid-plane of the g=1
surface at toroidal angle ¢o .

6(7— ) : The usual Dirac delta.
7*,t) : Direction of the magnetic field in (7, %) .
I; : Current on the ;th filament.

Ny, : Number of filaments.

Taking the rotational we recover the Biot-Savart law for a set of
rotating filaments. 4 of #




A minimum model requires two filaments.

Their currents and relative phase were adjusted numerically.
By(¢1) — Bp(¢2)

— probes signal.
— modeled signal.

50C gy = 200°, 6 = 20° 7
- 78.3kA
0 Y A N M U A N SU
T ]
505 51 = 65, 60 = 216" 1 The modeled wave-forms

adjust well the magnetic
probes measurements.

'50 : | | | \ | | | \ | | \ | | |

2200 2400 2600 2800 3000 3200 3400
Time(msec)
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Building the manifolds

A

o Identify the Unstable Periodic
reqular field line Orbit (UPO), or saddle orbit
M(P) for the perturbed system.
P
P = M(P)
0o A, unsatl mani
S : ¢ = const. M?(P) M~2(Q)
|dentify the eigenvectors of the M(P) MHQ)
Poincaré map and build an ele- Lnstabd bl
mentary segment near the segment \P° /" segment
saddle point. 5@
UPO
Map forward and backwards

S : ¢ = const.
the elementary segments. 4 of #




Some advertisements...

The UPO is located within a precision
of 107-10 m, using a modified Leven-
berg-Marquardt procedure.

The field line integration method is
adaptive five order and package
independent.

Each manifold section segments is
calculated from the previous instead
of the first (CPU time reduces >700%).

Lagrange polynomials are used to
start new orbits on the fly.

The manifold can be calculated along
the confining chamber to determine the
weted area.

1.0 -

— Unst. Manifold
— St. Manifold

2.4
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Results

¢(deg.)

360

300

240

120

60

__ manifold along the
chamber

heat profiles

1.45 1.50 1.55 1.60

The instants of the heat
measurements are con-
verted to phases of the
rotating frame and com-
pared with the rotating
manifold at the strike
plane.

The weted area from the
manifold calculation mat-
ches well with the peak
locations and the exten-
sion of the heat deposi-
tion profile.

1.65
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Conclusions

The invariant manifolds created by time-dependent magnetic fields
are coherent structures evolving smoothly in time.

The plasma edge evolution can be described in terms of the chan-
ging invariant manifolds created by the internal and external non-
axisymmetric currents.

Invariant manifold calculations describe well the deposition patterns
with few assumptions and minimalist models.

Perspectives

Transport calculations can be used along simple models of the mag-
netic field to calculate the heat deposition profiles.
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