
PHYSICS OF PLASMAS VOLUME 8, NUMBER 6 JUNE 2001
Field line diffusion and loss in a tokamak with an ergodic magnetic limiter
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A numerical study of chaotic field line diffusion in a tokamak with an ergodic magnetic limiter is
described. The equilibrium model field is analytically obtained by solving a Grad–Schlu¨ter–
Shafranov equation in toroidal polar coordinates, and the limiter field is determined by supposing its
action as a sequence of delta-function pulses. A symplectic twist mapping is introduced to analyze
the mean square radial deviation of a bunch of field lines in a predominantly chaotic region. The
formation of a stochastic layer and field diffusivity at the plasma edge are investigated. Field line
transport is initially subdiffusive and becomes superdiffusive after a few iterations. The field lines
are lost when they collide with the tokamak inner wall; their decay rate is exponential with Poisson
statistics. ©2001 American Institute of Physics.@DOI: 10.1063/1.1371769#
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I. INTRODUCTION

The existence of magnetic surfaces is a necessary
quirement for plasma confinement in fusion schemes1,2

These surfaces, with the topology of nested tori, exist wh
ever the system has some spatial symmetry and, accordi
they may well be destroyed as this symmetry is broken
some means.3 The problem of particle confinement in
plasma is related in a nonobvious way to the problem
determination of magnetic surfaces. Classical and neocla
cal transport in a direction perpendicular to these surfa
for example, is not sufficient to explain the experimen
data.4,5 This phenomenon of anomalous transport has b
one of the most studied themes in fusion plasma theory s
the 1960s.6

There are two general points of view on anomalous d
fusion: ~i! the existence of magnetic surfaces is assumed,
the transport properties are due to complex particle moti
which are disregarded in traditional theories;~ii ! the particle
orbits are taken as essentially simple, but the magnetic
faces themselves may not exist.7 In the latter case, a layer o
stochastic, or chaotic, magnetic field lines should be fou
These chaotic field lines are volume filling in an essentia
ergodic fashion, causing a uniform spread of particles
energy. Field lines in a magnetostatic configuration may
chaotic in a Lagrangian sense—nearby field lines dive
exponentially in their revolutions along the torus.

One of the first works to deal with this problem was t
seminal paper of Rosenbluthet al.,8 in which it was assumed
that the destruction of magnetic surfaces is caused b
symmetry-breaking resonant perturbation. Since then,
problem has been extensively studied in fusion9–11 and as-
trophysical applications.12 Magnetic surface destruction i
related to the overlapping of two or more chains of magne
islands.13,14 These islands may result from the interacti

a!Electronic mail: viana@fisica.ufpr.br
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between two helical resonant magnetostatic perturbations
from one helical perturbation with toroidal effects.9 The de-
struction of magnetic surfaces is followed by the appeara
of a thin layer of chaotic magnetic field lines in the neig
borhood of the islands’ separatrices. These layers may
and spread out throughout a larger region, if the perturba
is strong enough.

While field line chaos may sometimes be regarded as
undesirable feature—as it may trigger soft disruptive ins
bilities in tokamaks, e.g., Refs. 15 and 16—it can be of
terest for the sake of controlling plasma–wall interactions
tokamaks. It has been proposed that a cold boundary laye
chaotic field lines may uniformize heat and particle loadin
on the tokamak inner wall,17 reducing the release of impuri
ties due to sputtering processes. More specifically, it
been argued that the impurity concentration in the plas
core could be reduced by a factor that is inversely prop
tional to the electron diffusion coefficient in the plasm
edge.18

This chaotic region in the plasma edge may be crea
using suitably designed resonant helical windings,19 but they
have to be mounted externally to the tokamak vessel w
which is an intensively used interface with many diagnos
windows that complicate the task of setting up these wi
ings. The ergodic magnetic limiter~EML!, on the other hand
circumvents this problem by using only slices of helic
windings in the form of current rings.20 Some experiments
with EMLs21,22 have shown a decrease of the plasma te
perature in the edge region, thus reducing plasma–wall
teractions, as well as opening the possibility of controlli
some magnetohydrodynamical~MHD! oscillation modes.
However, the claim that the chaotic boundary layer co
uniformize heat and particle loadings in the wall has be
questioned by experiments in which a poloidal modulation
thermal fluxes has been observed.23,24

The design of an EML depends on a detailed knowled
5 © 2001 American Institute of Physics
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of the field line diffusion in the chaotic region it is suppos
to generate. In this paper we aim to study field line diffusi
in a tokamak with EML, in order to investigate the desi
parameters required to achieve efficient particle diffusion
the plasma edge. We employ theoretical models for b
equilibrium and limiter fields in order to analytically obtain
magnetic field line mapping. In this way the effect of para
eter variations is more easily studied in comparison w
mappings generated by numerical integration of field l
equations.25 However, the use of very simplified model
with ad hocequilibrium fields and large aspect ratio geom
etry, may lead to rather artificial mappings which may ma
some important aspects of the EML action, such as the
of toroidal effects and the Shafranov shift of magnetic s
faces. We derive a field line mapping which embodies th
important features:~i! a coordinate system in which the to
oidicity effects appear naturally in the corresponding coor
nate surfaces;~ii ! a self-consistent equilibrium field obtaine
from an analytical solution of the Grad–Schlu¨ter–Shafranov
equation;~iii ! the design of the EML tries to follow the ac
tual helical paths of field lines, taking into account pit
variations due to the toroidal geometry.

The map we obtain is rigorously area preserving, a
may be regarded as a canonical transformation betw
action-angle variables, which are related to the geometr
field-line coordinates.26 An explicit Hamiltonian function is
obtained for the problem, assuming that the EML pertur
tion is a sequence of delta-function pulses.27 We analyze
phase portraits of this mapping which exhibit a sizable c
otic layer comprising both the plasma edge and the vacu
region that separates it from the inner wall. The radial exc
sion of chaotic field lines is studied by means of their av
age square mean displacement. If the chaotic region con
no stable periodic orbits, field line motion is essentially s
chastic in the sense that the square mean radial displace
grows linearly with time, the diffusion coefficient being th
corresponding growth rate. The presence of periodic isla
embedded in the chaotic region alters this situati
however.28,29 Furthermore, there are other transpo
regimes—super- and subdiffusive—which are characteri
by a power-law dependence on time.30 Finally, as chaotic
field lines diffuse along the radial direction, they eventua
collide with the inner wall and are lost. We study statistica
this process and find an exponential decay, from whic
field line half-life can be defined and studied with respect
variations of the EML current. Moreover, the field line lo
process may be treated using Poisson statistics, which
accordance with the numerical results we obtained.

This paper is organized as follows: In Sec. II we outli
the equilibrium and limiter fields to be used in this wor
Section III describes the obtention of the field line mappin
Section IV shows results for mean square radial displa
ment of field lines in predominantly chaotic regions, indic
ing the transport regimes we observe, as well as the ques
of the loss of field lines due to collisions with the inn
tokamak wall. Section V is devoted to our conclusions.
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II. EQUILIBRIUM AND LIMITER FIELDS

We use a~nonorthogonal! polar toroidal coordinate sys
tem (r t ,u t ,w t) that is introduced to exhibit toroidal effects i
the tokamak equilibrium field line geometry.31 In the large
aspect ratio limit these coordinates reduce to the local co
dinates (r ,u,w). For arbitrary aspect ratio they may be d
fined in terms of the toroidal coordinates (j,v,w)32 by the
following relations:

r t5
R08

coshj2cosv
, ~1!

u t5p2v, ~2!

w t5w, ~3!

where R08 is the magnetic axis radius. In Fig. 1 we dep
some of the coordinate surfaces for this system, in the pl
w50, andR, Z are usual cylindrical coordinates.

The tokamak equilibrium magnetic fieldB0 is obtained
from an ideal MHD static equilibrium, described by

JÃB05“p, ~4!

“ÃB05m0J, ~5!

“"B050, ~6!

wherep andJ are the equilibrium pressure and current de
sity, respectively. The equilibrium configuration can be a
described by a scalar functionCp , the poloidal magnetic
flux function, satisfying

B0"“Cp50. ~7!

For an axisymmetric configuration, the poloidal flux
obtained by solving a Grad–Schlu¨ter–Shafranov equation
that is equivalent to Eqs.~4!–~6!. In the polar toroidal coor-
dinate system used in this work this equation reads33

FIG. 1. Some coordinate surfaces of the polar toroidal coordinate syste
the w50 plane.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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1

r t

]

]r t
S r t

]Cp

]r t
D1

1

r t
2

]2Cp

]u t
2

5m0J3~Cp!1m0R08
2

dp

dCp
S 2

r t

R08
cosu t1

r t
2

R08
2
sin2 u tD

1
r t

R08
F cosu tS 2

]2Cp

]r t
2

1
1

r t

]Cp

]r t
D

1sinu tS 1

r t
2

]Cp

]u t
2

2

r t

]2Cp

]u t]r t
D G , ~8!

whereJ3 is the toroidal current density, given by

J3~Cp!52R08
2

dp

dCp
2

d

dCp
S 1

2
m0I 2D , ~9!

in terms of the pressurep and the poloidal current function
I (r t ,u t). The contravariant components of the equilibriu
magnetic field, consistent with Eq.~7!, are

B0
152

1

R08r t

]Cp

]u t
, ~10!

B0
25

1

R08r t

]Cp

]r t
, ~11!

B0
352

m0I

R2
, ~12!

where the radial coordinate, in the cylindrical system, is
lated to the polar toroidal coordinates

R25R80
2F122

r t

R08
cosu t2S r t

R08
D 2

sin2 u tG . ~13!

At the large aspect ratio limit (r t!R08), and supposing
that in lowest order the solution,Cp(r t), does not depend on
u t , Eq. ~8! reduces to an equilibrium equation similar to t
one obtained in a cylindrical geometry, but in terms ofr t .1

However, asr t embodies the toroidal character of coordina
surfaces, the intersections of magnetic surfacesCp(r t)
5const with a toroidal plane are not concentric circles
present a Shafranov shift toward the exterior equato
region.31 In this way actual magnetic surfaces are well a
proximated by coordinate surfaces in whichr t5const.

To solve Eq.~8! we need to assume spatial profiles f
both the pressurep and current functionI. In lowest order,
however, it is sufficient to assume a single profile for t
toroidal current densityJ3 , as given by Eq.~9! in terms ofp
and I. So, we choose a peaked current profile, commo
observed in tokamak discharges,1 and given by

J3~r t!5
I pR08

pa2
~g11!S 12

r t
2

a2D g

, ~14!

where I p and a are the total current and plasma radius,
spectively, andg is a positive constant.
Downloaded 22 Dec 2005 to 200.17.209.129. Redistribution subject to AIP
-

t
l

-

ly

-

An approximate solution for~8! may be sought in pow-
ers of the aspect ratior t /R08 . At lowest order, we find the
following equilibrium magnetic field components:34

B0
150, ~15!

B0
25

m0I p

2pr t
2 F12S 12

r t
2

a2D g11G , ~16!

B0
352

m0I

R08
2 S 122

r t

R08
cosu tD 21

. ~17!

The corresponding poloidally averaged safety factor is

q5
1

2pE0

2pB0
3~r t ,u t!

B0
2~r t ,u t!

du t5qc~r t!S 124
r t

2

R08
2D 21/2

, ~18!

with

qc~r t!522p
I

I p

r t
2

R08
2 F12S 12

r t
2

a2D g11G21

, ~19!

which results in a parabolic profile. We assume thatq'1 at
the magnetic axis andq'5 at plasma edge. We normaliz
the minor radiusbt and plasma radiusa to the major radius
R08 , so thata/R0850.26, bt /R0850.36, andg53, which are
consistent with typical tokamak discharges.4 Figure 2~a!
shows some equilibrium flux surfaces for this set of para
eters, and Fig. 2~b! depicts the corresponding radial profile
the safety factor. In Fig. 2~a!, the zeroth- and first-order so
lutions practically coincide, whereas in Fig. 2~b! they show a
small deviation as we approach the plasma edge.

We consider the following design for an ergodic ma
netic limiter: Na current rings of lengthl located symmetri-
cally along the toroidal circumference of the tokamak~Fig.
3!. These current rings may be regarded as slices of a pa
external helical windings located at the tokamak minor
dius r t5bt , and conducting a currentI h in opposite senses
for adjacent conductors. To induce a resonant perturba
we choose a helical winding with the same pitch as the fi
lines in the rational surface we want to perturb. This surfa
has a safety factorq5m0 /n0 , wherem0 andn0 are positive
integers. In order to obtain this effect the winding law tak
into account the helical field line pitch nonuniformity caus
by the toroidal effect

ut5m0~u t1l sinu t!2n0w t5constant. ~20!

The choice ofl is dictated by the location of the main res
nant magnetic surface to be destroyed, and where we ai
produce chaotic field lines. In our case, we chose the re
nant effect to occur at the equilibrium rational magnetic s
face with q55/1, since it is located near the plasma ed
@see Fig. 2~b!#. It corresponds tol50.54, as has been show
in Ref. 34.

The magnetic field produced by the resonant heli
winding from which we build the EML rings is obtained b
neglecting the plasma response and the penetration
through the tokamak wall. In this case, it is assumed to b
vacuum field:B5“FL , where the scalar magnetic potenti
FL satisfies the Laplace equation“2FL50 in polar toroidal
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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FIG. 2. ~a! Equilibrium flux surfaces, and~b! safety
factor radial profile for a tokamak. In~b!, we show both
the zeroth-~dashed line! and first-order~full line! re-
sults.
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coordinates, and with suitable boundary conditions wh
take into account the helical conductors at the tokamak w
following the winding law ~20!. In the following we will
rather use the corresponding vector potentialAL , such that
BL5“ÃAL . In lowest order, the only nonvanishing comp
nent ofAL is

AL3~r t ,u t ,w t!52
m0I hR08

p (
k52m0

1m0

Jk~m0l!

3S r t

bt
D m01k

ei [(m01k)u t2n0w t] , ~21!

from which the limiter field components are given by

BL
152

1

R08r t

]AL3

]u t
, ~22!
Downloaded 22 Dec 2005 to 200.17.209.129. Redistribution subject to AIP
h
ll BL

25
1

R08r t

]AL3

]r t
. ~23!

Note that, due to the toroidal geometry, a (m0 ,n0)
5(5,1) resonant helical winding excites a large number
satellite resonances (m01k)/n0 whose amplitudes, being
proportional to Bessel functions of orderk, decay with in-
creasingk. Excluding marginal stability states, for which th
plasma response would have to be taken into account,
model field is the superposition of the equilibrium and lim
iter fields:B5B01BL .

III. MAGNETIC FIELD LINE MAPPING

Initially, we consider a tokamak with a resonant helic
winding, which is a set of conductor pairs wound around
torus with a given definite pitch that resonates with the ro
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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tional transform of the magnetic surface we wish to affe
The corresponding magnetic field line equations are writt
in toroidal polar coordinates, as

drt

dw t
52

1

r tBT
S 122

r t

R08
cosu tD ]

]u t
AL3~r t ,u t ,w t!, ~24!

du t

dw t
5

1

r tBT
S 122

r t

R08
cosu tD ]

]r t
@Cp~r t!1AL3~r t ,u t ,w t!#,

~25!

where we use Eqs.~10!–~12! and ~22!–~23!, and
BT[2m0I /R08 is the toroidal magnetic field at the magne
axis.

Since the equilibrium field is axisymmetric, we may s
the ignorable coordinatew as a time-like variable, and pu
field line equations~24! and ~25! in a canonical form

dJ
dt

52
]H

]q
, ~26!

dq

dt
5

]H

]J , ~27!

where (J,q) are the action-angle variables of a Hamiltoni
system andt[w. The equilibrium field line HamiltonianH
5H(J,q) is an autonomous one-degree-of-freedom syst
hence it is integrable.35 The addition of a nonsymmetric pe
turbation caused by an EML introduces a ‘‘time’’-depende
term that breaks the integrability of the system. If the ma
nitude of this perturbation is not too strong, however,
may use the methods of Hamiltonian dynamics to underst
field line behavior.14

The action (J) and angle (q) variables are related to th
polar toroidal coordinates in the following way:

FIG. 3. Schematic diagram of an ergodic magnetic limiter.
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J~r t!5
1

2pR08BT
E E B0

3~r t ,u t!r tdrt du t

5
1

4 F12S 124
r t

2

R08
2D 1/2G , ~28!

q~r t ,u t!5
1

q~r t!
E

0

u tB0
3~r t ,u t!

B0
2~r t ,u t!

du

5S 124S r t

R08
D 2D 1/2E

0

u t du

122~r t /R08!cosu

52 arctanF 1

V~r t!
S sinu t

11cosu t
D G , ~29!

wheret5w, and

V~r t!5S 122
r t

R08
D 1/2S 112

r t

R08
D 21/2

, ~30!

in such a way that the Hamiltonian for the tokamak field w
a resonant helical winding characterized by Eq.~21! is

H~J,q,t !5H0~J!1H1~J,q,t !

5
1

BTR08
2
Cp~J!1

1

BTR08
2

AL3~J,q,t !. ~31!

However, it turns out that the lengthl of each EML ring
is typically a small fraction of the total toroidal circumfe
ence 2pR08 . If l is small enough, we can model its effect
a sequence of delta functions centered at each ring positio27

So, we suppose the following Hamiltonian for the tokam
with finite length EML rings:

HL~J,q,t !5H0~J!1
l

R08
H1~J,q,t ! (

k52`

1`

dS t2k
2p

Na
D ,

~32!

where theNa rings are symmetrically located along the to
oidal direction.

The impulsive character of the perturbation caused
the limiter rings enables us to derive a Poincare´ ~strobo-
scopic! map for field line dynamics, definingJn and qn as
the action and angle variables at thenth crossing of the plane
w5t50, respectively.25 In the case of an EML with finite
size rings, we have an explicitt dependence in the expres
sions, that gives a near-integrable Hamiltonian system, if
limiter current is small enough. The canonical are
preserving mapping for this near-integrable system is writ
as

Jn115Jn1e f ~Jn11 ,qn ,tn!, ~33!

qn115qn1
2p

Naq~Jn11!
1eg~Jn11 ,qn ,tn!, ~34!

tn115tn1
2p

Na
, ~35!

where
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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f ~J,q,t !52
]H1~J,q,t !

]q
, ~36!

g~J,q,t !5
]H1~J,q,t !

]J , ~37!

and the perturbation parameter is

e522S l

2pR08
D S I h

I D . ~38!

The explicit forms of the Fourier coefficients ofH1 may be
found in the Appendix. Fore50 it results in a radial twist
map, characteristic of an integrable system.

In Fig. 4, we show a phase portrait, in action-angle va
ables, of many orbits with a large number of iterations of
above-mentioned map for an EML withNa54 current rings,
(m0 ,n0)5(5,1), l50.54, and a limiter current of 2.1% o
the plasma current. There is a main chain of five magn
islands at J̄'0.035 surrounded by many satellite chai
(3/1, 4/1, 6/1, 7/1, and 8/1) caused by toroidicity effec
The overlap of the chains withm54, 5, and 6 generates
sizable chaotic field line region with a width ofDJ'0.02
centered atJ̄.

This chaotic region does not reach the plasma wall
cause of some remaining magnetic surfaces that exist
tween them56 and 8 chains, and that act as barriers p
venting field line diffusion in the radial direction. In order t
have a chaotic region that effectively touches the wall
have to increase the EML current, as shown in Fig. 5, wh
I h was raised to 4.5% ofI p . For this higher perturbation
value all chains withm>5 practically disappear, althoug
the islands’ centers—being elliptic~stable! fixed points of
the Poincare´ map ~note the remnant of them54 chain!—
may still exist, but with a negligible interference on the fie
line transport.

IV. FIELD LINE DIFFUSION AND LOSS

The hallmark of chaotic motion in a conservative no
autonomous single-degree-of-freedom system, as is the

FIG. 4. Phase portrait, in action-angle variables, of the field line map fo
EML with Na54 rings, (m0 ,n0)5(5,1), l50.54, andI h50.021I p .
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here, is the stretching–folding nature of the dynamics, ch
acterized by the existence of one positive Lyapunov ex
nent. Since the available phase space is bounded, the r
of many stretchings and foldings results in an involved a
complex behavior, leading to field line diffusion. Howeve
the phase space structure due to the presence of per
orbits determines the kind of transport regime we d
with.28,29This has been the object of many recent theoret
and numerical studies.30

The main function of the EML is to create a bounda
layer of chaotic field lines, centered around a given ratio
magnetic surface that has been destroyed by the perturba
Throughout this boundary layer, the magnetic field lin
show predominantly chaotic, or area-filling, behavior. T
study field line diffusion within such a region, we takeNq

initial conditions uniformly spread alongJ0i5J̄, and q0i

52p i /Nq , with i 51,2, . . .Nq , and J̄ is picked up from
the center of a chaotic region. For each initial condition
compute the average square displacement of the action
able

sn
2[^~dJn!2& i5

1

Nq
(
i 51

Nq

~Jni2J0i !
2. ~39!

If the action is not restricted to a limited domain in the Po
caré phase plane (J,q) this displacement goes asympto
cally asnm. Anomalous transport is characterized bymÞ1,
which we call subdiffusive ifm,1, and superdiffusive ifm
.1. Gaussian transport is characterized bym51, for which a
diffusion coefficient is defined as

DLF5 lim
n→`

sn
2

2n
. ~40!

As we will see in more detail, it is impossible in practic
to take a large time limit in the case of field line transpo
due to an EML, since field lines eventually collide with th
tokamak wall and are lost. To circumvent this problem it
possible to consider the diffusion only in a limited region
action space. The diffusion coefficient, in this case, is p

nFIG. 5. Phase portrait, in action-angle variables, of the field line map fo
EML with Na54 rings, (m0 ,n0)5(5,1), l50.54, andI h50.045I p .
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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portional to the ratio between the action intervalDJ and the
average number of field line turns in the toroidal directio

The anomalous, or non-Gaussian, nature of field l
transport due to EML may be seen in Fig. 6, where the ti
behavior of the average square displacementsn

2 is depicted
for two different values of the EML current, correspondin
to the phase portraits of Figs. 4 and 5. We usedNq54000
initial conditions at J̄50.031 and spread out uniforml
along theq direction. We see that for both EML curren
values the transport is initially superdiffusive, withsn

2 grow-
ing with time roughly asn1.8. After only a dozen iterations
however, the field line transport becomes subdiffusive. T
fact that the process is not Gaussian indicates that the ch
region contains islands which have a trapping effect on fi
lines. A chaotic field line that approaches the remnant of
island would stay around it for a given time before enter
in the neighborhood of another island, and so on.

In order to visualize the trapping effect caused by
islands embedded in the chaotic region on the field line
namics, we show in Fig. 7 the forward images, after 5 and
iterations, respectively, of a bunch of initial conditions atJ̄
50.031 and uniformly distributed along the poloidal dire
tion, with an EML current ofI h50.021I p . We may observe
the stretching and folding nature of the bounded dynam
with positive Lyapunov exponent in the chaotic region. T
foldings are modulated by the presence of the island r
nants. This highly convoluted set, formed by the forwa
images of the initial conditions chosen, may reach the in
wall at r t5bt after a large number of iterations, which wi
cause loss of field lines.

This also causessn
2 to decrease for large times, provide

the chaotic region reachesr t5bt , complicating an analysis
of the diffusive behavior. This is shown in Fig. 8, where w
plot in grayscale the time~in number of toroidal turns! it
takes for a field line to reach the tokamak wall. The EM
current here is increased to 5.0% ofI p . The darker the phas
space point, the larger the time required for a field line st
ing at that point to hit the wall. The presence of islan

FIG. 6. Time evolution of the average square action displacement fo
EML with (m0 ,n0)5(5,1), l50.54, and two different limiter currents
0.045I p ~upper curve! and 0.021I p ~lower curve!. n is the number of toroidal
turns.
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embedded in this chaotic sea is clearly inferred from
highly convoluted regions characterized by high esca
times, since these islands delay field line escape and eve
loss. The presence of white tongues indicates that the es
pattern is more akin to a convective transport than to a
fusive one, since in the latter case we would expect a m
uniform escape pattern due to the ergodic nature of
Gaussian transport process.

A field line is considered lost whenever it reaches t
tokamak wall atJ'0.06. This causes the decrease of t
mean square displacementsn

2 for large times. In Fig. 9, we
plot the fraction of lost field linesNLF ~with respect to the
total number of initial conditionsNT used to iterate the field
line map! as a function of the number of toroidal turns, fo
I h50.045I p . We emphasize that, as we have four limite
the time is discretized corresponding to an excursion o
quarter of turn~i.e., there are four points for each comple
toroidal turn!. This decay process is well fitted by an exp
nential law

NLF~n!5NT expS 2
n2n0

n̄
D , ~41!

in which NT54000, n0569, andn̄52393. The process re
sembles the exponential decay of a radioactive nuclei,
accordingly we may compute its half-lifeT1/2, or the time it

n

FIG. 7. Forward images, after 5 and 15 iterations, of a bunch of ini
conditions within the chaotic region, for the same parameters as in Fig
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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takes to decrease the number of remaining field lines to
of their initial values. From Fig. 9, we see thatT1/2'1700
for the limiter current used there. In Fig. 10, this half-life
plottedversusthe relative limiter current. The solid line is
power-law scalingT1/25a1I h

2r 1, wherea153.103108, and
r 158.42. Since the increase of the EML current enhan
the diffusion process itself, field lines are more rapidly lo
thus lowering the corresponding half-life.

As with a radioactive decay, the statistical process
field line loss is described by two events: a field line hits
does not hit the tokamak wall, and the probabilitypa(m) of
hitting the wall is much lower than the probability
2pa(m) of not doing so. This suggests a Poisson probabi
distribution36

FIG. 8. Grayscale plot of escape times for chaotic field lines generated b
EML with (m0 ,n0)5(5,1), l50.54, andI h50.050I p .

FIG. 9. Fraction of lost field lines due to an EML withNa54 rings,
(m0 ,n0)5(5,1), l50.54, andI h /I p50.045. The dashed line correspon
to Eq.~41!. The inset shows that the decay process has a staircase beh
Downloaded 22 Dec 2005 to 200.17.209.129. Redistribution subject to AIP
lf

s
,

f
r

y

Pa~m!5
1

m!
e2aT~aT!m, ~42!

that, during the observation timeT ~measured in number o
toroidal turns!, m field lines are lost. For this reason,a may
be called a field line decay rate.

We choose each intervalT to correspond to two toroida
turns, for N05500 observations~or 1000 turns!. From the
obtained values ofm, we make a frequency histogram~Fig.
11!, where the white bars represent the statistics obtai
throughN0 observations of lost field lines. Denoting^m& the
average value of the number of lost field lines we have,
this Poisson distribution, that̂m&5aT'1.90. Black bars
show the corresponding results for Eq.~42!. We have a good
agreement between a Poisson distribution and the num
cally determined frequency histogram, since the statist
uncertainty in the latter may be estimated as@N0pa(m)(1
2pa(m))#1/2, and the differences between our numerical
sults and those given by Eq.~42! differ by less than one
standard deviation. We have also computed higher mom

an

ior.

FIG. 10. Half-life of field lines as a function of limiter current for an EM
with (m0 ,n0)5(5,1), andl50.54.

FIG. 11. Number of observations~each observation corresponds to tw
toroidal turns! in which n field lines were lost, for a (5,1) limiter, withl
50.54 andI h /I p50.045. White and black bars correspond to numeri
results and a Poisson distribution, respectively.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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of the distribution, the asymmetryS(m) and kurtosisK(m),
to be 0.84 and 3.72, respectively. These values are clos
the corresponding values predicted for a Poisson distribut
namely

S~m!5
1

A^m&
50.73, ~43!

K~m!531
1

^m&
53.53. ~44!

The exponential decay of chaotic field lines due to c
lisions with the tokamak wall may be considered in mo
detail. From the inset in Fig. 9 we see that this decay is
continuous, but rather is a process in which there are m
plateaus with different lengths. In Fig. 12, we show a dis
bution of the time intervals between successive losses
field lines, which is a normalized frequency histogram of t
plateau lengths.F(Dn) denotes the relative number of pla
teaus with lengthDn. For a given EML current we have fa
more small plateaus~in which field line loss occurs after
few toroidal excursions! than long plateaus.

This probability distribution is well fitted by an exponen
tial function

F~Dn!5ke2kDn, ~45!

from which we can compute averages, as for the plat
length

^Dn&5E
0

`

d~Dn!F~Dn!Dn5
1

k
, ~46!

assuming proper normalization forF(Dn). From the data
shown in Fig. 12, we obtain an average plateau length
^Dn&'1.11, so thatk'0.90. On the other hand, comparin
this exponential fit with the Poisson distribution~42! we
have thatk5a50.95. The agreement between these t
estimated values ofk is a further evidence that the field lin
loss is a process described by a Poisson statistics.

One remark should be made here. If we observe fo
long time the number of field lines that remain in the chao

FIG. 12. Frequency histogram for the plateau lengths in the field line de
produced by a (5,1) limiter, withl50.54 andI h /I p50.045. The solid line
corresponds to Eq.~45!.
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region, the decay ratea will change as the numerical exper
ment goes on. As a consequence, the number of field l
that hit the wall, over an observation intervalT, does not
strictly obey a Poisson distribution law. However, if we d
vide the total observation period intoN shorter intervals, in
each of them the Poisson statistics may still hold. The co
sponding decay ratesa i , i 51,2, . . .N, will generally be
different, but being Poissonian the overall collision rate w
be the sum of the individual rates:a5a11a21•••aN .

V. CONCLUSIONS

The ergodic magnetic limiter~EML! is designed to pro-
vide a cold boundary layer of chaotic magnetic field lines
the periphery of the tokamak plasma column. In practice t
means a region of predominantly chaotic field lines wh
comprises both the plasma edge and the vacuum scrap
layer that embraces it. The presence of this chaotic regio
achieved by creating adjacent chains of magnetic islan
each of them with their own local chaotic region surroundi
the separatrices. These local regions may coalesce and
a large-scale chaotic region through which field lines diffu
If the chaotic region is large enough, they may collide w
the tokamak inner wall and are eventually lost.

The study of field line transport in such chaotic regio
and their loss due to collisions with the wall depends
long-term integration of magnetic field line equation. A
analytically obtained mapping is a convenient tool to analy
field line behavior for a large number of turns. Using a co
venient coordinate system~polar toroidal!, we derive a map
whose coordinate surfaces are good candidates for equ
rium flux surfaces, in the sense that they present a Shafra
shift. Another feature of our model is the use of an equil
rium field that results from an approximate analytical so
tion of the Grad–Schlu¨ter–Shafranov equation, and b
adopting a current density model that yields a parabo
safety factor profile.

The EML design that we consider embodies a param
l introduced to make the distribution of external conduct
match the actual field line paths. The magnetic field of su
a configuration is obtained by using the same geometry
for the equilibrium field. The use of a nonzerol enhances
the resonant effect of the EML. For example, a (5/1) EM
with lÞ0 and a MHD equilibrium withq'5.0 at the plasma
edge give a sizable chaotic region centered at the pla
edge, and reaching the inner wall.

Our results show that there are two transport regimes
the chaotic region at the edge. Initially, a superdiffusive
gime appears as a result of a positive Lyapunov expon
leading to stretching and subsequent folding of bunches
field lines. After a few iterations, the existence of isla
chains causes a trapping effect, limiting field line excursio
and leading to a subdiffusive regime. A similar investigati
for the diffusivity of field lines in a tokamak with ergodi
divertor, in a cylindrical geometry, has shown a subdiffus
regime only.37 In this paper we consider another kind
resonant perturbation, and the mapping is obtained for a
roidal geometry.

y
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The field line loss is described by an exponential-ty
decay. This decay, however, if viewed in detail is not co
tinuous, but rather occurs in plateaus, whose lengths w
found to obey a Poisson statistics. Moreover, the half-life
a diffusing field line depends on the limiter current in
power-law fashion.
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APPENDIX: EXPLICIT FORM OF THE FIELD LINE
MAP FUNCTIONS

In this appendix we outline the explicit form of the fun
tions f and g that appear in the field line map. The Ham
tonian characterizing the EML field may be Fourie
expanded in the action-angle variables of the unpertur
problem as

H1~J,q,t !5 (
m850

2m0

Hm8~r t~J!!ei [m8u t(J,q)2n0t] , ~A1!

with coefficients given by

Hm8~r t!52Jm82m0
~m0l!S r t

bt
D m8

. ~A2!

It is convenient to rewrite~A1! in the form

H1~J,q,t !5 (
n50

2m0

Hn* ~J! ei (nq2n0t), ~A3!

where the coefficients are

Hm* ~J!5 (
m850

2m0

Hm8~r t~J!!Sm,m8~J!, ~A4!

where

Sm,m8~J!5~21!mS c1~J!

c2~J! D
m1m8

(
n50

m

~21!nan~m,m8!

3S c1~J!

c2~J! D
22n

, ~A5!

with

c1~J!512
1

V~r t~J!!
, ~A6!
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c2~J!511
1

V~r t~J!!
, ~A7!

an~m,m8!

55
1 if m50 and n50

m8 if m51 and n50 or n511

m8
~m1m82n21!!

~m2n!! ~m82n!!n!
if m.1 and n<m8

0 if m.1 and n.m8.

~A8!
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