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Figure 10.31 Diagram of the leaky faucet apparatus. Alligood et al.

A carburetor valve is used to keep the main reservoir filled to a constant level,
which holds the pressure at the needle valve constant. Drops are recorded when

they break the laser beam which falls on the photodiode.



Rota para o Caos (Duplicacao de Periodo)
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Figure 10.32 Scatter plots of successive interdrip intervals.

Pairs of form (T, T,+1) are plotted. (a) Period-one. (b) Period-two. (c) Period-four.

(d) Chaos.
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Chaos
Alligood et al.



Diagrama de Bifurcacao (Com Rotas para o Caos)
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Figure 10.33 A bifurcation diagram for the leaky faucet.
Each vertical slice is 1024 dots corresponding to interdrip intervals. A period-three

window (13), an interior crisis (1), and a boundary crisis (B) are identified. Chaos
Alligood et al.



Mudanca de Atrator
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Figure 10.34 Scatter plots of successive time-interval pairs near the interior
crisis.
Chaos (a) Complicated dynamics before the crisis parameter value | is followed by simpler

Alligood etal. dynamics in (b) and (c) as the flow rate is slowly increased.



Atrator cadtico
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Figure 10.35 Scatter plots near a boundary crisis.
(a) Complicated dynamics before the transition yields to periodic behavior as the

basin boundary of the original attractor is destroyed in (b) and a periodic attractor
results in (c).

Chaos
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Transicao caos— periodico
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Figure 10.36 Transition from chaotic to periodic pattern.
A motion picture recorded at 30 frames per second shows the change from chaotic
(first five frames) to period-five (last five frames) behavior.

Chaos
Alligood et al.
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Homoclinic tangency and chaotic attractor disappearance in a dripping faucet experiment
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FIG. 1. Bifurcation diagram obtained by letting the water level
of a 501 reservoirs decrease naturally with the dripping. The time
series {7, 1s 100000 drops long, but we plotted just one point
every four to let the figure clear.
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FIG. 2. (a) First retumn map of the transient subsenies B44. (b)
Enlarged view of the square region above. The saddle point S1 at
(—29 ms, —29 ms) 1s represented by a star. The gray (black) lines
are pictonal representations of the local unstable (stable) manifolds.
The saddle point and 1ts manifolds were inferred following the or-
bits represented by the smaller black arrows.
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FIG. 7. (Color). Evolution to a blue sky catastrophe by following the first return maps as a function of the faucet closing. All graphs are
the same scale, except the last one. The red star represents the saddle point S1, the blue (green) lines are pictorial representations of the
stable (stable) manifolds suggested by the orbits and the dynamical evolution. (a) a stable focus. (b) a torus in the Hopf region and the
ginning of the representation of the folds due to the torus enlargement that pushes the unstable manifold toward the stable one. (c) a
Hénon-like attractor generated by the tangency of the torus with the unstable manifold. (d) the first attractor m the chaotic 1 region and
\. the last chaotic 1 attractor where the manifolds are close to the tangency. In (f), with the off-tangency of the manifolds the orbits migrate
the new chaotic 2 region, characterizing a chaotic blue sky catastrophe.
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Interior crises in a dripping faucet experiment
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Duas Crises Interiores

a) antes da primeira crise

b) c) entre primeira e segunda crise |

d) apos segunda crise
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FIG. 1. First return maps T, 4+ vs T, representing three identi-
fied groups of attractors. (a) belongs to the group before the first
mterior crisis, (b) and (c¢) belong to the group between the first and
the second interior crises, and (d) belongs to the group after the
second crisis. The numbers in parenthesis are the dripping rates.



Sucessao de Regimes
Crises Interiores
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FIG. 2. Dripping rate as a function of file number (faucet open-
ing). The sudden changes in the dripping rate (C; and C;) corre-
spond to the first and second interior crises.



Il — Evidéncia Experimental de Crise

Conveccao de Rayleigh-Bénard



is the temperaturé difference between the bottom and top plates). The natural
control parameter is the Rayleigh number defined as:
_ agATh?

R ,
KV

where a is the expansion coefficient and g the acceleration of gravity. The thermal
diffusivity K and the kinematic viscosity v parameterize the stabilizing dissipative
processes. The last parameter that shows up in these dimensionless equations is
the Prandtl number P = v /k that controls the nature, either mostly thermal or



We employ the Boussinesq approxrimation: density perturbations affect only
the gravitational force.

The momentum equation is therefore the Navier-Stokes equation augmented
by the buoyancy force:
o, = l = 2.
— 4+ U -Vi=——Vp+ vV - ga(T — Tp)
ot 20

Here we have written the kinematic viscosity

v =1/py

The mass conservation equation is again

—

V.-u=0.

We now additionally require an equation for the convection and diffusion of

heat: 3T
=+ (@ V)T = DrVT.



9.5 Rayleigh-Bénard convection

In a thermally expansive fluid, hot fluid rises.

R-B convection concerns the study of the instabilities caused by rising hot
fluid and falling cold fluid.

Typically,, fluid is confined between two horizontal, heat-conducting plates:

iy
T-T, (cold) el
N T pure
g \L d fluid conduction
I=T, + 0T (hot) T=T0j oT
temperature

In the absence of convection—the transport of hot fluid up and cold fluid
down—the temperature gradient is constant.



Two cases of interest:

e 01" small: no convective motion, due to stabilizing effects of viscous
friction.

e 01 large: convective motion occurs.

The buoyancy force is resisted by viscous friction between the two blobs
separated by ~ d.



Consider a small displacement of a cold blob downwards and a hot blob
upwards:

I=T,+ 8T

Left undisturbed, buoyancy forces would allow the hot blob to continue rising
and cold blob to continue falling.

There are however damping (dissipation) mechanisms:

e diffusion of heat

e viscous friction



For Ra < Ra,, there is no convection.

For Ra > Ra., but not too large, a regular structure of convection “rolls”
forms, with hot fluid rising and cold fluid falling:

COCO0 -

Now imagine placing a probe that measures the vertical component v of
velocity, somewhere in the box midway between the top and bottom. A plot
of v(Ra) looks like



vy v
convection (stable)
0 conduction [ C Q’ZO_] uction _ Ra
rest ; (unstable)
Ra, -

Such a plot is called a bifurcation diagram. Here the stable states are bold
and the unstable states are dashed.

Note that we cannot know in advance whether the velocity will be up or
down. This is called symmetry breaking.
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Esquema do dispositivo para estudo da convecgao de
Rayleigh-Bénard. 1 — Cavidade do fluido, 2 — pegas de
“plexiglass” que definem a cavidade, 3 - tubo para in-
troducao do fluido, 4 — placas de cobre, 5 — tubos para
dgua (banho termostatico).



Numerical Solutions



Equacdo de Navier-Stokes

dT

= kV°'T
dt

Equacao da continuidade

Equacao de Conduc¢ao do Calor



Equacoes de Lorenz

1 (X -1
_=_O _

dt

adY
—=yX-=-Y-XZ
dt

VA

= XY-bZ

dt



X ¢ proporcional a intensidade da convecc¢ao. X=0 implica que
nao ha movimento convectivo, ou seja, o calor ¢ transportado
apenas por conducao. X>0 implica circulagdao horaria e X<0
circulacao anti-horaria.

Y ¢ proporcional a diferenga de temperatura entre as correntes
de fluido ascendente e descendente.

Z ¢ proporcional a distor¢ao do perfil de temperatura vertical,
relativamente a um perfil linear. Para Z=0, a temperatura
decresce linearmente.
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Rota para o Caos
Intermiténcia
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Analise Espectral
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Intermiténcia no Sistema de Lorenz
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Intermiténcia no Sistema de Lorenz
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Intermiténcia no Sistema de Lorenz
Transicao irregular entre o regime laminar e o trubulento
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Preturbulence: A Regime
Observed in a Fluid Flow Model of Lorenz*
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Variacao de Parametro de Controle

*\arias rotas para o caos.
Uma rota: caos precedido de orbita homoclinica.

*Qutra rota: atrator cadtico precedido de intermiténcia.

Intermiténcia = preé-turbuléncia

Estudo da origem da turbuléncia



Sistema de Lorenz

X =-0X + Oy

y - Xy +1rX-Yy

Z=Xy-bz

Variaveis:x,y,z — espa¢o de fase tridimensional

Parametros de controle: o, r, b



Atratores do Sistema de Lorenz

r Attractor

[—2c, 1.00] (0,0, 0) is an attracting equilibrium
[1.00,13.93] C4 and C_ are attracting equilibria; the origin is unstable
[13.93,24.06] Transient chaos: There are chaotic orbits
but no chaotic attractors
[24.06, 24.74] A chaotic attractor coexists
with attracting equilibria C4 and C—
[24.74, ] Chaos: Chaotic attractor exists but C4 and C_

are no longer attracting

Table 9.1 Attractors for the Lorenz system (9.1).
For ¢ = 10, b = 8/3, a wide range of phenomena occur as r is varied.

Chaos
Alligood et al.




Pontos fixos :
O=(x,vy, 2z =1(00,0)

C=(4/b(r-1), Jb(r-1), r-1)
C'=(-4b(r-1), -4b(r-1), r-1)

b=8/3 o=10 r>0

Estabilidade do ponto O ¢ determinada pelosauto - valores A da matriz jacobiana
[ -0-A O 0
r -1-A 0 =0
0 0 -b-A

Ponto O estavel no intervalo O<r<l, pois A, <0

A >0 = variedade instavel unidimensional

r>1 = Ponto O instavel : Ly :
{)\2,3< 0 = variedade estavel bidimensional

r,>r>1 = Pontos C e C estaveis, A, , ; reais



r,>1>1

C e C' atratores

Bacias atracdo separadas pela variedade bidimensional estavel do ponto O

I, >1r>T,
A, , complexos, Reh, , <0

C e C' atratores

r=r, =13.93 = Orbitas homoclinicas

r >r1, =13.93 = caos transiente e caos |

(1 < 24.06 = transiente caotico

r > 24.06 = atrator caotico

(coexiste com atratores C e C’

r>24.74 = C ¢ C' pontos de sela

(atrator cadtico persiste)



Origem do Atrator
Cadtico de Lorenz

©)
a) O ponto fixo estavel
b) O instavel; C, C" estaveis
c) Oinstavel, C, C estaveis
d) Idem
e) Orbita homoclinica
f) Atrator caotico

Stable manifold

(b) of O
Ts>F > 1
(d) 24\
CRE2N
Fo DT >T,
03] Z
o
- X
F>Fo Chaos



Intermiténcia do Tipo 3

20. M. Dubois, M.A. Rubio, P. Bergé, “Experimental evidence of intermittencies as-
sociated with a subharmonic bifurcation,” Phys. Rev. Lett. 51 (1983) 1446-1449.

21. Y. Pomeau, P. Manneville, “Intermittent transition to turbulence in dissipative
dynamical systems,” Commun. Math. Phys. 74 (1980) 189-197.



We report here the first observation, in a hy-
drodynamical system,’ of the so-called type-III
intermittencies in the Pomeau-Manneville classi-
fication; these intermittencies arise in the proc-
ess of destabilization of a limit cycle, and appear
simultaneously with a period-doubling bifurcation.
The turbulent bursts which appear are associated
with an increase in the amplitude of the subhar-
monic mode.

When the Rayleigh number is increased, we ob-

serve, as in other cases,” a sequence of different
structures, each of them with its specific oscil-

lators and its route to turbulence. Among these
routes, we have observed the following sequence.



The onset of intermittencies corresponds to the
appearance of a new unstable direction in the
phase space, which, at least, is three dimension-
al. To point out the dynamical properties, it is
useful to look at Poincaré return maps, which
are best adapted to the actual experimental situa-
tion and also constitute the framework of the the-
oretical model.? In a general form, these inter-
mittencies can be described by the following
relation:

I.,==(1+e), +AI?+BI3
+higher-order terms. (1)

A and B are constants; € is the parameter of the
bifurcation,; the I, values are the successive max-
imum values of the relevant physical signal. In



imum values of the relevant physical signal. In
order to discuss the stability of the subharmon-
ic state, we have to apply twice the recurrent

transformation, giving the following relation by

keeping the most significant orders:
I,.,.=(1+2€), +al,”+0bl>° (2)

(@ and b are constants). From the experimental



(@ and b are constants). From the experimental
data (time dependence as shown in Fig. 1), we

get the I, values as the successive maxima of the
light intensity modulations seen by a photodiode.
Then the return maps I,,.,=f(,) are constructed.
One example is given in Fig. 2: The crosses rep-
resent the (decreasing) amplitudes of the “funda-
mental” mode (odd »), and the squares, the (in-
creasing) amplitudes of the “subharmonic” mode
(even n), as the time evolves apart from the ghost

of the fixed point (monoperiodic regime). The
full curve represents the best fit by the theoreti-
cal relation (2) and has been obtained by a least-
squares adjustment procedure. It yields € =0.098.
€ is expected to be proportional to the experimen-
tal control parameter €; = (Ng;~Ng, 1)/Nga ; N, s
is the Rayleigh number which corresponds to the
threshold of the intermittent behavior).
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FIG. 3. Number of laminar periods with length
greater than T,. Np,~ 420. The best fit, with the rela-
tion (4), gives € = 0.095+ 0.003, in agreement with the
value found from the return map (Fig. 2).



Secondary instabilities are just a step towards more complex behavior as R
is increased. Different scenarios have indeed been observed, depending on the
value of P. Beyond the primary instability leading to the formation of time-
independent two-dimensional® rolls, time dependence was observed to introduce
itself first and at relatively low R when P is small, but only after secondary
instabilities adding space dependence along the rolls (three-dimensional time
independent states) at large P at higher R. A compilation of early experimental
results, adapted from Krishnamurti [14], is displayed in Fig. 6.

In all cases the regime called ‘turbulent convection’ was reached after a finite
number of steps. At first sight this fact seemed to support the revision by Ruelle
and Takens [15] of the classical Landau theory of transition to turbulence [16]:
three or four bifurcations before unpredictable behavior instead of n-periodicity
resulting from an infinite cascade of Hopf bifurcations. However the situation
was not as satisfactory as one would have liked because the thresholds of the
observed transitions were not always well defined and a residual, more or less
random, component of the time dependence was most often recorded before it
was decided to consider the system as turbulent. This was due to the fact that



In fact, RB convection has concentrated a large part of the efforts in the
study of nontrivial features of nonlinear dynamics as applied to physical prob-
lems, namely chaos, transition scenarios, strange attractors, and the empirical
reconstruction of experimental nonlinear dynamics. The main routes to chaos
predicted by theory have been observed, the sub-harmonic cascade [18], the two-
periodic route and its frequency lockings [19], several types of intermittency, and
even less generic situations such as quasi-periodic regimes with four or five fre-
quencies. It turns out that, while one is unable to predict which scenario will
take place in a given situation, when the system is engaged in a given well-
identified route, it strictly follows that route in its most intricate mathematical
properties until unavoidable experimental limitations enter to blur the details.



Here is shown the example of t}f-pe III intermittency [20], the intermittency that
develops beyvond a sub-critical sub-harmonic bifurcation. This scenario can be
modeled by means of an iteration [21]:

Xn-}-l = _(1 + T‘)Xn - Xf?i

where X represents the amplitude of the departure from a limit cycle (cor-
responding to the fixed point of the iteration at X = 0) and r is a control
parameter (negative below threshold, positive above). This local map has to be
completed by a global assumption about the nature of manifold on which this
reduced dynamics takes place and regarding the return of escaping iterates in the
vicinity of the fixed point. Type III intermittency was observed by Dubois et al
20} in convection using silicone oil (large P). A typical time series is displayed
in Fig. 7 (top). Displayed on the bottom line of that figure, the return maps of
the maxima I, of some observable plotted every two determinations, i.e. I, o as
a function of I,; and the statistics of the durations of closely periodic sequences
before escape —the so-called laminar intermissions— both agree quantitatively
with corresponding theoretical predictions after appropriate empirical rescaling.



Rayleigh—Bénard convection

-' N(T =T,
l n+ 2 f 1

“a -
In . I,
Fig. 7. Type III intermittency in RB convection after Dubois et al [20]. Top: time
series of a velocity component measured at some point in the cell. Bottom-left: effective
iteration obtained by displaying maxima of that variables every two steps. Bottom-
right: cumulative distribution function of the duration of laminar intermissions.




Transicao Via Quase-Periodicidade



Recall that there are 3 generic ways in which a limit cycle on a Poincaré map
may become unstable: An eigenvalue A of the Floquet matrix (the Jacobian
of the map) crosses the unit circle at

e +1 (as in the example of intermittency above);
e —1 (as we saw in the introduction to period doubling); and

e A\=a+:08, |\l > 1. This corresponds to the transition via quasiperiod-
1city.



As we have seen, the latter case results in the addition of a second oscillation.

This is a Hopf bifurcation: the transformation of a limit cycle to a quasiperi-
odic flow, or a torus T72.

The route to chaos via quasiperiodicity describes how a torus T? (i.e., a
quasiperiodic flow) can become a strange attractor.



lll — Fluido em Rotacao

Agua entre dois cilindros.

Cilindro interno em rotacao. Cilindro externo em
repouso.

Transicao para turbuléncia.

Parametro de controle: velocidade de rotacao do
cilindro interno.



VOLUME 35, NUMBER 14 PHYSICAL REVIEW LETTERS 6 OcTOBER 1975
Onset of Turbulence in a Rotating Fluid*

J. P. Gollubf} and Harry L. Swinney

Physics Depavitment, City College of the City Univevsity of New Yovk, New York, New Yovk 10031
(Received 17 July 1975)

Light-scattering measurements of the time-dependent local radial velocity in a rotating
fluid reveal three distinet transitions as the Reynolds number is increased, each of which
adds a new frequency to the velocity spectrum, At a higher, sharply defined Reynolds
number all discrete spectral peaks suddenly disappear. Our observations disagree with

the Landau picture of the onset of turbulence, but are perhaps consistent with proposals
of Ruelle and Takens,

relation functions). Specifically, we have studied
the radial velocity in a fluid rotating between con-
centric cylinders, The observed behavior clearly
contradicts the Landau model of the onset of tur-

bulence.



In our experiments the fluid (water) was con-
fined between an inner rotating stainless-steel
cylinder of radius »,=2.224 cm and a stationary
precision-bore glass tube of inner radius 7,
=2,540 cm. The gap d was uniform to within 1%
over its entire length, The fluid height in the cell

The local radial velocity V, was observed by an
optical heterodyne technique using an optical ar-
rangement described elsewhere.? The scattering

The local radial velocity V, was observed by an
optical heterodyne technique using an optical ar-
rangement described elsewhere.? The scattering
volume was located at the center of the gap be-
tween the cylinders, and its largest dimension
was 150 pum, about 0.05 of the gap., Thus the ob-
servations are essentially local measurements,
and no significant spatial averaging is involved.
The time-dependent frequency of the photocurrent
measured for 1024 adjacent sampling intervals of
5x107* to 5x107! sec,

In the discussion to follow the rotation rate is
expressed in terms of a reduced Reynolds num-
ber R*=R/R;, where R=2nr,d/vT (v is the kine-
matic viscosity) and R, =2501 is the value of R at
the onset of aperiodic motion,



We now describe the sequence of transitions
which are observed reversibly as R is varied,
The first instability (the Taylor instability) oc-
curs at R*=0,051, and results in a time-indepen-
dent toroidal roll pattern that has been extensive-
ly studied.*® The radial velocity is periodic in
the axial coordinate z, with wavelength 0.79 cm.

The first transition to a periodic state occurs
at R*=0,064, where transverse waves (with four
wavelengths around the annulus) are superim-
posed on the toroidal vortices.” These waves,
which have been previously observed visually,*
manifest themselves as an oscillation at a fre-
quency f, in our measurements, as shown in Fig,
1(a) for R*=0.504, The frequency f, scales with

When R* is increased to 0.54+0.01, a second
time-dependent instability occurs, and a new fre-
quency f, is visible as a low-frequency modula-
tion of the radial velocity [Fig. 1(b)]. The corre-

90% of the power, remain sharp. A new frequen-
cy f, (and its harmonics) appears at R*=0.78
+0,03, and this is also visible in Fig. 1(c). Note
that f; appears only after f, has disappeared.



Oscilacdes na Agua entre Dois Cilindros

FIGURE 1. Patterns formed in water contained between concentric cylinders with the inner cvlinder rotating:  a steady pattern of stacked
donut-shaped rolls. b waves on the rolls. ¢ chaotic flow. The patterns are made visible by adding a small amount of flat flakes (often ground up
tish scales) that align wath the flow
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FIG. 1. Time dependence of the radial velocity and corresponding power spectra P(f) [with units em? sec™? Hz"!,
normalized so that [,**H2P(f) df = ((a;)?)] for different reduced Reynolds numbers R*=R/R p.



Modos Observados
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FIG. 2. The dimensionless frequencies f;*=f,T as a
function of R*, The solid lines are to guide the eye,
and the vertical bars demarcate the regions in which
the f; are present (except that the lower bound for f,
is R*=0.064). The fact that f*=1.30 and f;*=0,87
are constant indicates that f, and f, scale with rota-
tion rate, whereas f, does not.






V — Reacao Quimica

Aspectos dinamicos descritos por um mapa unidimensional
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Figure 3.17 A schematic diagram of the chemical reactor used for the BZ
reaction.
The volume of the cylindrically symmetric chamber is 33 cc.



Tipos de Oscilagoes
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FIGURE 2. Measurements of the (d )

time dependence of the concen-
tration of one of the chemical
specics produced by a chemical
reaction: a, periodic oscillations,
b, oscillations with double the
original period. ¢, oscillations

with four times the original peri u
od. d, chaotic oscillations. The
dots above the periodic wave
torms are scparated by one period
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FIGURE 3. Abstract portraits of the behavior of a chemical reaction: g, periodic oscillations b, chaotic oscillations
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Figure 3.18 Periodic oscillations of the bromide concentration.
The horizontal axis is time, and the concentration is graphed vertically. Dots are
shown to mark the period of the oscillation.
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Figure 3.20 One-dimensional map reconstructed from the time series.

Figure 3.19 Reconstruction of dynamics from the bromide time series. /A spline fit was made to the data points from Poincaré map of Figure 3.19.

The three coordinates are the concentrations at three equally spaced time intervals.
The Poincaré section, shown as a plane, intersects the data essentially in a curve,
which allows a reduction to the one-dimensional map of Figure 3.20.



