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A B S T R A C T

Epidemics result in loss of human lives and have a significative socioeconomic impact. In this context,
epidemiological models play a crucial role in prevention and control of spread diseases. The main goal of
the present work is to analyze the dispersal of an illness in a complex network of coupled sites as a function
of the model parameters. Our results indicate that non-local connections lead to a quicker epidemic spread,
while lower interaction between sites contributes to a slower spread. Parameters such as infection rate and
initial susceptible individuals influence the epidemic dispersion, while the recovery rate and initial infected
individuals at the reference site have limited impact on the disease evolution in the network.
1. Introduction

Throughout the history of humanity, various epidemics and pan-
demics, such as Yellow Fever, Bubonic Plague, Influenza, COVID-19,
affected populations in many ways [1–4]. Some of these diseases prop-
agate from individual to individual, whereas others are transmitted by
infecting agents [5]. Disease propagation can occur by direct or indirect
contact, inhalation of contaminated air, ingestion of contaminated
water or food, as well as vertically transmitted diseases (from mother
to child through placentae) [6].

Epidemic outbreaks are related to many determining and condi-
tioning factors such as ecological, economic, climate, and social be-
havior [7–10]. Understanding such widely different factors is essential
to avoid or control the propagation of diseases [11]. Mathematical
models to describe epidemic propagation are valuable tools to perform
these tasks, allowing the development of more efficient methods for
coping with such challenges to public health and designing adequate
policies [12]. Epidemic models have been considered in the study of
several diseases, such as malaria, dengue, Influenza, HIV, COVID-19,
among others [6,13–20].

As we know, the world is becoming increasingly interconnected,
with long-distance travel allowing people to move from one place to
another with notable ease. These connections, i.e. mobility, play a
key role in the disease spread, as exemplified by the rapid spread of
COVID-19. However, it is important to note that classical epidemio-
logical models do not include mobility among different regions [21].
Therefore, it is essential to adapt these models by integrating a network
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structure, as such structures have become indispensable for the analysis
of systems in social, physical, and biological contexts. Research includes
the development of mathematical models to address heterogeneities
within contact networks and infection dynamics, evaluating control
strategies like screening and contact tracing [22].

Dynamic bipartite graphs were used to illustrate how individu-
als move between specific locations, shaping contact patterns [23].
Modeling network contacts helped understand the variability in Se-
vere Acute Respiratory Syndrome (SARS) outbreaks and assess the
effectiveness of public health measures [24]. A probabilistic model
that combines stochastic local infection dynamics with global network
transport, including civil aviation traffic, was employed to forecast
the geographical spread of epidemics [25]. One study about how the
diseases adapt to changing transmission routes between infected and
susceptible is present in Ref. [26]. A Susceptible–Infected–Removed
(SIR) model in different type of networks were studied in Ref. [27]. The
authors considered variable and correlated infectivity and transmission
probabilities, their results were validated through numerical simula-
tions. Moreover, equally important research on disease spread within
networks can be see in Refs. [28–44] and references therein. Moreover,
given the nature of such travel, which extends beyond geographically
proximate areas, models that depending solely on local couplings are
insufficient for a realistic understanding of disease propagation, a re-
markable way to modeling these connections is by considering complex
networks [35].
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In this work, we analyze the propagation of a disease in a network of
coupled sites as a function of parameters related to the network model.
In order to reach this aim, we introduce a complex network with a
given number of occupied sites. The links in the network represent the
interactions among individuals assigned to compartments with labels,
for instance S, I or R (susceptible, infectious or recovered). The local
dynamics at each site is governed by the SIR model and the coupling
between sites is described by an adjacency matrix. The connection
topology used is a small-world network type Newman-Watts [45–47].
This network topology is adequate to describe social dynamics, such
as disease spread [48,49], because it promotes communication and
interaction among diverse communities (non-local connections among
the sites), offering valuable insights into comprehending intricate in-
teractions and flows within real-world systems. It essentially aids in
grasping the global-scale impact of local decisions and behaviors and
how non-local events influence local communities.

We characterize quantitatively the propagation of the disease along
the network by an average advance time computed from the times at
which each site reaches a maximum number of infected individuals.
Another quantity numerically computed is the extinction time, which
measures how long it takes for a large fraction of the population to be
recovered from the disease. The network parameters to be considered
are the probability of non-local shortcuts, the coupling strength, and
the basic reproduction number.

In this paper, we show that Newman-Watts networks exhibit lower
extinction times for epidemics compared to regular networks. Fur-
thermore, the strength of coupling plays a fundamental role in the
epidemic’s spread, where higher levels of interaction lead to shorter
extinction times. When examining the infection rate and the initial
susceptible individuals, it becomes evident that these factors affect
the epidemic dispersion. In contrast, the recovery rate and the initial
infected individuals at the reference site have a relatively minor impact
on the progression of the disease.

The paper is organized as follows. In Section 2, we outline the
mathematical model for the complex network of sites, each of them
governed by the SIR equations. Section 3 contains the results of nu-
merical simulations, where we consider the effects of the coupling and
network parameters on the quantities mentioned, which are relevant
from the epidemiological point of view. The last Section is devoted to
our Conclusions.

2. Network model

The Susceptible–Infected–Recovered (SIR) model is a compartmen-
tal model widely used in mathematical modeling of infectious dis-
eases [6,14,15,18,50]. In this model, the host population (𝑁𝐻 ) is
divided into compartments namely 𝑆(𝑡), 𝐼(𝑡), and 𝑅(𝑡) which represents
the number of susceptible, infected, and removed individuals, respec-
tively. The number of individuals belonging to each class varies with
time, reflecting the dynamics of disease propagation.

When a susceptible individual meets an infectious individual, the
former may contract the disease and becomes infected. The contami-
nation rate 𝛽 describes the transition of individuals from susceptible
to infected. The removed individuals are either recovered from the
disease or deceased. The corresponding recovering rate is denoted by
𝛼, corresponding to those infectious individuals that recover from the
disease.

The differential equations governing the evolution of these variables
in the SIR model are
𝑑𝑆
𝑑𝑡

= −𝛽𝑆𝐼, (1)
𝑑𝐼
𝑑𝑡

= 𝛽𝑆𝐼 − 𝛼𝐼, (2)
𝑑𝑅
𝑑𝑡

= 𝛼𝐼. (3)

The evolution of the system starts with an initially small number
of infected individuals that contaminate susceptible individuals with
2

whom they establish contact, such that the number of infected indi-
viduals increases to a maximum. After that, it decreases as individuals
recover and enter into the removed category. Since the total population
𝑆 + 𝐼 + 𝑅 is constant, its rates satisfy

𝑆′(𝑡) + 𝐼 ′(𝑡) + 𝑅′(𝑡) = 0, (4)

for any time, where the notation 𝐹 ′(𝑡) indicates 𝑑𝐹∕𝑑𝑡.
The temporal evolution of the disease can be quantitatively de-

cribed by the so-called basic reproduction number, defined by

0 =
𝛽𝑆(0)
𝛼

, (5)

where 𝑆(0) is the initial number of susceptible individuals. The parame-
ter 𝑅0 indicates the average number of secondary infectious individuals
from a single individual introduced in a susceptible population [6,51].
If 𝑅0 > 1, there is a possibility of an epidemic outbreaks, since a single
infectious individual is enough to produce this effect. On the other
hand, if 𝑅0 < 1, the conditions are unfavorable to the propagation of
the disease.

The Eqs. (1)–(3) are strictly applicable only within an isolated envi-
ronment, where the total population remains constant [50]. However,
when considering a system composed of multiple communities con-
nected through transportation, the movement of individuals through
these transport channels becomes an important factor. Infected indi-
viduals can depart their community and travel to others, where they
may infect susceptible individuals. Likewise, susceptible individuals
can become infected by traveling to communities where the disease
has already spread. These matters have received significant attention
recently, particularly due to the rapid transmission of COVID-19 facil-
itated by extensive transportation between countries and continents.

The theoretical study of spatial propagation of epidemics can be
done in various ways, reflecting specific realities and scenarios of dis-
ease propagation. In a recent paper Mugnaine et al. have investigated
the spatial evolution of a disease using a SEIR model based on stochastic
cellular automata where the interaction of adjacent cells is represented
by a set of evolution rules [52].

Another approach is to use complex networks to describe the spatial
propagation of epidemics. In this theoretical framework, we consider
that individuals are mainly attached to spatially localized communities
that are linked by roads or other forms of transport, used by individuals
to go from one community to another. In principle, this model would
require a relatively simple network, where each site is connected only
to its closest neighbors. While this assumption holds true for purely
terrestrial transport, it is also possible to incorporate aerial or maritime
transportation, which can connect geographically distant sites. The lat-
ter aspect demands a non-local network structure, involving shortcuts
that connect nearest neighbors [32,41,43,53–64].

Non-local connections can be implemented in a complex network
using a connectivity matrix 𝐀 with elements 𝐴𝑖𝑗 = 1 if the sites 𝑖 and 𝑗
are connected by a link, and 0 otherwise. A further improvement would
be to include weights in the links that are proportional to the connec-
tion strength, however this possibility will not be explored in this work.
There is an extensive number of quantifiers to characterize the structure
of complex networks, but we are particularly interested in two of them:
the average path length 𝓁 and the clustering coefficient 𝐶. The former
is the average number of connections required to go from one site to
another. The clustering coefficient is defined as the probability that two
sites are connected given that they share a connection with a third one.

Regular networks, which present nearest neighbor connections only,
have relatively large values for both 𝓁 and 𝐶, since it takes many links
on average to go from one site to another. Moreover, the clustering is
large since we can draw an extensive number of triangles of neighbors.
On the other hand, random networks (type Erdös-Renyi) have links
randomly assigned to sites according to a given probability. For them,
both 𝓁 and 𝐶 are small.

In the present work, we use a complex network of the Newman-
Watts type, exhibiting the small-world property, i.e., the average path
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Fig. 1. Schematic representation of a Newman-Watts network with 𝑁 = 21 and 𝑝 = 0.3.

length between sites is relatively small, while retaining a considerable
amount of clustering [46,47,65–67]. In this type of small-world net-
work, we start from a regular lattice of 𝑁 sites with connections to
their nearest and next-to-the-nearest neighbors, and we attach a small
number of shortcuts chosen with probability 𝑝 [46,47]. The regular
part of the lattice is responsible for the relatively large clustering 𝐶 ≫
𝐶𝑟𝑎𝑛𝑑𝑜𝑚, whereas the shortcuts stand for the relatively small average
path length 𝓁 ∼ 𝓁𝑟𝑎𝑛𝑑𝑜𝑚. The corresponding connectivity matrix has
several diagonals filled with ones, parallel to the main diagonal filled
with zeros (since a site cannot connect with itself), and the shortcuts
are ones randomly scattered among the rest of the matrix.

We denote 𝑆𝑗 (𝑡), 𝐼𝑗 (𝑡), and 𝑅𝑗 (𝑡) the numbers of susceptible, infec-
tious, and removed individuals in a site 𝑗, where 𝑗 = 1, 2, 3,… , 𝑁 , at a
given time 𝑡. Since there is a continuous exchange of individuals among
sites, these values are expected to vary with time. We have chosen a
small-world network to couple the communities since it is reasonable
that most people commute by terrestrial means, whereas only a small
fraction of them use aerial transport. Fig. 1 shows a schematic of the
small-world network used in this work. We adopt periodic boundary
conditions in the regular part of the lattice.

In the network model, each site is considered as a population gov-
erned by the SIR model and the coupling is given by the connectivity
matrix, which describes the small-world architecture. To incorporate
interaction between these sites, we assume that a fraction of individuals
from each class has the ability to migrate to other locations in the
network. Based on these assumptions, our model is given by:

𝑑𝑆𝑗

𝑑𝑡
= −𝛽𝑆𝑗 𝐼𝑗 −𝐷

[

𝑆𝑗 − 𝐵𝑗

𝑁
∑

𝑖=1
𝐴𝑗𝑖 𝑆𝑖

]

, (6)

𝑑𝐼𝑗
𝑑𝑡

= 𝛽𝑆𝑗 𝐼𝑗 − 𝛼𝐼𝑗 −𝐷

[

𝐼𝑗 − 𝐵𝑗

𝑁
∑

𝑖=1
𝐴𝑗𝑖 𝐼𝑖

]

, (7)

𝑑𝑅𝑗

𝑑𝑡
= 𝛼𝐼𝑗 −𝐷

[

𝑅𝑗 − 𝐵𝑗

𝑁
∑

𝑖=1
𝐴𝑗𝑖 𝑅𝑖

]

, (8)

where 𝐷 characterize the coupling strength in day−1, 𝐵𝑗 is a normal-
ization parameter associated with each site, and 𝐴𝑖𝑗 is the connectivity
matrix. If 𝐴𝑗𝑖 = 1, then 𝑖 is connected with 𝑗, and 𝐴𝑗𝑖 = 0 otherwise.
In addition, 𝐴𝑖𝑗 = 0 if 𝑖 = 𝑗, i.e. self-connections are excluded. The
normalization parameter is given by

𝐵𝑗 =

( 𝑁
∑

𝐴𝑗𝑖

)−1

. (9)
3

𝑖

To understand the network model dynamics, consider Eq. (6) and
the susceptible individuals at site 501. From Eq. (6), it is valid to state
that some of the susceptibles at site 501 migrate to other sites, based
on a connectivity matrix that facilitates the interaction of individuals
from different communities. Simultaneously, susceptibles from other
sites migrate to site 501, influenced by the coupling intensity 𝐷. This
approach gives a network of interactions among different communities.
The same argument can be extended to Eqs. (7) and (8).

As a mentioned, the sum of the classes represents the host popula-
tion 𝑁𝐻 , for each site in the network. Thus, we can verify that the total
population of the network is given by
𝑁
∑

𝑗=1
(𝑆𝑗 + 𝐼𝑗 + 𝑅𝑗 ) = 𝑀, (10)

where 𝑀 stands for the total population of the network. Additionally,
we observe that their rates comply
𝑁
∑

𝑗=1
(𝑆′

𝑗 + 𝐼 ′𝑗 + 𝑅′
𝑗 ) = 𝛤 . (11)

Consequently, we can ascertain that

𝛤 = −𝐷
𝑁
∑

𝑗=1

[

𝑆𝑗 + 𝐼𝑗 + 𝑅𝑗 − 𝐵𝑗

𝑁
∑

𝑖=1
𝐴𝑗𝑖(𝑆𝑖 + 𝐼𝑖 + 𝑅𝑖)

]

= 0, (12)

indicating that the total population of the network remains constant
at all times. However, it is worth noting that this constraint limits the
equations model used, since the coupling intensity 𝐷, infection rate 𝛽,
and recovery rate 𝛼 would ideally vary among different network sites
to provide a more realistic scenario. Nevertheless, analyzing this model
with many variable parameters initially could make the assessment
of results challenging or even unfeasible. Consequently, we chose to
simplify the model to allow for the analysis of a larger number of
parameters in the initial stages.

The coupled system of Eqs. (6)–(8) is numerically solved by using a
fourth-order Runge–Kutta method. The code is implemented in Python
using the library solve-ivp [68]. The timestep is fixed in 0.01. The
numerical values of the parameters have been used as 𝛽 = 0.002342
day−1 and 𝛼 = 0.476 day−1, which were taken from a study related to
Influenza A [6]. We consider 𝑁 = 1001 sites, each of them initially
with 1000 susceptible individuals, except the site 𝑗 = 501, for which we
put a single infectious individual, with the remaining 999 susceptible
individuals.

3. Results

In order to analyze the dispersion of the disease along the complex
networks, we introduce two quantifiers. The first, denoted as advance-
ment rate, measures the velocity at which the illness spreads in the
network. Fig. 2 is an illustration of three different infected curves in
three different sites, namely, 𝑗 − 1, 𝑗, and 𝑗 + 1. The distance between
two sites is given by 𝛥𝑥 and the time interval in which each peak (𝐼max)
occurs is 𝛥𝑡. Note that, peak time is the time at which the infected
individuals curve reaches its maximum value, while the peak time
interval refers to the time between two maxima in different sites. In this
way, the advancement rate is 𝑇 = |𝛥𝑥|∕|𝛥𝑡|. We consider | ⋅ | to ensure
the positivity of 𝑇 . Consider, for example, the site 𝑗 −1 and the central
site 𝑗. In this case the distance is 𝛥𝑥 = (𝑗 − 1) − 𝑗, the time interval is
𝛥𝑡 = (𝑡𝑗−1)−𝑡𝑗 , and the advancement rate is 𝑇 = 1∕|(𝑡𝑗−1) − 𝑡𝑗 |. Similarly,
to the 𝑗 + 1 site we obtain 𝑇 = 1∕|(𝑡𝑗+1) − 𝑡𝑗 |.

Similarly to the previous procedure, we generalize 𝑇 for the whole
network. For this, we consider the reference site 𝑗 and its neighbors
represented as 𝑗+𝑛 and 𝑗−𝑛, where 𝑛 = 1, 2, 3,… , (𝑁−1)∕2 for a network
consisting of an odd number of 𝑁 sites. The reference site is the initial
node containing infected individuals. The distance 𝛥𝑥 is defined by
𝛥𝑥 = |(𝑗 ± 𝑛) − 𝑗|. The time interval (𝛥𝑡) represents the difference in
peak times between the sites 𝑗 ± 𝑛 and 𝑗. Consequently, we define the
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Fig. 2. Illustration of the time at which each site on the network reaches the infected curve peak.
Fig. 3. Illustration of the epidemic’s extinction time, where the dashed red lines
indicate how long it took for 95% of the population transition to the removed class.

peak times as follows: 𝑡𝑗 for site 𝑗; 𝑡(𝑗+𝑛) for site 𝑗 + 𝑛; and 𝑡(𝑗−𝑛) for site
𝑗 − 𝑛. Therefore, we express the advancement rate magnitude at which
the disease reaches site 𝑗 ± 𝑛 as:

𝑇(𝑗±𝑛) =
|(𝑗 ± 𝑛) − 𝑗|
|𝑡(𝑗±𝑛) − 𝑡𝑗 |

=
| ± 𝑛|

|𝑡(𝑗±𝑛) − 𝑡𝑗 |
. (13)

Intending to analyze the advancement across the complex network,
we choose to calculate its average by

𝑇𝑚 = 1
𝑛𝑡

𝑛𝑡
∑

𝑖=1
𝑇𝑖, (14)

where 𝑇𝑖 corresponds to the advancement rate of each site, while 𝑛𝑡
represents the number of sites affected by the epidemic, excluding the
reference site. The average is calculated after the disease has reached
all sites in the network, that is, obtain all the values of 𝑇𝑖, and then
we calculate the average of the rates. Throughout the article, we refer
to the rate defined by Eq. (14) as the average epidemic’s advancement
rate.

As is commonly understood, when an infectious disease spreads
within a population, it affects individuals who are susceptible to infec-
tion, and those who become infected and later recover are categorized
as removed individuals. Based on the number of recovered individuals,
in this study, we introduce a second quantifier to analyze, called the
epidemic’s extinction time.

In this research, we characterize the epidemic’s extinction time as
the moment at which the disease is considered extinct, signifying that
the majority of the population has already been recovered. To do this,
we define the moment when the disease is considered extinct as the
point at which 95% of the total population within the network has
transitioned into the removed category.

In Fig. 3, we illustrate how the number of removed individuals in
the network increases as infected individuals recover, allowing us to
estimate the epidemic’s extinction time for a population of 1001 sites,
each with 𝑁 = 1000 individuals.
4

𝐻

It is important to clarify that, from a mathematical perspective, this
does not necessarily mean that the disease has entirely vanished. In-
stead, it signifies the absence of an active outbreak, with only minimal
new infections occurring. In summary, the epidemic’s extinction time is
when the majority of infected individuals have successfully recovered,
leading to a significant reduction in the disease’s spread.

Moreover, for each set of parameters, we run the program 100 times
for 0 < 𝑝 ≤ 1, calculating the results as the average of these runs. This
approach was adopted due to the variation in the adjacency matrix with
each execution, resulting in more accurate and representative results.
In this way, to assess the variability of the outcomes, we establish error
bars based on the standard deviation calculated from an average of
100 samples. Additionally, we must emphasize that the curves’ captions
containing the coupling strength value 𝐷 have their units omitted,
which are day−1.

In Fig. 4, we observe a significant change in the epidemic’s ex-
tinction time when adding non-local connections, transitioning from a
regular network (𝑝 = 0.0) to a Newman-Watts type network (0 < 𝑝 ≤ 1).
The panel (a) exhibit the epidemic’s extinction time as function of
𝑝, including 𝑝 = 0.0, while the panel (b) display an amplification of
panel (a) considering 𝑝 > 0.0. Our results indicate that for high values
of 𝑝, the disease extinguished more rapidly, revealing a significant
impact of introducing non-local connections on the dynamics of disease
propagation.

Observing Fig. 5, which illustrates the average epidemic’s advance-
ment rate as a function of the probability 𝑝, we notice that the rate
increases as the values of 𝑝 become higher. What indicates that the
higher the probability of adding non-local connections, the greater the
average epidemic’s advancement rate. Furthermore, it is interesting to
note that the error associated with the numerical results remains similar
for most values of 𝑝, except when 𝑝 = 0.0. This difference in the error
for 𝑝 = 0.0 attributed to the absence of non-local connections, resulting
in homogeneity in the results.

In Fig. 6, we maintain the parameter 𝑝 fixed and varied the coupling
intensity 𝐷. This allow us to observe that the epidemic’s extinction time
reduced as the coupling intensity 𝐷 between network sites increased.
In other words, the more intense the coupling is, faster the epidemic
spreads throughout the network.

Fig. 7 shows that the average epidemic’s advancement rates are
lower when the interaction intensities 𝐷 between sites are lower. This
result complements the pattern observed in Fig. 6 and suggests that
reduced interaction intensities among sites not only lead to longer
extinction times but also contribute to slower disease spread within the
population.

The numerical results presented in Figs. 4–7 emphasize the impor-
tance of the quantity of non-local connections and the intensity of
coupling in the context of the epidemic. The probability of introducing
non-local connections 𝑝, plays a significant role in the mobility between
different geographical regions. A high value of 𝑝 implies a considerable
increase in population mobility, driven by factors such as migration,
and temporary or permanent relocations of individuals, among others.
This heightened mobility naturally intensifies the spread of the disease,
as the illness finds more opportunities to disseminate through inter-
actions among individuals. In such cases, people are more likely to
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Fig. 4. Time at which the epidemic extinguished from the network as a function of 𝑝 for (a) 𝑝 = 0.0 and (b) 𝑝 > 0.0. We consider 𝑁𝐻 = 1000, 𝛽 = 0.002342 day−1 and 𝛼 = 0.476
day−1.
Fig. 5. Average epidemic’s advancement rate as a function of 𝑝. We consider 𝑁𝐻 = 1000, 𝛽 = 0.002342 day−1 and 𝛼 = 0.476 day−1.
Fig. 6. Time at which the epidemic extinguished from the network as a function of coupling intensity 𝐷. We consider 𝑁𝐻 = 1000, 𝛽 = 0.002342 day−1 and 𝛼 = 0.476 day−1.
come into contact with disease carriers or locations where the disease
is already present.

On the other hand, a low value of 𝑝 indicates that regions are weakly
connected or that control measures have been implemented, such as
the closure of borders between cities or countries. Resulting in reduced
population mobility between different communities, which leads to a
slower spread of the epidemic. The reduction in mobility can contribute
5

to the control or even the extinction of the disease, as opportunities for
contact between infected and susceptible individuals are substantially
reduced. This is similar to scenarios in which containment measures are
highly effective, leading to a significantly lower transmission rate and
enabling more effective epidemic control.

Meanwhile, when the coupling intensity 𝐷 is high, the disease tends
to spread rapidly and extensively within the population. Aligning with
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Fig. 7. Average epidemic’s advancement rate as a function of coupling intensity 𝐷. We consider 𝑁𝐻 = 1000, 𝛽 = 0.002342 day−1 and 𝛼 = 0.476 day−1.
Fig. 8. Time at which the epidemic extinguished from the network as a function of basic reproduction number 𝑅0. We consider 𝑝 = 0.1 and 𝐷 = 10−4 day−1.
what we often observe in real-world, where the absence of control
measures such as social isolation and quarantine allows the disease to
propagate quickly. In these situations, the interaction among individ-
uals are not adequately controlled to contain transmission, resulting
in the disease spreading through close contacts, gatherings in crowded
places, or social events, which can overwhelm healthcare systems.

In contrast, for low values of 𝐷, the spread of the epidemic occurs at
a slower pace, increasing the probability of controlling or extinguishing
the disease. These measures occur in scenarios where highly effective
containment measures are implemented, leading to a significant reduc-
tion in the transmission rate. We must emphasize that not only does it
decrease the number of infected cases but also alleviates the strain on
healthcare resources, enabling a more efficient control of the epidemic.

Through these results, we observe that higher values of 𝑝 and
greater coupling intensities 𝐷 are associated with a higher spread of
the disease. This finding has significant implications for understanding
the impact of social connectivity and mobility on epidemic dynamics.
Moreover, it accentuates the importance of considering local and global
interactions in designing effective strategies for epidemic control and
prevention.

Now, to understand the impact of the infection rate 𝛽, recovery rate
𝛼, and the initial number of susceptible individuals in the network on
the spread of the disease, we employ the basic reproduction number,
denoted as 𝑅0 and defined in Eq. (5). To achieve this, we maintain
𝑝 and 𝐷 at constant values and vary each parameter contributing to
𝑅0. This methodology furnish us with a means to gain insights into the
epidemic’s dynamics and pinpoint the pivotal factors that significantly
shape its epidemiological outcomes.
6

Additionally, we investigate the influence of the initial quantity
of infected individuals at the reference site 𝑗 = 501, at 𝑡 = 0,
denoted as 𝐼501(0). Understanding how changes in this initial condition
affect disease spread further enrich our analysis and contribute to a
comprehensive understanding of the epidemic dynamics.

Fig. 8 illustrates the epidemic’s extinction time as a function of the
basic reproduction number 𝑅0, considering variations in the infection
rate 𝛽, the recovery rate 𝛼, and the initial number of susceptible indi-
viduals in the network 𝑆(0). Thus, we find that increasing the infection
rate 𝛽 leads to a decrease in the extinction time of the epidemic,
indicating an influence of 𝛽 on the necessary period for the epidemic
to be extinguished from the network. Similar results were obtained
when varying the number of susceptible individuals 𝑆(0). Furthermore,
when fixing 𝛽 and 𝑆(0) and varying only the recovery rate 𝛼, there
is no significant difference in the epidemic’s extinction time within
the analyzed range. This suggests that the recovery rate may not be
a critical factor in determining the epidemic’s duration under these
conditions.

In essence, the variation in 𝛼 does not significantly impact the
time that epidemic dissipates. This insight prompts us to consider that,
in certain instances, the rate at which individuals recover from the
infection may not be a pivotal determinant in shaping the temporal
dynamics of the epidemic. Instead, factors like transmission rate 𝛽,
the number of susceptible individuals 𝑆(0), and the broader network
structure might play more prominent roles in the disease’s dispersion.

The results presented in Fig. 9 support the previous discussions,
showing that the parameters 𝛽 and 𝑆(0) have a significant impact
on both the epidemic’s extinction time and the average epidemic’s



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 177 (2023) 114256V.H.A. Fávaro et al.
Fig. 9. Average epidemic’s advancement rate as a function of basic reproduction number 𝑅0. We consider 𝑝 = 0.1 and 𝐷 = 10−4 day−1.
Fig. 10. Time at which the epidemic extinguished from the network as a function of 𝐼501(0) for (a) 𝐷 = 10−4 day−1 and (b) 𝑝 = 0.1. We consider 𝑁𝐻 = 1000, 𝛽 = 0.002342 day−1

and 𝛼 = 0.476 day−1.
advancement rate. We also observe that the parameter 𝛼 has a less
influence compared with the other ones, as its variation is within the
range of fluctuations of the results.

In Fig. 10, we observe that the initial quantity of infected individ-
uals at the reference site 𝑗 = 501 does not have a relevant influence
on the epidemic’s extinction time. The initially presented result is
surprising and counter-intuitive, as we might expect that a higher initial
number of individuals infected at site 𝑗 = 501 at 𝑡 = 0 would lead to
more individuals being transmitted to the interconnected network sites,
resulting in a potentially shorter epidemic extinction time. However, an
alternative interpretation of this result reveals that the augmentation in
the number of infected individuals at the reference site has no impact
7

on the transmission dynamics, which is due to the overriding influence
of the parameters 𝛽 and 𝑆(0) in this process, as previously observed.

The findings presented in Fig. 11 serve as a complementary perspec-
tive to those illustrated in Fig. 10. Given that the epidemic’s extinction
time remained consistent, it follows that variations in the initial number
of infected individuals at the reference site 𝑗 = 501 should not alter the
average rate of epidemic progression, as evidenced.

The absence of an impact from the initial number of infected
individuals at the reference site on extinction time and the average rate
of epidemic progression suggests that other network characteristics,
holds a more significant influence on disease spread. Nevertheless, it
is essential to factor in the specific context and unique attributes of the
studied disease for a more precise interpretation.
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Fig. 11. Average epidemic’s advancement rate as a function of 𝐼501(0) for (a) 𝐷 = 10−4 day−1 and (b) 𝑝 = 0.1. We consider 𝑁𝐻 = 1000, 𝛽 = 0.002342 day−1 and 𝛼 = 0.476 day−1.
4. Conclusions

In this article, we study the disease spread in Newman-Watts net-
work where the shortcuts simulate the mobility. Our results show
that Newman-Watts network exhibit lower extinction times for epi-
demics compared to regular networks. Furthermore, we verified that
the average epidemic’s advancement rate increases with higher values
of shortcuts probability 𝑝. This occurs because as measured more
infected individuals transit in the network more individuals get the in-
fection [48,49,52]. Similarly, the epidemic’s extinction time decreases
as we introduce non-local connections. This results emphasizes the
intricate interplay of network topology and connectivity in influencing
the course of epidemics [34,35].

In relation to the influence of interaction intensity within the net-
work, we have found that an increase in the coupling intensity 𝐷
directly correlates with a decrease in the time to epidemic extinction.
Furthermore, as interaction intensities between sites decrease, the av-
erage epidemic’s advancement rate also reduces. These observations
collectively highlights the critical role of interaction intensity in the
epidemic dynamics within the network.

When considering the impact of parameters related to the equation,
we verified that increasing the infection rate 𝛽, led to a shorter ex-
tinction times. Similarly, when we increased the number of susceptible
individuals 𝑆(0) in the network, we observed higher values for the
average epidemic advancement rate. However, our findings related to
the recovery rate 𝛼 are counter-intuitive. We might expect that as 𝛼
increases, the extinction time decreases because the individuals are
sending to removed compartment faster. Nevertheless, this is not true
on the analyzed interval. The examined 𝛼 values suggest that lower
values have a lesser impact on the spread of the disease. We must
emphasize that the number of susceptible individuals in the network
changes as the value of 𝛼 varies after the epidemic. Specifically, a
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higher value of 𝛼, indicating that individuals recover more rapidly
from the disease, results in fewer infections within the network. Con-
sequently, this leads to a higher number of susceptible individuals at
the end of the epidemic. Thus, it is important to highlight that these
findings about the impact of 𝛼 on the disease dispersion are applicable
within the examined range of values.

The second counter-intuitive result is that the initial infected num-
ber in the central site does not play a crucial mechanism in the
disease spread. This occurs because the extinction time depends on the
transitions between sites. If we have a large amount of initial infected in
a certain site, only a given fraction will transit in the network, and it is
these transitions that determine the time to extinction. These findings
contribute to the advance of understanding the spread of diseases in
networks.

In summary, our results underscore the interplay of network struc-
ture, interaction intensity, and equation-related parameters in shaping
the dynamics of epidemic propagation. The complex interactions and
dependencies on epidemic dispersion observed in this study provide
essential insights for devising more informed strategies to contain and
mitigate epidemics within real-world networks.

Given we cannot observe the spatial movement of these individuals,
who are currently evenly distributed across the area, this uniform distri-
bution fails to capture the dynamics of real-world scenarios. As people
routinely migrate between geographic regions and engage in varying
levels of interaction, this mobility significantly influences the spread
of diseases [39–42,44]. To ensure the continuity of our research, we
propose introducing spatial heterogeneity in the network, considering
distinct values for the intensity of interactions 𝐷 among individuals
in specific network sites. This approach will allow for a more realistic
investigation of disease spread in different regions or locations within
the network, potentially revealing patterns that would not be evident
in a homogeneous approach.
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Since the role of individuals in disease progression remains un-
known, traditional compartmental models treat the population as a
monolithic entity, neglecting individual variations among classes. We
suggest considering the diverse characteristics of individuals at each
site, establishing different values for infection rates 𝛽 and recovery rates
𝛼 at selected sites. With this approach, it will be possible to assess
how disease spread would occur, taking into account the potential
individual responses to disease progression at each site, due to the
unique characteristics of each population.

Finally, it is essential to explore other epidemiological models to
better understand disease dissemination in a complex network. This can
be done by including a mortality rate for individuals or by defining a
period during which reinfection of a recovered individual is possible.
We believe that the continuation of this research will provide a new
perspective on the temporal evolution of diseases, enabling a more
accurate understanding of this dynamic in complex networks.

CRediT authorship contribution statement

Vitor H.A. Fávaro: Data curation, Formal analysis, Investigation,
Methodology, Validation, Visualization, Writing – original draft, Writ-
ing – review & editing. Enrique C. Gabrick: Formal analysis, Method-
ology, Validation, Writing – review & editing. Antonio M. Batista:
Formal analysis, Methodology, Validation, Writing – review & editing.
Iberê L. Caldas: Formal analysis, Methodology, Validation, Writing –
review & editing. Ricardo L. Viana: Conceptualization, Formal analy-
sis, Funding acquisition, Investigation, Methodology, Project adminis-
tration, Resources, Software, Supervision, Validation, Writing – review
& editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

The authors thank the financial support from the Brazilian Federal
Agencies (CNPq) under Grant Nos. 404120/2022-9, 403120/2021-7,
301019/2019-3; the São Paulo Research Foundation (FAPESP, Brazil)
under Grant Nos. 2022/04251-7, 2018/03211-6 and support from Co-
ordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES),
Brazil under Grants No. 88887.143103/2017-01. E.C.G. received par-
tial financial support from Coordenação de Aperfeiçoamento de Pessoal
de Nível Superior (CAPES), Brazil - Finance Code 88881.846051/2023-
01. We acknowledge useful discussions with Sabrina Borges Lino Araujo
(UFPR), and Jane Rosa (IFPR), as well as the computational support
from Carlos de Carvalho (UFPR).

References

[1] Chippaux JP, Chippaux A. J Venom Anim Toxins Including Trop Dis 2018;24.
[2] Glatter KA, Finkelman P. Amer J Med 2021;134:176–81.
[3] Dushoff J, et al. Proc Natl Acad Sci 2004;101(48):16915–6.
[4] Brugnago EL, et al. Chaos Solitons Fractals 2020;140:110164.
[5] Bhatt S, et al. Nature 2013;495(7446):504–7.
9

[6] Martcheva M. An introduction to mathematical epidemiology. 1st ed..
Gainesville: Springer; 2015.

[7] Abreu FVSd, et al. Parasites Vectors 2022;15(1):1–18.
[8] Qiu Y, Chen X, Shi W. J Popul Econom 2020;33:1127–72.
[9] Morin CW, Comrie AC, Ernst K. Environ Health Perspect 2013;121(11–12):1264–

72.
[10] Weiss RA, McMichael AJ. Nat Med 2004;10(Suppl 12):570–6.
[11] Dai J, et al. Processes 2020;9(1):55.
[12] Anderson RM, May RM. Infectious diseases of humans: dynamics and control.

Oxford University Press; 1991.
[13] Hoshen MB, Morse AP. Malaria J 2004;3:1–14.
[14] Esteva L, Vargas C. Math Biosci 1998;21, Elsevier.
[15] Kermack WO, McKendrick AG. Proc R Soc Lond Ser A 1927;155:700–21.
[16] Aguiar M, et al. J Theoret Biol 2011;289:181–96.
[17] Dalal N, Greenhalgh D, Mao X. J Math Anal Appl 2008;341(2):1084–101.
[18] Murray JD. Mathematical Biology: I. An Introduction. 3rd ed.. New York:

Springer; 2002.
[19] Cooper I, Mondal A, Antonopoulos CG. Chaos Solitons Fractals 2020;139:110057.
[20] Keeling MJ, Grenfell BT. Proc R Soc Lond 2002;269(1489):335–43.
[21] Batista AM, et al. Rev Bras Ensino de Física 2021;43:e20210171.
[22] Eames KTD, Keeling MJ. Proc Natl Acad Sci 2002;99(20):13330–5.
[23] Eubank S, et al. Nature 2004;429(6988):180–4.
[24] Meyers LA, et al. J Theoret Biol 2005;232(1):71–81.
[25] Hufnagel L, Brockmann D, Geisel T. Proc Natl Acad Sci 2004;101(42):15124–9.
[26] Read JM, Keeling MJ. Proc R Soc B 2003;270(1516):699–708.
[27] Newman MEJ. Phys Rev E 2002;66(1):016128.
[28] Ferguson NM, et al. Nature 2006;442(7101):448–52.
[29] Wallinga J, Edmunds WJ, Kretzschmar M. Trends Microbiol 1999;7(9):372–7.
[30] Liu J, Tang Y, Yang ZR. Trends Microbiol 2004;2004(08):P08008.
[31] Boccaletti S, et al. Phys Rep 2006;424(4–5):175–308.
[32] Keeling MJ, Eames KTD. J R Soc Interface 2005;2(4):295–307.
[33] Pastor-Satorras R, Vespignani A. Phys Rev Lett 2001;86(14):3200.
[34] Pastor-Satorras R, Vespignani A. Phys Rev E 2001;63(6):066117.
[35] Pastor-Satorras R, et al. Phys Rev E 2015;87(3):925–79.
[36] Colizza V, et al. PLoS Med 2007;4(1):e13.
[37] Tatem AJ, Rogers DJ, Hay SI. Adv Parasitol 2006;62:293–343.
[38] Belik V, Geisel T, Brockmann D. Phys Rev X 2011;1:5.
[39] Barmak DH, Dorso CO, Otero M. Physica A 2015;447:129–40.
[40] Findlater A, Bogoch II. Trends Parasitol 2018;34(9):772–83.
[41] Rüdiger S, et al. Sci Rep 2020;10(1):5919.
[42] Du B, et al. Int J Data Sci Anal 2021;12:369–82.
[43] Du M. Sci Rep 2021;11(1):20386.
[44] Ansari S, et al. Eur Phys J Spec Top 2021;230(16):3273–80.
[45] Watts DJ. Amer J Soc 1999;105(2):493–527.
[46] Newman MEJ. J Stat Phys 2000;101:819–41.
[47] Newman MEJ. SIAM Rev 2003;45(2):167–256.
[48] Block P, et al. Nat Hum Behav 2020;4(6):588–96.
[49] Thurner S, Klimek P, Hanel R. Proc Natl Acad Sci 2020;117(37):22684–9.
[50] Bjørnstad ON. Epidemics: models and data using R. Springer Nature; 2022.
[51] Delamater PL, et al. Emerg Infect Dis 2019;25(1):1.
[52] Mugnaine M, et al. Chaos Solitons Fractals 2022;155:111784.
[53] Moore C, Newman MEJ. Phys Rev E 2000;61(5):5678.
[54] Kuperman M, Abramson G. Phys Rev Lett 2001;86(13):2909.
[55] Zanette DH, Kuperman M. Physica A 2002;309(3–4):445–52.
[56] Verdasca J, et al. J Theoret Biol 2005;233(4):553–61.
[57] Gama MMTd, Nunes A. Eur Phys J B 2006;50:205–8.
[58] Han XP. Phys Lett A 2007;365(1–2):1–5.
[59] Li X, Wang X. Internat J Systems Sci 2007;38(5):401–11.
[60] Shanker O, Hogg T. Modern Phys Lett B 2009;23(10):1249–62.
[61] Xu Z, Sui DZ. Geogr Anal 2009;41(3):263–82.
[62] Vieira IT, Senna Vd, Pereira HBdB. Pesqui Oper 2011;17.
[63] Liu M, et al. PLoS One 2015;10(3):9.
[64] Zhan XX, et al. Appl Math Comput 2018;332:437–48.
[65] Milgram S. Psychol Today 1967;2(1):60–7.
[66] Watts DJ, Strogatz SH. Nature 1998;393(6684):440–2.
[67] Watts DJ. Small worlds: the dynamics of networks between order and

randomness. Princeton University Press; 2004.
[68] Hindmarch AC. IMACS Trans Sci Comput 1983;1:55–64.

http://refhub.elsevier.com/S0960-0779(23)01158-X/sb1
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb2
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb3
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb4
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb5
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb6
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb6
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb6
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb7
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb8
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb9
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb9
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb9
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb10
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb11
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb12
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb12
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb12
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb13
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb14
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb15
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb16
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb17
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb18
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb18
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb18
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb19
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb20
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb21
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb22
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb23
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb24
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb25
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb26
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb27
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb28
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb29
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb30
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb31
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb32
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb33
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb34
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb35
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb36
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb37
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb38
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb39
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb40
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb41
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb42
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb43
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb44
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb45
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb46
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb47
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb48
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb49
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb50
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb51
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb52
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb53
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb54
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb55
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb56
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb57
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb58
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb59
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb60
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb61
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb62
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb63
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb64
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb65
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb66
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb67
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb67
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb67
http://refhub.elsevier.com/S0960-0779(23)01158-X/sb68

	Epidemiological model based on networks with non-local coupling
	Introduction
	Network Model
	Results
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


