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A B S T R A C T

We study the time delay in the synaptic conductance for suppression of spike synchronisation in a random
network of Hodgkin–Huxley neurons coupled by means of chemical synapses. In the first part, we examine
in detail how the time delay acts over the network during the synchronised and desynchronised neuronal
activities. We observe a relation between the neuronal dynamics and the synaptic conductance distributions.
We find parameter values in which the time delay has high effectiveness in promoting the suppression of
spike synchronisation. In the second part, we analyse how the delayed neuronal networks react when pulsed
inputs with different profiles (periodic, random, and mixed) are applied to the neurons. We show the main
parameters responsible for inducing or not synchronous neuronal oscillations in delayed networks.
1. Introduction

The understanding of emergence, as well as the control, of neu-
ronal synchronisation is one of the central points of contemporary
neuroscience, mostly due to the fact that synchronous patterns can be
related to some fundamental neuronal processes for life, such as mem-
ory [1], perception [2] and also to some brain disorders, for instance
epilepsy [3]. Specifically considering the case of brain pathologies,
many studies have been developed in order to find alternative methods
to control synchronous neuronal activities. Protachevicz et al. [4] in-
dicated through numerical simulations that external perturbations can
not only induce peak synchronisation, but also reduce the abnormal
synchronous pattern. Recently, Cota et al. [5] observed in experimental
analyses with rats that non periodic electrical stimulation can be a very
promising alternative for the treatment of epileptic seizures. Inspired by
this scenario, this work aims to contribute to the exploration of the ef-
fects of delayed conductance on neuronal synchronisation activities. We
focus on cases in which the temporal delay has a positive performance
in suppressing spike synchronisation.

Different perspectives about the effect of time delay on synchro-
nisation in complex networks have been attracting the attention of
the scientific community [6]. Considering the context of neuronal
communication, the time delay is an intrinsic property, being associated
with axonal, dendritic, and synaptic signal propagation [7–9]. In the
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axons, the presence of myelination is responsible for the rapid signal
transmission [10], while the demyelination causes a reduction in the
conduction velocity [11]. In the chemical synapses, the time delay is be-
tween less than one millisecond and up to tens of milliseconds [12,13].
For the dendritic, the time delay is smaller than one millisecond [14].

As a model to mimic neuronal activities, we use the Hodgkin–
Huxley (HH) [15] neuron, which was proposed in 1952 by physiologists
Alan Hodgkin and Andrew Huxley. This model was developed in a
successful attempt to describe the mechanisms of action potential gen-
eration in experiments with the giant squid axon. In such a model it
was reported that the generation of the action potential in the cell
membrane is linked to variations in the ionic currents of potassium,
sodium and a current defined by them as leak. Although various
mathematical models have been proposed to reproduce the neuronal
behaviour [16,17], the HH neuron is still one of the most actual
approaches to neuronal dynamics, inspiring several studies in the field
of neuroscience [18–20].

Our main finding in this work is to show the mechanism responsible
for the emergence of spike synchronisation in networks composed of
HH neurons, randomly coupled by means of chemical synapses. We
explore the effects of delayed conductance on neuronal activities as an
alternative method for suppressing or reducing synchronous patterns.
960-0779/© 2022 Elsevier Ltd. All rights reserved.
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Such analyses are carried out in two different scenarios, where firstly
the neuronal network has no external perturbation on the inputs, and
secondly when pulse perturbations (for instance sensory stimulation)
with periodic, random, and mixed profiles are considered [21]. In both
cases, we discuss the conditions and parameters in which the time delay
is able or not to hold low levels of spike synchronisation in neuronal
networks.

The paper is organised as follows. In Section 2, we introduce the
mathematical model of coupled HH neurons. In Section 3, we present
the main diagnostics used in the study. In Section 4, we exhibit the
suppression of synchronised activities under constant current input due
to the time delay. In Section 5 shows the time delay effect under pulsed
perturbed neuronal networks. Finally, we highlight the conclusions of
our work in the last section.

2. Neuron model

The HH model [22] with time delay is given by

𝐶
𝑑𝑉𝑖
𝑑𝑡

= −𝑔K𝑛4𝑖 (𝑉𝑖 − 𝑉K) − 𝑔Na𝑚
3
𝑖 ℎ𝑖(𝑉𝑖 − 𝑉Na)

− 𝑔l(𝑉𝑖 − 𝑉l) + 𝐼𝑖 + 𝐼 syn𝑖 (𝑡 − 𝜏), (1)
𝑑𝑥𝑖
𝑑𝑡

= 𝛼𝑥𝑖 (𝑣𝑖)(1 − 𝑥𝑖) − 𝛽𝑥𝑖 (𝑣𝑖)𝑥𝑖, (2)

where 𝐶 is the capacitance of the cell membrane, 𝑉𝑖 is the membrane
potential for the 𝑖th HH neuron, and 𝑡 is the time. The parameters 𝑔K ,
𝑔Na, and 𝑔l correspond to the potassium, sodium, and leak maximal
conductance, respectively. The variables 𝑛𝑖 and 𝑚𝑖 are related to the
possibility of the ionic channels of potassium (K+) and sodium (Na+)
being open (active), while ℎ𝑖 is associated with the possibility of the
sodium channel (Na+) being close (inactive). 𝑉K , 𝑉Na, and 𝑉l represent
the potassium, sodium, and leak reversal potential, while 𝐼𝑖 and 𝐼 syn𝑖
correspond to the external and synaptic current density, respectively.
In order to simplify the mathematical expression of opening and closing
channels, we condense them as represented in Eq. (2), where 𝑥𝑖 can be
𝑛𝑖, 𝑚𝑖, and ℎ𝑖. 𝛼𝑥𝑖 and 𝛽𝑥𝑖 are different functions of 𝑣𝑖 that depend on
𝑛𝑖, 𝑚𝑖, and ℎ𝑖. In this equation, 𝑣𝑖 = 𝑉𝑖∕[mV] represents the value of the
dimensionless membrane potential. The 𝛼𝑥𝑖 and 𝛽𝑥𝑖 are experimental
functions found by Hodgkin and Huxley and written as

𝛼𝑛(𝑣𝑖) =
0.01𝑣𝑖 + 0.55

1 − exp(−0.1𝑣𝑖 − 5.5)
, (3)

𝛼𝑚(𝑣𝑖) =
0.1𝑣𝑖 + 4

1 − exp(−0.1𝑣𝑖 − 4)
, (4)

𝛼ℎ(𝑣𝑖) = 0.07 exp
(

−𝑣𝑖 − 65
20

)

, (5)

𝛽𝑛(𝑣𝑖) = 0.125 exp
(

−𝑣𝑖 − 65
80

)

, (6)

𝛽𝑚(𝑣𝑖) = 4 exp
(

−𝑣𝑖 − 65
18

)

, (7)

𝛽ℎ(𝑣𝑖) = 1
1 + exp(−0.1𝑣𝑖 − 3.5)

. (8)

In this work, we consider that each 𝑖th HH neuron is stimulated over
time by an external current density 𝐼𝑖 = 𝐼0𝑖 + 𝜉(𝑡), where 𝐼0𝑖 is a current
density with a constant amplitude and 𝜉(𝑡) is a pulse with amplitude 𝛤 ,
which initially is equal to 0 for all times (absence of pulses), leading to
𝐼𝑖 = 𝐼0𝑖 (constant input). The external current density 𝐼𝑖 is responsible
for the generation of the spike dynamics. As one of our main goals
is to study spike synchronisation suppression, we randomly distribute
(following a uniform distribution) 𝐼0𝑖 ∈ [10, 14] μA/cm2, once in this
range all HH neurons are in spike activities with inter-spike intervals
(ISI) in [13, 14.6] ms [21].

The behaviour of the HH neuron is separated into two different
states. The first one is the spike state which is characterised by a sudden
increase in the membrane potential value. The second state is silent, in
which the membrane potential exhibits a small oscillation amplitude
2

Fig. 1. (a) Representation of the spike (black line) and silent (red line) states for a
single HH neuron. (b) Phase space 𝑛 × 𝑉 for the states displayed in panel (a). The
black line indicates the limit cycle responsible for the spike dynamics and the red line
is the convergence to the fixed point (silent state). (c) Magnification of the green box
in the panel (b). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

around the resting potential. These two different patterns are displayed
in Fig. 1(a), where the black and red lines are the spike and silent states,
respectively. The spike dynamics can be understood when the neuron
solution converges to a limit cycle (LC), while the silent behaviour
occurs due to convergence to a fixed point (FP). The transition from one
state to another is related to a Hopf bifurcation [23,24]. Depending on
the initial condition, the value of 𝐼𝑖 can be or not enough to contribute
to the bifurcation, leading the neurons from the silent to spike states.
Fig. 1(b) displays the convergence to a limit cycle (black line) and a
fixed point (red line) in the phase space 𝑛 × 𝑉 . We observe that the
activity of a single HH neuron 𝑖 depends on the external current density
𝐼𝑖 applied over it. Fig. 1(c) exhibits a magnification of the green box in
Fig. 1(b).

We build a network composed of HH neurons coupled by means of
excitatory chemical synapses. The synaptic current density received by
each 𝑖th HH neuron is given by

𝐼 syn𝑖 (𝑡 − 𝜏) = (𝑉 exc
r − 𝑉𝑖)

𝑔exc
𝑁𝑖

𝑁
∑

𝑘=1
𝐴𝑖𝑘𝑈 (𝑡 − 𝑡𝑘 − 𝜏)𝑆𝑘(𝑡 − 𝜏), (9)

where 𝑉 exc
r is the excitatory reversal potential, 𝑔exc (mS/ cm2) is the

maximal excitatory synaptic conductance, 𝑁𝑖 is the number of excita-
tory connections received by the neuron 𝑖, 𝑁 is the number of neurons
of the neuronal network, 𝐴𝑖𝑘 is the adjacency matrix, 𝑈 (𝑡 − 𝑡𝑘 − 𝜏)
is the Heaviside function, and 𝑆𝑘(𝑡 − 𝜏) is a auxiliary function which
describe the temporal evolution of the synaptic conductance from the
pre-synaptic neuron 𝑘 to the post-synaptic neurons 𝑖. The Heaviside
function is defined as

𝑈 (𝑡 − 𝑡𝑘 − 𝜏) =
{

1, 𝑡 > 𝑡𝑘 + 𝜏,
0, 𝑡 ≤ 𝑡𝑘 + 𝜏,

(10)

and the 𝑆𝑘(𝑡 − 𝜏) function is written as [25]

𝑆𝑘(𝑡 − 𝜏) = exp
[

−
(

𝑡 − 𝑡𝑘 − 𝜏
𝜏s

)]

, (11)

where 𝑡𝑘 represents the times in which the pre-synaptic neuron 𝑘 spikes
along the numerical simulation, 𝜏 is the time delay on the transmission
of the synaptic conductance, and 𝜏s is the decay time constant on the
synaptic conductance. Essentially, 𝜏 can be related to the time needed
to the signal generated by the spike of the pre-synaptic neuron 𝑘 to
achieve the post-synaptic neuron 𝑖. Thereby, in our simulation, for
𝑡 < 𝑡𝑘+𝜏, we have 𝑈 ⋅𝑆𝑘 equal to 0. Fig. 2 shows the neuronal spikes for
a pre-synaptic neuron 𝑘 over time and their correspondent 𝑆 generate
𝑘
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Fig. 2. Schematic representation of the synaptic conductance 𝑆𝑘 generated by the pre-
synaptic HH neuron 𝑘. In panel (a), we plot the spike dynamics for a HH neuron 𝑘.
Panel (b) exhibits 𝑆𝑘 when no time delay is considered (𝜏 = 0 ms). In panels (c) and
(d), we show the effect of time delay 𝜏 = 6 ms and 𝜏 = 13 ms over 𝑆𝑘, respectively. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

when different values of time delay are considered. In Fig. 2(a), we plot
the membrane potential for neuron 𝑘. Figs. 2(b), 2(c), and 2(d) exhibit
the values of 𝑆𝑘 for 𝜏 = 0 ms, 𝜏 = 6 ms, and 𝜏 = 13 ms, respectively.
For a delay equal to zero (Fig. 2(b)), the peak of 𝑆𝑘 matches the time
in which the neuron 𝑘 spikes. For delay greater than zero (Figs. 2(c)
and (d)), the 𝑆𝑘 curve is shifted to the right by the value of the time
delay 𝜏. Such effect is very significant for the system dynamics, once it
indicates that the synaptic current received by the post-synaptic neuron
𝑖 is not instantaneous. It is important to mention that time delays are
expected for the type of connections considered in this work, given
by chemical synapses. Differently from the electric synapses, in which
the interactions among neurons are practically instantaneous due to
the direct transfer of ions, chemical synapses depend on the release
of neurotransmitters, which are associated with some delay until the
post-synaptic neuron 𝑖 receives the signal sent from the pre-synaptic
neuron 𝑘 [26].

Inspired by some works in the area that present a reasonable config-
uration to mimic the behaviour of a neuronal network [19,21,22,27],
we build a random network composed of 𝑁 = 100 HH neurons coupled
according to Erdös–Rényi model with a probability of connection 𝑝 =
0.1 and excluding auto-connections [28–31]. The initial conditions are
randomly distributed in 𝑉𝑖 ∈ [−80, 0] mV and 𝑛𝑖 = 𝑚𝑖 = ℎ𝑖 = 0. Such
a range of initial conditions is considered in order to allow the HH
neurons to start their dynamics at different points from each other,
i.e., conditions in which some of these neurons spike more easily
than others. In our simulations, all neurons exhibit spike activities
due to the chosen parameters combined with the excitatory chemical
synapses, as well as with the positive external currents. The integration
of the differential equations is done using the fourth-order Runge–
Kutta algorithm with a fixed integration time step 𝛿𝑡 = 10−2 ms
[24,27,32]. A short summary of the parameters, values, ranges, and
units related to the neuronal description of this work can be found
along Table 1 [18,22,27].
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Table 1
Description of the parameters, values, and units used in our numerical simulations.
Description Parameter Values

Number of neurons 𝑁 100
Connection probability 𝑝 0.1
Membrane capacity 𝐶 1 μF/cm2

Max. potassium conductance 𝑔K 36 mS/cm2

Max. sodium conductance 𝑔Na 120 mS/cm2

Max. leak conductance 𝑔l 0.3 mS/cm2

Potassium reversal potential 𝑉K −77 mV
Sodium reversal potential 𝑉Na 50 mV
Leak reversal potential 𝑉l −54.4 mV
Exc. reversal potential 𝑉 exc

r 20 mV
Exc. synaptic conductance 𝑔exc [0,1] mS/cm2

Const. ext. current density 𝐼0
𝑖 [10,14] μA/cm2

Period that pulse is ON 𝛥𝑡(ON) [0,14] ms
Period that pulse is OFF 𝛥𝑡(OFF) [0,14] ms
Adjacency matrix 𝐴𝑖𝑘 0 or 1
Time delay 𝜏 [0,14] ms
Decay time constant 𝜏s 2.728 ms
Time step integration 𝛿𝑡 10−2 ms
Initial time for analyses 𝑡ini 5 s
Final time for analyses 𝑡f in 10 s

3. Diagnostics

We consider a time interval from 𝑡ini = 5 s to 𝑡f in = 10 s, where
𝑡 < 𝑡ini is the transient time. In our simulation, this time interval
is sufficient to perform analysis on the neuronal networks, since the
system already presents stabilisation in the measurements. In order to
extract an average behaviour, we compute the means over a set of 100
different numerical simulations.

3.1. Synchronisation

The diagnostic method chosen to evaluate the level of synchronicity
is the mean value of the Kuramoto order parameter [33], which is
calculated as

⟨𝑅⟩ = 1
𝑡f in − 𝑡ini ∫

𝑡f in

𝑡ini

|

|

|

|

|

|

1
𝑁

𝑁
∑

𝑖=1
exp

[

j𝛷𝑖(𝑡)
]

|

|

|

|

|

|

𝑑𝑡, (12)

where j is an imaginary number defined as j =
√

−1. The phase 𝛷𝑖(𝑡) is
calculated by means of

𝛷𝑖(𝑡) = 2𝜋𝑚 + 2𝜋
𝑡 − 𝑡𝑚𝑖

𝑡𝑚+1𝑖 − 𝑡𝑚𝑖
, (13)

where 𝑡𝑚𝑖 is the time in which occurs the 𝑚th spike of the neuron 𝑖. The
mean order parameter ⟨𝑅⟩ is given in a range from 0 to 1, where the
synchronisation is identified when ⟨𝑅⟩ ≈ 1.

3.2. Mean synaptic current density

The synaptic current density plays an important role in the connec-
tion among the HH neurons. With this in mind, we calculate the mean
synaptic current density for each time 𝑡 (after a transient) as

⟨𝐼 syn(𝑡)⟩ = 1
𝑁

𝑁
∑

𝑖=1
𝐼 syn𝑖 (𝑡 − 𝜏), (14)

where 𝐼 syn𝑖 (𝑡− 𝜏) is given by Eq. (9), while the mean value for this time
interval is given by

⟨𝐼 syn⟩ = 1
(𝑡f in − 𝑡ini) ∫

𝑡f in

𝑡ini
⟨𝐼 syn(𝑡)⟩𝑑𝑡. (15)

3.3. Synaptic current distribution

We define a measure 𝜁 which indicates the distribution associated
with the shape of ⟨𝐼 syn(𝑡)⟩. The 𝜁 measure is written as
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𝜁 =
mod(𝐻)
mean(𝐻)

, (16)

where mod(𝐻) and mean(𝐻) represent, respectively, the mode and
the mean value of the histogram 𝐻 associated with the shape of
the time series of ⟨𝐼 syn(𝑡)⟩. In our simulations, 𝜁 tends to 1 if 𝐻 is
Gaussian-like, while 𝜁 moves away from 1 for asymmetric and non
Gaussian-like 𝐻 histograms. The variation of 𝜁 is related to the type
of the synchronisation level developed by the neuronal network.

4. Time delay in unperturbed neuronal networks

For 𝜏 = 0 ms and increasing the synaptic coupling 𝑔exc, we observe
that ⟨𝑅⟩ increases, as shown in Fig. 3(a), where the neurons go from
desynchronised to synchronised activities. In Figs. 3(b), 3(c), and 3(d),
we plot the time series of ⟨𝐼 syn(𝑡)⟩ for (a) 𝑔exc = 0.01 mS/cm2, (b)
𝑔exc = 0.06 mS/cm2, and (c) 𝑔exc = 1.0 mS/cm2. As one can see, as
greater is 𝑔exc, less noisy is the shape of ⟨𝐼 syn(𝑡)⟩. In order to extract
a characteristic of these different shapes, we compute a normalised
(by the mode value) histogram 𝐻 of ⟨𝐼 syn(𝑡)⟩ obtained during a time
series of the last 5 s of the numerical simulations. Figs. 3(e), 3(f),
and 3(g) display the respective histograms 𝐻 associated with each
⟨𝐼 syn(𝑡)⟩. Comparing each one of these cases, it is possible to see that
when ⟨𝑅⟩ is small (Fig. 3(b)), the histogram is Gaussian-like (Fig. 3(e)).
For spike synchronisation (Fig. 3(d)), the histogram has a specific
shape (Fig. 3(g)), that is asymmetric and non Gaussian-like. For the
intermediary case (Fig. 3(f)), for instance ⟨𝑅⟩ = 0.49, we see that
the histogram shape changes during the transition from desynchronous
to synchronous patterns. As one can see, in the synchronised activity
(Fig. 3(d)), there is a higher variance on the values of the synaptic
current along time, as shown in (Fig. 3(g)). On the other hand, in
the desynchronised case (Fig. 3(b)), the synaptic current is maintained
around a fixed value, like a Gaussian distribution (Fig. 3(e)). Through
the diagnostic via 𝜁 measure, for the cases discussed in Figs. 3(e), 3(f),
and 3(g), we obtain 0.98, 0.59, and 0.03, respectively. The Gaussian-
like distribution shown in Fig. 3(e) approaches 1, while another one
goes away from the unit value. The complete comparison between
the mean order parameter and the characterisation from the spike
desynchronisation to spike synchronisation via 𝜁 measure, when no
time delay is considered, is displayed in Fig. 4(a) and 4(b) (black line).
The result indicates and confirms that the mechanism involved behind
the spike synchronisation, that is obtained via the increasing of 𝑔exc,
is linked with the alterations in the shape of ⟨𝐼 syn(𝑡)⟩. In addition, in
Fig. 4(c), we observe that ⟨𝐼 syn⟩ increases with 𝑔exc (black line).

Now, we focus on the cases in which 𝜏 > 0, denoted by the colour
lines in Fig. 4. In Fig. 4(a) for 𝜏 ≤ 1 ms, it is possible to see a small
reduction in the ⟨𝑅⟩ value for larger 𝑔exc. Although the time delay
changes the instant that the synaptic current density arrives on the
neurons, this time shift is not enough to promote relevant alteration
in the collective behaviour of the HH neurons and consequently in
the synchronisation. Therefore, for small time delays, the neuronal
dynamics remain closer to the case without time delay. However, for
𝜏 ≥ 2 ms, the time shift is able to produce significant changes in
the neuronal network, mainly over the mean synaptic current density,
leading to a strong suppression of synchronised activities for all 𝑔exc
values. Fig. 4(b) shows that 𝜏 ≥ 2 ms increases 𝜁 , while 𝜏 < 1 ms
cause only small changes. In Figs. 4(a) and 4(b), it is possible to
verify that the transition between the desynchronous and synchronous
states are linked once again to changes in the shape of ⟨𝐼 syn(𝑡)⟩, that
is characterised by the 𝜁 measure. The changes are effects of the
introduction of the synaptic time delay in the neuronal connections.
In Fig. 4(c), we identify a relation between the synaptic time delay
and the value of ⟨𝐼 syn⟩. As already expected, the increase of 𝑔exc leads
to a proportional increase of ⟨𝐼 syn⟩, something observed (for instance)
when no time delay is considered (black line). However, we also verify
that when time delays are taken into account, depending on the value

syn
4

of 𝜏 and 𝑔exc, the system can increase even more ⟨𝐼 ⟩ (colour lines)
Fig. 3. (a) Mean value of the Kuramoto order parameter as a function of 𝑔exc. Time
series of ⟨𝐼 syn(𝑡)⟩ for (b) 𝑔exc = 0.01 mS/cm2, (c) 𝑔exc = 0.06 mS/cm2, and (d) 𝑔exc = 1.0
mS/cm2 with the respective histograms 𝐻 in the panels (e), (f), and (g). We consider
100 different numerical simulations for the HH neurons and 𝜏 = 0 ms.

Fig. 4. Four diagnostics as a function of 𝑔exc for different values of 𝜏. (a) Mean value
of the Kuramoto order parameter used in order to identify spike synchronisation of the
HH neurons. (b) 𝜁 indicates the type of the histogram obtained in the mean synaptic
current ⟨𝐼 syn(𝑡)⟩. (c) Mean synaptic current obtained during the analyse (⟨𝐼 syn

⟩). (d)
𝛩 represents a normalised measure defined as ⟨𝐼 syn

⟩∕𝑔exc. We consider 100 different
numerical simulations. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 5. Schematic representation of different times in which the synaptic conductance
𝑆𝑘 from the pre-synaptic neuron 𝑘 achieves the post-synaptic neuron 𝑖.

when compared with the case without time delay (black line). Such
an increase is related to changes in the synchronisation of the HH
neurons due to the introduction of the synaptic time delays. In Fig. 4(d),
we present this effect through the measure 𝛩, which represents ⟨𝐼 syn⟩
normalised by the coupling 𝑔exc. In this case, we can associate changes
in the synaptic current as a consequence of the alterations promoted in
the synchronisation of the neurons. As one can see, time delays which
are able to desynchronise the HH neurons (𝜏 ≥ 2 ms) lead to high values
of 𝛩, which naturally will lead to the increase observed in the panel
(c). A complementary explanation for such an effect also is found in
Fig. 5(a), through the schematic illustration of the neuron dynamics. In
this case, if for example no time delay is considered, 𝑆𝑘 = 1 achieves
the post-synaptic neuron 𝑖 when the potential membrane is 𝑉𝑖 ≈ 30 mV
(black dashed arrow), which makes 𝐼 syn𝑖 ∝ −10 × 𝑔exc (see Eq. (9)). On
the other hand, for 𝜏 = 2 ms, 𝑆𝑘 = 1 achieves the post-synaptic neuron
𝑖 when 𝑉𝑖 ≈ −50 mV (violet dashed arrow), producing 𝐼 syn𝑖 ∝ 70 × 𝑔exc,
indicating an increase of the synaptic current for the neuron 𝑖 at that
moment. If a similar effect occurs for more HH neurons in the network,
it is reasonable to expect that, on average, ⟨𝐼 syn⟩ might have its value
increased.

In Figs. 6(a), 6(b), and 6(c), we compute the parameter space 𝑔exc×𝜏,
where the colour scales indicate ⟨𝑅⟩, 𝜁 , and ⟨𝐼 syn⟩, respectively. We
consider 𝑔exc ∈ [0, 1] mS/cm2 and 𝜏 ∈ [0, 14] ms. The range of 𝜏 is
chosen in order to create a link with the mean inter-spike interval (ISI)
of the HH neurons in the network (about 14 ms). As can be seen in
Fig. 6(a), for 0 < 𝜏 ≤ 1 ms, the effects of the time delay are small in
the synchronisation, which leads ⟨𝑅⟩ to remain similar to the case in
which 𝜏 = 0 ms, in a way almost independently of the 𝑔exc. However,
for 1 < 𝜏 ≲ 5.5 ms, we observe an interval of 𝜏 in which the neuronal
synchronisation is suppressed for almost all 𝑔exc. If 𝜏 > 5.5 ms, it is also
possible to verify the appearance of synchronisation. Our simulations
show that there is a preferential range of the time delay in which the
synchronisation can be suppressed. In Fig. 6(b), the transitions between
desynchronised to synchronised spikes can be identified by means of
the 𝜁 measure, while in Fig. 6(c), it is possible to see that, depending
on 𝜏 and 𝑔exc, ⟨𝐼 syn⟩ can increase. For 𝜏 ≈ 14 ms, the parameter spaces
exhibit an appearance very close to the case in which the network has
no time delay. A similarity can be verified in Figs. 6(d), 6(e), and 6(f),
where we compute the parameter space 𝑔exc×𝜏 in colour scale 𝜀(𝑦). The
parameter 𝜀(𝑦) can be written as

𝜀(𝑦) =
𝑦(𝜏) − 𝑦(0)

𝜀𝑦Max
, 𝑦 = ⟨𝑅⟩, 𝜁 , ⟨𝐼 syn⟩ (17)

where 𝑦(𝜏) represents the measure of 𝑦 for 𝜏 > 0, 𝑦(0) is the measure
of 𝑦 for 𝜏 = 0, and 𝜀𝑦Max corresponds to the maximum difference for
this parameter with and without time delay in all considered parameter
space. For instance, if we consider 𝑦 = ⟨𝑅⟩, 𝜀(⟨𝑅⟩) ∈ [0, 1] is the
difference of ⟨𝑅⟩ between a network with 𝜏 = 0 ms and 𝜏 > 0 ms. If
5

𝜀(⟨𝑅⟩) ≈ 0, the network dynamics almost does not suffer changes due
to the time delay. However, if 𝜀(⟨𝑅⟩) ≈ 1, the opposite is observed. As
indicated by Figs. 6(d), 6(e), and 6(f) for 𝜏 > 0 and 𝜏 ≤ 1 ms, the
neuronal dynamics has a high similarity with the result for 𝜏 null. For
the case in which 1 < 𝜏 < 5.5 ms, there are relevant alterations in the
neuron dynamics due to the effect of the time delay. Considering 𝜏 >
5.5 ms, it is possible to observe that some parts of the parameter space
exhibit similarities with the case in which no time delay is considered.
Dynamically, this effect can be explained by Figs. 2(b), 2(c), and 2(d).
As the time delay increases, the 𝑆𝑘 function associated with the post-
synaptic neuron 𝑖 exhibits a shift in 𝜏 milliseconds. As larger is 𝜏, further
it is the 𝑆𝑘 from the original point (𝜏 = 0 ms), indicated by the green
dashed line in Fig. 2. However, for 𝜏 = 13 ms, the 𝑆𝑘 is very far
from the original point (green dashed line), but it is delivered to the
post-synaptic neuron 𝑖 almost at the same time in which a new spike
of the pre-synaptic neuron 𝑘 occurs (orange dashed line). There is a
kind of resonance due to the synaptic current density, indicating that
even delayed, the synapse produces an equivalent effect of a neuronal
network with instantaneous synaptic current density, namely a network
with no time delay. Our results suggest that the values of 𝜏, which are
able to produce the suppression of synchronised activities, are in the
interval 1 < 𝜏 < 7 ms, being more or less effective depending on 𝑔exc.

In order to close this section, we provide a small and fundamental
discussion about our results and the refractory period of the neu-
ron [34]. As well known, the refractory period is a standard charac-
teristic of the membrane neuronal evolution, and this characteristic
corresponds essentially to a period in which the neuron cannot be re-
excited. During the refractory period, the neuron cannot depolarise
after the spike, however a neuron is still able to receive external
currents, although these currents do not generate new spikes. In this
work, we emphasise that the synchronisation pattern obtained for the
neuronal network is not complete, so even in synchronous cases, we
always have some small phase difference among the neurons, which
leads them to not reach the refractory period at the same time. This
point is important for our considerations, once it allows us to discuss
the possibility to suppress the spike synchronisation of the HH neurons
through the synaptic time delay. In order to let clear this point, in
Fig. 7, we present the raster plots for the HH neurons considering
different values of times delay for the neuronal network with 𝑔exc = 0.5
mS/cm2. In the panel (a) (magnification of orange box in the panel
(b)), we show a synchronised case for the neuronal network with no
time delay. In such a panel, it is possible to observe that even for a
⟨𝑅⟩ = 0.96, the HH neurons do not spike at the same time. In the
panel (c) (magnification of orange box in the panel (d)), we observe
that when the time delay is short (𝜏 = 1 ms) there are just small
alterations in the collective behaviour developed by the neurons (⟨𝑅⟩ =
0.91). Considering 𝜏 = 2 ms in the panel (e) (magnification of orange
box in the panel (f)), the time delay already is able to suppress the
spike synchronisation (⟨𝑅⟩ = 0.1) in the neuronal network. In this
situation, the time delay makes the neurons do not spike in phase
synchronisation, since the input interaction does not contribute for the
post-synaptic neuron firing in phase with the pre-synaptic ones, i.e, the
phases of neurons are not the same and are spread in time. Finally in
the panel (g) (magnification of orange box in the panel (h)), for 𝜏 =
14 ms (nearly to the mean inter-spike interval (ISI)), the synchronisation
returns to the neuronal network (⟨𝑅⟩ = 0.97). As we observe, when
time delays are associated with values around to half of the mean inter-
spike interval (ISI), the synchronisation is suppressed. Once in this case
the HH neurons do not spike in phase, the interactions among them
do not contribute for the post-synaptic neuron fire in phase with the
pre-synaptic ones.

5. Time delay effect in perturbed neuronal networks

Recently, a great interest in the effect of external perturbations in
neuronal networks is getting the attention of the scientific community.
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Fig. 6. Parameter space 𝑔exc×𝜏 for (a) ⟨𝑅⟩, (b) the 𝜁 measure related to the type of the histogram 𝐻 associated with ⟨𝐼 syn(𝑡)⟩, (c) ⟨𝐼 syn
⟩, (d) 𝜀(⟨𝑅⟩), (e) 𝜀(𝜁 ), and (f) 𝜀(⟨𝐼 syn⟩). Depending

on 𝜏, the panels (a), (b), and (c) shows that the time delay can suppress the spike synchronisation. In the panels (d), (e), and (f), the parameter spaces indicate that there are
some values of the time delay which produce similar effects than for 𝜏 = 0.0 ms. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
Fig. 7. Raster plots for the Hodgkin–Huxley neurons considering as time delay (a)
𝜏 = 0 ms, (c) 𝜏 = 1 ms, (e) 𝜏 = 2 ms, and (g) 𝜏 = 14 ms, with the respective
magnifications of the orange box in the panels (b), (d), (f), and (h). We consider
as coupled strength 𝑔exc = 0.5 mS/cm2 with the mean value of the Kuramoto order
parameter ⟨𝑅⟩ indicated in the figure for each case. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

External perturbations can not only induce spike synchronisation, but

also reduce the abnormal synchronous behaviour [4,35]. Through ex-

perimental analyses in rats, Cota et al. [5] in 2021 reported that non
6

periodic electrical stimulations can be a promising alternative for the
treatment of epilepsy crises. Chatterjee and Robert [36] demonstrated
that if some amount of noise is introduced into a stimulus, it is possible
to improve the auditory perception in cochlear implants. With this in
mind, we perform numerical analysis for a delayed network when three
different types of pulsed perturbations (periodical, random and mixed)
are introduced [21]. We study how the ranges of time delay can affect
neuronal synchronous behaviour.

5.1. Periodic pulses

We begin our analysis for the case in which the pulsed perturbation
is periodically applied over the neurons over time. In our simulations,
we consider a perturbation 𝜉(𝑡) in the external current density, in order
that 𝐼𝑖 is given as

𝐼𝑖 = 𝐼0𝑖 + 𝜉(𝑡), (18)

where 𝜉(𝑡) represents the term which assumes an amplitude equal to 0
or 𝛤 , in an on–off configuration over time, generating a pulse profile.
In the periodic pulse, the time in which the pulse is on (𝛥𝑡(ON)) and
off (𝛥𝑡(OFF)) is the same. Fig. 8 displays a schematic representation of a
periodic pulsed perturbation with 𝐼0𝑖 = 10 μA/cm2, 𝛤 = 3 μA/cm2 and
𝛥𝑡(ON) = 𝛥𝑡(OFF) = 8 ms.

In order to study the effect of pulsed perturbation over the neuronal
network, we define two scenarios: (i) a network weakly coupled (𝑔exc =
0.05 mS/cm2) and (ii) a network strongly coupled (𝑔exc = 1.0 mS/cm2).

2
An intermediary scenario (𝑔exc = 0.5 mS/cm ) is also investigated,
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Fig. 8. Schematic representation of periodic pulses applied over 𝐼0
𝑖 = 10 μA/cm2,

considering a pulse amplitude 𝛤 = 3 μA/cm2 and 𝛥𝑡(ON) = 𝛥𝑡(OFF) = 8 ms.

however, the numerical results found can be, without loss of generality,
approached to the case (ii). In both scenarios, we apply the pulsed
perturbation with a 𝛤 amplitude, where the associated time interval
assumes 𝛥𝑡(ON) = 𝛥𝑡(OFF) = 𝛥𝑡 ∈ [0, 14] ms. The pulses assume the on–off
configurations in scales around the mean inter-spike interval (ISI) of
the HH neurons in the network.

Figs. 9(a), 9(b), and 9(c) display ⟨𝑅⟩ in the parameter space 𝛥𝑡 × 𝜏
for a weakly coupled, where we consider 𝛤 = 1 μA/cm2, 𝛤 = 3
μA/cm2, and 𝛤 = 10 μA/cm2, respectively. If 𝛥𝑡 is approximately
lower than 2 ms, the periodic pulses are not able to alter the dynamic
of the network, independently of the 𝛤 value. However, when 𝛥𝑡 >
2 ms, it is possible to observe spike synchronisation due to the pulsed
perturbations. Increasing the pulse amplitude, the range around 𝛥𝑡 ∼
7 ms begins to be more relevant to induce spike synchronisation. In this
case, the interval of each cycle (on-off) of the pulse perturbation, ap-
proximately, coincides with the mean inter-spike interval (ISI), i.e., 2𝛥𝑡
(14 ms)=𝛥𝑡(ON) (7 ms) + 𝛥𝑡(OFF) (7 ms) ≈ ISI (14 ms). This fact is clear in
Fig. 9(a), where small amplitudes of pulsed perturbation are sufficient
to induce synchronisation for 𝛥𝑡 ∼ 7 ms. In Fig. 9(c), where 𝛤 = 10
μA/cm2, we find ranges approximately in 5 < 𝛥𝑡 < 8 ms in which the
pulse is able to induce all the HH neurons in spike synchronisation, for
all 𝜏 considered in this study.

Figs. 9(d), 9(e), and 9(f) display ⟨𝑅⟩ in 𝛥𝑡×𝜏 for strong coupling and
the same 𝛤 amplitudes considered in the weak coupling. In Figs. 9(d),
we observe that 𝛤 = 1 μA/cm2 induces only small regions of the spike
synchronisation in the parameter space for 𝛥𝑡 around 7 ms. Therefore,
under strong coupling, the neuronal network exhibits a greater resis-
tance or a lesser influence of small external perturbations. On the other
hand, as the amplitude 𝛤 increases, the perturbation starts to be more
capable to induce spike synchronisation, as shown in Figs. 9(e) and
9(f). As can be seen in Fig. 9(f) for 𝛤 = 10 μA/cm2, there is a large
continuous range of 6 < 𝛥𝑡 < 10 ms which reduces the capacity to
observe desynchronised spikes for some delays.

The periodic pulses can reduce the range of the time delay which are
able to suppress spike synchronisation in weakly and strongly coupled
neurons. However, such reduction depends on the time intervals in
which the pulses are applied. Our results suggest that for the appropri-
ate time intervals 𝛥𝑡(ON) and 𝛥𝑡(OFF), the transition from desynchronised
activities to synchronised ones can be done by pulses with high or low
amplitude, indicating that these parameters of the pulse have a crucial
role in the alterations of the collective neuronal behaviour.

5.2. Random pulses

We consider a pulsed perturbation according to a random protocol
for the choice of the time in which the pulses are on–off. We define
that 𝛥𝑡(ON) and 𝛥𝑡(OFF) are randomly chosen (following a uniform dis-
tribution) in [0, 14] ms. Fig. 10 exhibits a schematic representation of
the random pulses over time for 𝐼0𝑖 = 10 μA/cm2 and 𝛤 = 3 μA/cm2,
where 𝛥𝑡(ON) and 𝛥𝑡(OFF) assume random values.
7

In order to study the effects of random pulses in the neuronal
dynamics, we compute the parameter space. Fig. 11(a), 11(b), and
11(c) display ⟨𝑅⟩ in the parameter space 𝑔exc × 𝜏 for 𝛤 = 1 μA/cm2,
𝛤 = 3 μA/cm2, and 𝛤 = 10 μA/cm2, respectively. For 𝛤 = 1 μA/cm2,
the neuronal network has no significant alterations, independently of
𝑔exc or 𝜏 used in this work. If the pulse amplitude is increased to 𝛤 = 3
μA/cm2, the network begins to exhibit some changes, however, only
for small values of 𝑔exc. In this case, the random pulses can improve
the level of spike synchronisation in the delayed neuronal network
approximately for 𝜏 < 2 ms and 𝜏 > 10 ms. On the other hand, as 𝑔exc
increases, the synchronisation does not show any remarkable changes,
indicating a difference between the periodic and random pulses. For the
periodic case and appropriate time intervals (Figs. 9(a), 9(b), 9(d), and
9(e)), the pulses with 𝛤 = 1 μA/cm2 and 𝛤 = 3 μA/cm2 are enough to
promote alterations in the networks with weak and strong couplings. In
Fig. 11(c), if 𝛤 = 10 μA/cm2, there are more synchronised ranges in the
parameter space, including in strong couplings, which is not verified for
random pulses with small amplitudes (Figs. 11(a) and 11(b)).

In Fig. 12, we show the behaviour associated with the spike syn-
chronisation and the amplitude 𝛤 of the pulses through the parameter
space 𝑔exc × 𝛤 for 𝜏 = 7 ms. Small pulse amplitudes (𝛤 < 1 μA/cm2)
are not capable of promoting remarkable changes in the Hodgkin–
Huxley neurons and consequently in the collective behaviour developed
by them, a fact also previously displayed by Fig. 11(a). However, if
the amplitude is increased, the pulses become significant and induce
neuronal synchronisation, as can be observed for 𝛤 > 1 μA/cm2.
When 𝛤 ≈ 10 μA/cm2 and for almost all parameters, low level of
synchronisation (approximately 𝑔exc < 0.35 mS/cm2) is replaced by at
least a partial synchronisation, while the synchronised regions (approx-
imately 𝑔exc > 0.35 mS/cm2) are maintained by the random pulses. In
our simulations, we consider different time delays 𝜏, and our results
corroborate with our initial statement about the emergence of spike
synchronisation in delayed networks when random pulses with high
amplitudes are considered.

As suggested along this section, the random pulses can also reduce
ranges of 𝜏 associated with desynchronised activities in the parameter
space. However, such reduction is related to the amplitude values of the
pulses. For the random pulses, 𝛤 needs to assume large values in order
to induce synchronised regions along the parameter space. For the
periodic pulses, even small amplitudes of 𝛤 , if applied in appropriate
time intervals, are enough to change the neuronal dynamics.

5.3. Mixed pulses

We consider that the mixed perturbation is composed of sequential
time windows 𝜆P and 𝜆R, where the pulses are assumed as periodic
and random, respectively. In our numerical simulations, we define the
relation about the sizes of these time windows as

𝜆P = 𝜆0P − 𝜆R, (19)

where 𝜆0P and 𝜆R are the sizes of the time window for the periodic and
random pulses, respectively. For 𝜆R = 0 ms, the pulse is formed only by
sequences of windows 𝜆P = 𝜆0P, configuring a complete periodic pulse.
On the other hand, if we consider 𝜆R > 0 ms, the perturbation is com-
posed of alternating sequence windows, 𝜆P and 𝜆R, where the pulses
assume the periodical and random profiles, respectively. Consequently,
if 𝜆R = 𝜆0P, only random pulses are observed, once there are no time
windows 𝜆P in the signal. In Fig. 13, we show a sketch of these mixed
pulses for 𝐼0𝑖 = 10 μA/cm2, 𝛤 = 3 μA/cm2, 𝛥𝑡(ON) = 𝛥𝑡(OFF) = 8 ms (for
the periodic part of the pulse), 𝜆P = 20 ms, and 𝜆R = 10 ms.

In order to analyse the transition from a complete periodic pulse to
a random one, we consider 𝛥𝑡(ON) = 𝛥𝑡(OFF) = 8 ms, 𝛤 = 10 μA/cm2, and
𝜆0P = 200 ms. In Fig. 14, we calculate the parameter space 𝜆R × 𝜏 with
⟨𝑅⟩ in colour scale. When the network is perturbed only by periodic
pulses (𝜆R = 0 ms), the region of desynchronised spike activity is
reduced. For complete random pulses (𝜆 = 200 ms), there are more
R
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Fig. 9. Parameter space 𝛥𝑡 × 𝜏 with the mean value of the Kuramoto order parameter ⟨𝑅⟩ in colour scale. In the panels (a), (b), and (c), we show an analyse for a scenario of
weak coupling (𝑔exc = 0.05 mS/cm2) in which the HH neurons are perturbed by periodic pulses with amplitude 𝛤 = 1 μA/cm2, 𝛤 = 3 μA/cm2, and 𝛤 = 10 μA/cm2, respectively.
In the panels (d), (e), and (f), we consider the same pulse amplitudes, respectively, however, considering a scenario of strong coupling (𝑔exc = 1.0 mS/cm2). Depending on 𝛥𝑡, we
observe that the periodic perturbation is able to reduce the ranges in which 𝜏 has high effectiveness on the suppression of synchronised activities, even when a small amplitude
of the pulse is considered. For 𝛥𝑡 ∼ 7 ms, the interval of each cycle (on-off) of the pulse perturbation, approximately, coincides with the mean inter-spike interval (ISI), i.e., 2𝛥𝑡
(14 ms)=𝛥𝑡(ON) (7 ms) + 𝛥𝑡(OFF) (7 ms) ≈ ISI (14 ms), creating a kind of resonance that might be inducing spike synchronisation. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
Fig. 10. Schematic representation of the random pulse dynamics applied over 𝐼0
𝑖 = 10

μA/cm2, considering 𝛤 = 3 μA/cm2 with 𝛥𝑡(ON) and 𝛥𝑡(OFF) randomly chosen (following
a uniform distribution) in [0; 14] ms.

values of 𝜏 that are able to suppress spike synchronisation. We find that
𝜆R ≈ 5 ms is enough to change the parameter space in order to increase
the interval of 𝜏 in which occurs suppression of spike synchronisation.
Increasing 𝜆R, the range of 𝜏 becomes larger. Moreover, as indicated
by our numerical simulation for this case, the transition between a
complete periodic pulse to a random one is given in a smooth way.
8

Our results indicate that small windows of random pulses embedded
in a sequence of periodic ones can be enough to influence the neuronal
dynamics more like a random perturbation than a periodic one. The
neurons behave more similarly to the case in which the network is un-
der random perturbations. This analyse is interesting and complements
a recent observation which indicates that the same effects appear in a
scenario of weak coupling [21].

6. Conclusions

In this work, we study the effects of time delays in the synaptic
conductance as a way to suppress spike synchronisation developed
in coupled Hodgkin–Huxley neurons. The time delays in the synaptic
conductance are related to no instantaneous transmission of the synap-
tic currents between the neurons. Depending on the time delay and
coupling strength values, changes in the synaptic current can induce or
not spike synchronisation. Our results show that there is an important
range of time delays (𝜏 > 1 until 𝜏 ≈ 5.5 ms) in which the synchronised
activities are suppressed, independently of the coupling strength value.

We analyse how a delayed neuronal network behaves when pulsed
perturbations are applied to the neurons. Our results indicate that
both periodic and random pulses can reduce the intervals of the time
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Fig. 11. Parameter space 𝑔exc×𝜏 with the mean value of the Kuramoto order parameter
⟨𝑅⟩ in colour scale. In the panels (a), (b), and (c), we plot an analyse for the parameter
space when random pulses with amplitude 𝛤 = 1 μA/cm2, 𝛤 = 3 μA/cm2, and
𝛤 = 10 μA/cm2 are applied over the HH neurons, respectively. We see that the random
perturbation is able to reduce the ranges in which 𝜏 has high effectiveness on the
suppression of synchronised activities. However, differently of the periodic case, the
random pulses need to assume 𝛤 with larger amplitudes in order to promote changes
in the delayed network. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

delay values in which the spike synchronisation is suppressed. For
appropriate time intervals, the periodic pulses are able to generate
synchronisation in the presence of time delays associated with desyn-
chronised activities, even for pulses with small amplitudes. In this case,
we find a type of resonance related to the intervals of pulsed cycles
close to the mean inter-spike interval (ISI) of the HH neurons. For the
random case, alterations in the synchronisation can be only observed
for larger amplitudes of the pulses. Our simulations demonstrate that if
small windows of random pulses are embedded in a sequence of peri-
odic pulses, the mixed perturbations can exhibit similar characteristics
to the random pulses.

Considering that spike synchronisation can be associated with some
brain pathologies, such as epilepsy, then the search for alternative
methods that aim to avoid synchronous patterns are needed. As sug-
gested by our findings in this work, the time delay can be an approach
to reduce or even avoid spike synchronisation in generic Hodgkin–
Huxley neuronal networks, especially if the time delay is from 𝜏 >
1 ms to 𝜏 ≈ 5.5 ms. Besides, such results also complement the current
literature involving neuronal delayed networks, once our results are in
agreement with previously observed effects in networks composed of
Rulkov neurons [37]. In addition, such an interval is also capable of
9

Fig. 12. ⟨𝑅⟩ (colour scale) in the parameter space 𝑔exc × 𝛤 for 𝜏 = 7 ms. Increasing
𝛤 , the random pulses become more significant and determinant in the induction of
neuronal synchronisation in the delayed network. For 𝛤 ≈ 10 μA/cm2, almost all
parameters in which low level of synchronisation is found (approximately 𝑔exc < 0.35
mS/cm2) are replaced by at least a partial synchronisation, while the synchronised
regions (approximately 𝑔exc > 0.35 mS/cm2) are maintained by the random pulses. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 13. Schematic representation of the mixed pulse for 𝐼0
𝑖 = 10 μA/cm2, taken

into account a pulse amplitude 𝛤 = 3 μA/cm2. We consider a 𝜆P = 20 ms with
𝛥𝑡(ON) = 𝛥𝑡(OFF) = 8 ms for the periodic part of the pulse. In the random part, we
consider 𝜆R = 10 ms with 𝛥𝑡(ON) and 𝛥𝑡(OFF) randomly chosen in [0, 14] ms.

Fig. 14. Parameter space 𝜆R ×𝜏 with the mean value of the Kuramoto order parameter
⟨𝑅⟩ in colour scale. We see the transition from a complete periodic pulsed perturbation
(𝜆R = 0 ms) to a fully random pulsed perturbation (𝜆R = 200 ms). For 𝜆R ≈ 5 ms, the
mixed pulse begins to induce effects characteristic of random pulses. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

holding desynchronised spikes even for some perturbation conditions
applied over the HH neurons, which is an important result due to
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the fact that perturbations can be associated for instance with some
sensory stimulus. In such a scenario, the delay might be part of the
important steps toward to finding a useful and applicable method to
control synchronised activities, mostly considering that time delay is a
common effect in chemical synapses. In this way, interventions that can
change the time of neuronal transmission could bring new possibilities
for synchronisation control.
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