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ABSTRACT

Numerical experiments of the statistical evolution of an ensemble of noninteracting particles in a time-dependent billiard with inelas-
tic collisions reveals the existence of three statistical regimes for the evolution of the speed ensemble, namely, di�usion plateau, normal
growth/exponential decay, and stagnation. These regimes are linked numerically to the transition from Gauss-like to Boltzmann-like speed
distributions. Furthermore, the di�erent evolution regimes are obtained analytically through velocity-space di�usion analysis. From these cal-
culations, the asymptotic root mean square of speed, initial plateau, and the growth/decay rates for an intermediate number of collisions are
determined in terms of the system parameters. The analytical calculations match the numerical experiments and point to a dynamical mech-
anism for “thermalization,” where inelastic collisions and a high-dimensional phase space lead to a bounded di�usion in the velocity space
toward a stationary distribution function with a kind of “reservoir temperature” determined by the boundary oscillation amplitude and the
restitution coe�cient.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5120023

Billiards are systems that represent the background of the sta-
tistical physics and the theory of dynamical systems. Because of
their rich dynamical properties and easy understanding, the bil-
liard models can be applied in order to describe several problems
inmany di�erent branches of physics. In this work, we use the bil-
liard theory to study the statistical evolution of the speeds from an
ensemble of noninteracting particles in a time-dependent billiard
when inelastic collisions are observed. We present numerical and
analytical explanations for all stages of the speed ensemble evolu-
tion until the thermalization state is reached.We also demonstrate
that this �nal state of thermalization, actually, works as a kind
of reservoir temperature, which is characterized by the boundary
parameters of the time-dependent system.

I. INTRODUCTION

The Loskutov-Ryabov-Akinshin (LRA) conjecture1 was pro-
posed as an attempt to foresee what would happen to the behavior
of the average velocity for an ensemble of particles in a time depen-
dent billiard2,3 whenever the shape and characteristics of the phase
space of the corresponding static version of the billiard was known.

Chaos in the phase space for the dynamics of a particle in a billiard
with a static boundary was claimed by the conjecture to be a suf-
�cient condition to produce unlimited energy growth, also known
as Fermi acceleration,4 of the particles when a time perturbation to
the boundary was introduced. The conjecture was tested in a num-
ber of billiards being therefore validated.5,6A counterexample of such
conjecture was observed in an elliptic billiard,2,3 whose structure is
integrable in the static form, but that presents an unlimited di�u-
sion of energy when a time-dependence is introduced on the billiard
boundary.

The physics behind the unlimited energy growth is understood
and is mainly related to the di�usion of velocities as a function of
time.7–10 Di�erent regimes of growth are related to di�erent shapes
of the speed distribution function. The counterintuitive fact that
Hamiltonian dynamics may lead to an unlimited energy growth in
chaotic billiards comes from the higher dimension of the dynami-
cal system, and such a growth appears to contradict what is expected
from thermodynamics. However, this only states that there is not
a well-de�ned temperature for the moving boundary, which works
here as the energy reservoir; i.e., the wall is not in a thermodynamic
equilibrium. In a regular situation, a gas of noninteracting parti-
cles with an initial low temperature T0 will increase its energy if
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introduced in a, previously empty, recipient with walls at ambient
temperature Ta > T0. The opposite will happen if the gas is at an
initially larger temperature T0 > Ta.11 This thermalization process,
in general, manifests as a monotonic change in temperature as time
advances, leading to an asymptotic state of thermal equilibrium.

In contrast, consider a conservative chaotic billiard with an
oscillating boundary, such that unlimited energy growth is observed.
Since the billiard energy is essentially kinetic, the growth of energy
leads also to the growth of the temperature. The type of interaction
of the particle with the boundary is the reason of such behavior. Elas-
tic collisions preserve both momentum and kinetic energy in the
moving referential frame of the boundary, which does not imply con-
servation of energy for the inertial frame of the gas center of mass,
leading to the unlimited energy growth of the ensemble of particles.

On the other hand, inelastic collisions preserve only momen-
tum, and the dissipation introduced produces drastic topological
changes in the phase space. When inelastic collisions are taken into
account, the Liouville measure is no longer preserved, and attrac-
tors can develop in the phase space.12 Considering that the attractor
is located at �nite values of the velocity, and its basins of attraction
containmost of the phase space, it is clear that the individual trajecto-
ries will converge to the attractor, and the average speed will saturate,
leading to a sort of thermodynamical equilibrium for the perturbed
billiard.

Until now, important results have been obtained in the charac-
terization of the unbounded energy evolution for particles in chaotic
billiards. Our contribution in this context is the statistical descrip-
tion of the evolution to a �nal equilibrium and the close connection
of this behavior with thermal equilibrium. To our knowledge, this
problem has not been addressed elsewhere and o�ers a signi�cant
analogy between dynamical and thermal equilibrium.

In this paper, we discuss the dynamics of an ensemble of parti-
cles moving in an oval billiard with a periodically oscillating bound-
ary.We consider inelastic collisions of the particleswith the boundary
and explore the behavior of the root mean square of speed con-
sidering the shape of the probability distribution function of the
speeds. Then, we show that the presence of dissipation leads the
system toward an asymptotic stationary state, which, with basis on
its statistical properties, we argue is a dynamical equivalent of a
thermodynamical equilibrium.

The paper is organized as follows. In Sec. II, we discuss the
equations that compose the billiard model with a time-dependent
boundary. In Sec. III, we show the statistical analysis of the speeds
and the di�usion process in the system. In Sec. IV, we present an ana-
lytical derivation of the time evolution of the root mean square of the
speeds in terms of the control parameters of the problem. In Sec. V,
we o�er a connection between the asymptotic dynamics of dissipative
time-dependent billiards and the concept of thermalization. Finally,
in Sec. VI, we present our conclusions and �nal remarks.

II. THE TIME-DEPENDENT BILLIARD

We start considering a time-dependent oval billiard13 with a
boundary described in a polar form as

Rb(θ , ε, t, a, p) = 1 + ε [1 + a cos(t)] cos(pθ), (1)

FIG. 1. Sketch of two consecutive collisions (red line) of a particle in a
time-dependent oval-billiard with a = 0.9, ε = 0.08, and p = 3.

where Rb is the boundary radial coordinate, θ is the polar angle,
ε measures the oval deformation, t is the time, a is the boundary
oscillation amplitude, and p is a positive integer.14

The trajectory of a particle inside of the billiard can be described
using a nonlinear four-dimensional mapping H : R

4 → R
4, such

that (θn+1,αn+1,Vn+1, tn+1) = H(θn,αn,Vn, tn). The angle αn is mea-
sured between the particle trajectory and the tangent line to the
boundary at (θn, tn), after the nth collision with the wall, and
Vn = | EVn| is the velocity magnitude. Figure 1 shows in red a sketch
of a typical trajectory of a particle at di�erent times in the model.

Given that there are no additional potentials inside the bil-
liard, each particle moves with constant speed along a straight line
between collisions. The radial position of the particle is given by

Rp(t) =
√

X2
p(t)+ Y2

p (t), where Xp(t) and Yp(t) are the rectangular

coordinates at time t, which are given by

Xp(t) = X(θn, tn)+ | EVn| cos(µ)[t − tn], (2)

Yp(t) = Y(θn, tn)+ | EVn| sin(µ)[t − tn], (3)

with µ = (αn + φn) and φ = arctan(Y ′(θ , t)/X′(θ , t)), where
Y ′(θ , t) = dY/dθ and X′(θ , t) = dX/dθ .

The new dynamical variable θ at collision n + 1 is obtained
through the numerical solution of the implicit equationRb(θn+1, tn+1)

= Rp(θn+1, tn+1), with the time tn+1 given by

tn+1 = tn +

√

1X2
p +1Y2

p

| EVn|
, (4)

where 1Xp = Xp(θn+1, tn+1)− X(θn, tn) and 1Yp = Yp(θn+1, tn+1)

− Y(θn, tn).
The re�ection laws for each collision of the particle with the

boundary can be obtained by applying conservation of momentum
in an instantly inertial frame where the contact point of the billiard
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is at rest. In our case, the re�ection laws are

EV ′
n+1 · ETn+1 = ξ EV ′

n · ETn+1,

EV ′
n+1 · ENn+1 = −κ EV ′

n · ENn+1,

where ETn+1 = cos(φn+1)î + sin(φn+1)ĵ and ENn+1 = − sin(φn+1)î +
cos(φn+1)ĵ are the tangent and normal unit vectors, EV ′

is the parti-
cle velocity measured in the noninertial frame, and ξ , κ ∈ [0, 1] are
the tangent and normal restitution coe�cients, respectively.

After collision n + 1, the tangent and normal components of the
velocity are

EVn+1 · ETn+1 = (1 − ξ) EVb · ETn+1 + ξ EVn · ETn+1, (5)

EVn+1 · ENn+1 = (1 + κ) EVb · ENn+1 − κ EVn · ENn+1, (6)

where

EVb = dRb(t)

dt
|tn+1 [cos(θn+1)î + sin(θn+1)ĵ] (7)

is the boundary velocity at time tn+1. The magnitude of the particle
velocity after collision n + 1 is

| EVn+1| =
√

[ EVn+1 · ETn+1]
2 + [ EVn+1 · ENn+1]

2
, (8)

and the re�ection angle αn+1 is

αn+1 = arctan

[

EVn+1 · ENn+1

EVn+1 · ETn+1

]

. (9)

III. SYSTEM EVOLUTION AND SPEED DISTRIBUTION

In contrast to the static situation, in a time-dependent billiard,
particles can gain or lose energy upon interaction with the mov-
ing boundary. For an ensemble of particles, the individual gains
and losses do not necessarily compensate and the mean energy can
change in time. The details of this process can be relevant to under-
stand rates of change in the energy, but here, we start with a sim-
ple heuristic analysis that reveals the broad aspects of the energy
evolution.

First of all, consider that themeanquadratic speed changes by an
amountψ after each collision. We consider here a situation in which
there is a small fractional loss of energy after each collision character-
ized by some restitution coe�cient γ < 1, and then the mean energy
after a collision n satis�es approximately

V2
n+1 = γ (V2

n + ψ). (10)

This dynamical system has a stable equilibrium when the
fractional loss compensates exactly the energy gain after collision.
Regardless of the initial con�guration, after many collisions, it is

expected that the quadratic speed V2
n+1 will approach a stagnation

value Vsta given by

Vsta =
√

γψ

1 − γ
. (11)

Notice for elastic collisions γ → 1, the stagnation speed
diverges, which is consistent with the phenomenon of Fermi accel-
eration, where there is an unlimited growth of energy as the time
evolves.7,10,15

FIG. 2. (a) and (b) Plot for Vrms vs n for different initial speeds and parameters.

To illustrate numerically the stagnation process, we consider the
root mean square of the speed distribution for an ensemble of non-
interacting particles in the time-dependent oval-billiard described in
Sec. I. To reduce numerical �uctuations, in addition to the instan-
taneous ensemble average, we consider also the time average of the
quadratic velocity for the ensemble of particles,

Vrms =

√

√

√

√

1

M

M
∑

i=1

1

n + 1

n
∑

j=0

| EV|2i,j, (12)

where EVi,j is the velocity of the ith particle after collision j. The �rst
summation is made over an ensemble of di�erent initial conditions
randomly chosen in t ∈ [0, 2π],α ∈ [0,π], and θ ∈ [0, 2π], where all
the particles have the same initial speed V0, while the second sum-
mation is made over the individual orbits. In our simulations, we
considered an ensemble ofM = 106 particles colliding 107 timeswith
the boundary.

The numerical evolution of Vrms is presented in Figs. 2(a)
and 2(b) for two di�erent restitution coe�cients κ and various initial
con�gurations with di�erent V0. These curves in Fig. 2 exhibit three
di�erent evolution stages for each initial speed. Initially, for speeds
around the maximum speed of the boundary Vmax = aε, Vrms has a
plateau whose extension depends on the initial speed of the particles.
After a �rst crossover, the system enters the growth regime following
a power law with exponent β ∼ 1/2 of the number of collisions n.
Finally, a second crossover is observed after which the Vrms saturates
atVsta. It can also be observed that whenV0 � aε,Vrms decays expo-
nentially to the stagnation regime in agreement with the heuristic
discussion in Sec. III.

However, to understand in a more detailed fashion the growth
rates and transition values, we need to take into account the di�u-
sion of particles in the velocity space (Vx,Vy).16 At the initial stage,
all particles exist on a circle of radiusV0. After a collision, each parti-
cle jumps by a small amount (δVx, δVy) in some direction. Provided
there are more available states in the velocity space outside the circle
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FIG. 3. (a) Plot of the evolution of the speed distribution func-
tion ρn(V) for an ensemble of 10

6 particles, with initial speed
V0 = 0.5, after different number of collisions n and (b) and (c)
plot of the measurement of the kurtosis b1 and skewness b2
(black curve in both figures), respectively, for the speed distri-
bution function after different number of collisions. The purple
and pink dashed lines are the values for the kurtosis and skew-
ness for the normal and two-dimensional Maxwell-Boltzmann
distributions, respectively.

than inside, the probability of particles moving outside the circle is
larger than inward. This small imbalance leads to a growth in theVrms

of the ensemble when the initial radiusV0 is belowVsta. However, the
initial growth rate is very small because the initial distribution of par-
ticles has to relax toward a Gaussian distribution before exhibiting
the usual growth rate for a random walk βRW = 1/2. Such a relax-
ation process results in an initial plateau that is longer for larger initial
speeds. For large initial velocitiesV0 > Vsta, the initial plateau occurs
in the same fashion, but the probability of moving inward is larger
because with each collision, the particles must give up an amount of
energy proportional to V2. Although there are also losses for small
velocities, the di�usion there dominates because the characteristic
value of δV2 is larger than the energy lost after each collision.

In Fig. 3(a), for the same parameters of Fig. 2(a) and V0 = 0.5,
we present the evolution of the speed distribution function ρn(V) as
the number of collisions increases. The 10th collision corresponds
to the plateau region of Fig. 2(a) (for V0 = 0.5) where a spreading
Gauss-like distribution preserves its mean around the initial speed
until it reachesV = 0 at the left side. At the 25th collision, the system
is in the growth regime, and �nally, for the 1000th and 10 000th col-
lisions, the speed distribution does not change appreciably because
the system reached its stagnation regime. Thus, comparing Figs. 2(a)
and 3(a), we can follow, for V0 = 0.5, the Vrms and ρn(V) evolution
as n increases.

In order to characterize quantitatively the shape evolution of the
speed distribution with the number of collisions, we calculated the
kurtosis b1 and skewness b2 for ρn(V) as functions of the number of
collisions with usual de�nitions,17 given by

b1 = 1

M

M
∑

i=1

[

Vi − V̄

σ

]4

, (13)

b2 = 1

M

M
∑

i=1

[

Vi − V̄

σ

]3

, (14)

where σV =
√

〈V2〉 − 〈V〉2.

Figures 3(b) and 3(c) show the evolution of b1 and b2 for the
speed distribution function presented in Fig. 3(a). This �gure also
shows the values of b1 and b2 for the normal (purple dashed line)
and a two-dimensional Maxwell-Boltzmann (pink dashed line) dis-
tributions, which di�er from ours because of the stochastic nature of
their associated processes.

Notice that after ρn(V) reaches the stagnation regime (about
100 collisions), the kurtosis measurement (b1 ≈ 2.87) is close to
that of a normal distribution, while the skewness measurement
(b2 ≈ 0.30) is an intermediary value between the normal and the
Maxwell-Boltzmann distributions.

IV. KINETIC ANALYSIS

Consider that the quadratic speed of a single particle, Ṽ2,
changes by an amountψ(α, θ , t,V) after colliding with the boundary
at position θ with incidence angle α at time t,

Ṽ2(α, θ , t,V) = V2 + ψ(α, θ , t,V), (15)

where V2 and Ṽ2 are the quadratic speeds before and after col-
lision. In an ensemble of M particles, there are approximately
MFn(α, θ , t,V)dαdθdtdV particles with variable x between x and
x + dx, where x = {α, θ ,V , t}. Then, it is possible to describe the
mean quadratic speed after the nth collision of an ensemble of
particles as

V2
n+1 = V2

n + δV2
n , (16)

where

V2
n =

∫ ∞

0

∫ 2π

0

∫ 2π

0

∫ π

0

V2
Fn(α, θ , t,V)dαdθdtdV , (17)

δV2
n =

∫ ∞

0

∫ 2π

0

∫ 2π

0

∫ π

0

ψ(α, θ , t,V)

× Fn(α, θ , t,V)dαdθdtdV , (18)
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FIG. 4. (a), (b), (d), and (e) Plot of
the numerical distribution functions
ρθ (θ) =

∫

F̃(θ ,α)dα and ρα(α)

=
∫

F̃(θ ,α)dθ , while (c) and (f) plot of
the numerical collision time distribution
functions ρV(t) for the time-dependent
oval-billiard at various amplitudes of
oscillations and two initial speeds. The
control parameters are ε = 0.08 and
p = 3.

and Fn(α, θ , t,V) is the full phase-space distribution function after
collision n. In our case, we can factor this distribution as

Fn(α, θ , t,V) = F(θ ,α)ρV(t)ρn(V), (19)

where F(α, θ) are the angle distribution, ρV(t) is the collision time
distribution, and ρn(V) is the speed distribution function.

As observed in Figs. 4(a)–4(f), the angles F(α, θ) and collision
time distributionsρV(t) are almost una�ected by the amplitude of the
boundary oscillations a. Consequently, they are almost independent
of the index n and on the initial speed values. This can be under-
stood in terms of the phase-space projection θ − α, which retains
important features of the unperturbed problem, which is indepen-
dent of the velocity of the particles and contains large regular regions
with invariant tori that modulate the size of the chaotic region as a
function of the angles θ − α, in a way consistent with Fig. 4.

On the other hand, as discussed in Sec. III, the speed distribu-
tion function ρn(V) [see Fig. 3(a)] depends on both the speed and
the index n.

Using decomposition (19), we want to �nd an analytical expres-
sion that describes the behavior of the rootmean square speed shown
in Figs. 2(a) and 2(b). As discussed in Ref. 10, to determine the
behavior of the mean quadratic speed, it is not necessary to describe
the evolution of the global distribution function, but only to know
the evolution of its �rst momenta. Therefore, replacing Eq. (19) in
Eq. (17) and de�ning the partial mean

W(V) =
∫ 2π

0

∫ 2π

0

∫ π

0

ψ(α, θ , t,V)F(θ ,α)ρV(t)dαdθdt, (20)

we can write a more compact expression for the change of the mean
quadratic speed as

δV2
n =

∫ ∞

0

ρn(V)W(V)dV . (21)

As detailed in Ref. 10, if we make a second-order expansion
of the W(V) around the mean speed Vn of the speed distribution

function ρn(V), we obtain

W(V) ≈ W(Vn)+ W ′(Vn)(V − Vn)+ 1

2
W ′′(Vn)(V − Vn)

2. (22)

Inserting Eq. (22) in Eq. (21), we obtain an approximation for
the change of the mean quadratic speed using the second-order
expansion, as follows:

δV2
n = W(Vn)+ 1

2
W ′′(Vn)(V2

n − Vn
2
). (23)

Notice also that Eq. (22) is accurate only around the distribution
mean. Aswe get far from themean value, the approximation becomes
poorer. However, ρn(V) in the integrand of Eq. (21) drops for large
and small values of the speed, so the integrand is small where the
expansion of W(V) is not accurate. The interested reader can �nd
more details about these approximations in Ref. 10.

Finally, replacing Eq. (23) in Eq. (16), we �nd a second-order
approximation for the mean quadratic speed after collision n, as
follows:

V2
n+1 = V2

n + W(Vn)+ 1

2
W ′′(Vn)(V2

n − Vn
2
). (24)

In order to determine the partial mean W(V), we �rst need to
�ndψ(α, θ , t), which depends on the particular problem. In this case,
the equations of the time-dependent oval-billiard lead us to

ψ(α, θ , t) = (κ2 − 1)V2 sin2(α)

+ (1 + κ)2(aε)2 cos2(pθ) sin2(t)

+ 2Vκaε(1 + κ) sin(α) cos(pθ) sin(t). (25)

Assuming that the collision time distribution ρV(t) is approxi-
mately uniform, i.e.,

ρV(t) = 1

2π
, (26)
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and replacing Eqs. (25) and (26) in Eq. (20), we obtain

W(V) = η1(κ
2 − 1)V2 + 1

2
(1 + κ)2(aε)2η2, (27)

where

η1 =
∫ π

0

sin2(α)F(α, θ)dθdα, (28)

η2 =
∫ 2π

0

cos2(pθ)F(α, θ)dθdα, (29)

which after inserted in Eq. (24) result in

V2
n+1 − V2

n = η1(κ
2 − 1)V2

n + 1

2
(1 + κ)2(aε)2η2. (30)

Considering the approximation of continuous limit Gn+1

− Gn ≈ dG(n)/dn, we found a solution for the mean quadratic
speed,

V2 = 9 +
(

V2
0 −9

)

eη1(κ
2−1)n, (31)

where

9 = (aε)2

2

η2

eta1

(

1 + κ

1 − κ

)

.

To compare with the previous numerical simulations, we need
to average over the ensemble of velocities and the history of velocities
of all particles. Then, we need to average the previous instantaneous
mean along the history of all quadratic means, i.e.,

V2 = 1

n + 1

n
∑

i=0

V2
i . (32)

Provided that the arguments of the exponential are negative,
their summation converges to

n
∑

i=0

eη1(κ
2−1)i =

[

1 − e(n+1)η1(κ
2−1)

1 − eη1(κ2−1)

]

. (33)

Replacing Eq. (33) in (31) and then Eq. (31) in (32), we obtain

V2 = 9 +
(

V2
0 −9

n + 1

)

[

1 − e(n+1)η1(κ
2−1)

1 − eη1(κ2−1)

]

. (34)

The �nal expression that describes the root mean square speed
evolution is

Vrms =
√

9 +
(

V2
0 −9

n + 1

) [

1 − e(n+1)η1(κ
2−1)

1 − eη1(κ2−1)

]

, (35)

which corresponds to the continuous line (blue) in Figs. 2(a) and 2(b)
in excellent agreement with the numerical results for the analyzed
cases.

To conclude this analytical approach, we consider a few relevant
limit cases for Eq. (35) that give us relevant insight into the overall

behavior of the obtained solution. When n = 0, we have

Vrms = V0, (36)

and for n → ∞, we obtain the �nite stagnation value

Vrms = aε

√

1

2

η2

η1

(

1 + κ

1 − κ

)

. (37)

Finally, we consider the intermediate values of n for small initial

speedsV0 �
√
9 . In the limit of κ ≈ 1, we can expand to a �rst order

exponential denominator in Eq. (35), while the numerator is taken to
a second order due to the factor n + 1 that contributes further to its
nonlinearity. After a short algebra, we obtain

Vrms
∼= aε

√

η2

2
(1 + κ)(n + 1), (38)

which for n � 1 can be approximated to

Vrms
∼= aε

√

η2

2
(1 + κ)n1/2, (39)

which leads to the observed growth rate in the numerical treat-
ment of the system and also depends on the boundary oscillation
amplitude, the angle distribution contained in η2, and the restitution
coe�cient κ .

V. CONNECTION WITH THERMODYNAMICS

As a �nal remark, we present an analogy between dynamical
di�usion and the stagnation of the mean quadratic speed with the
concept of thermalization.We start by borrowing the concept of tem-
perature in a gas of noninteracting particles inside a closed region
as being proportional to the mean of the quadratic peculiar veloci-
ties, which, in our case, is simply the mean of the quadratic velocities
because the mean velocity of the gas is zero. In this sense, high tem-
peratures are linked with high speeds, while the opposite is also
true.18

We consider the di�usion process in the velocity space (Vx,Vy)

to understand how the ensemble modify with collision. In order to
characterize such di�usion, we evolve an ensemble of 106 particles
in the velocity space, where each one started with the same velocity
at some point in a circle with radius V0 = 0.5 and random angular
position in the billiard.

Figures 5(a)–5(d) show the (Vx,Vy) space after 10, 25, 1000, and
10 000 collisions, respectively. The color scale measures the density
of particles. Note that after 10 collisions [see Fig. 5(a)], the veloci-
ties become distributed around the original circle of radiusV0 = 0.5,
where the density continues to be higher while some particles evolve
towards the zero speed until the particles start populating the veloc-
ities near “zero.” This behavior is in agreement with the previous
discussion of the initial plateau discussed in Sec. III [see Fig. 2(a)].
After 25 collisions, the velocities are more spread out and the average
radius of the distribution grows, in agreement with the mean speed
growth observed when the speed distribution becomes asymmetri-
cal. Finally, after 1000 and 10 000 collisions, the distribution does
not change much, which, expectedly, corresponds to the stagnation
state, for which the individual velocity �uctuations do not a�ect the
distribution function [see Fig. 3(a)].

Chaos 29, 103122 (2019); doi: 10.1063/1.5120023 29, 103122-6

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 5. Plot of the diffusion speed in the
velocity space after (a) 10 collisions, (b)
25 collisions, and (c) 1000 collisions, and
(d) 10 000 collisions for an ensemble of
106 particles with random positions and
locations but with the same initial speed
V0 = 0.5. The logarithmic scale of col-
ors represents the density of velocity in
the velocity space, where the most dense
regions are shown in red, while the less
are in black.

It is interesting to notice that the velocity �uctuations are
responsible to change the mean value of the ensemble of velocities
in the space (Vx,Vy), where these �uctuations might be estimated as
the measure of the variance,

σ 2
V = 〈Ev 2〉 − 〈Ev〉2, (40)

where themean velocity 〈Ev〉 is “zero” because the particles are inside a
nontranslating closed billiard, while the same does not apply for 〈Ev2〉,
which can be identi�ed as Eq. (31).

Given that we know how the di�usion process in the system
is, we can de�ne an analogous quantity to the temperature named
“dynamical temperature” Td, which takes into account the char-
acteristics of the dynamical system studied. This quantity can be
written as

Td ∝ V2, (41)

where the equality comes after the introduction of a suitable constant
Kd, which leads us to

Td = m

2Kd

[

9 +
(

V2
0 −9

)

eη1(κ
2−1)n

]

, (42)

with m being the mass of each particle and Kd plays the role of the
Boltzmann constant in our dynamical ensemble.

Figure 6 shows the numerical evolution of the dynamical tem-
peratureTd as a function of the number of collisionsn, for two restitu-
tion parameters close to “one.” As can be seen, when the initial speed
V0 is less than 9 , the dynamical temperature of the gas increases
with the collisions until it reaches the stagnation regime, where it
remains for the rest of the simulation. The stagnation regime in our
context is analogous to system thermalization with a heat reservoir at
constant temperatureTsta, which emerges from the interplay between
the oscillating boundary and the inelastic collisions.

Provided there are no additional potentials acting inside the bil-
liard, the particle energy is purely kineticUtot = Ek so that we can use
the dynamical temperature to recast the total energy in terms of it,

Utot = Ek,

Utot = 1

2
NmV2,

Uth = NKdTd, (43)

FIG. 6. Plot of evolution of the dynamical temperature for a gas of noninteracting
particles in a time-dependent oval billiard in a function of the number of collisions.
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where N is the number of particles. Expectedly, due to the de�nition
of dynamical temperature, we recover an energy equation analogous
to an ideal gas at temperature Td.

VI. CONCLUSIONS

In this paper, we have studied the evolution regimes of an
ensemble of noninteracting particles in an oscillating billiard with
collision losses. The evolution of the root mean square speed of the
ensemble was determined both numerically and analytically. The
analytical treatment was based on the di�usion process in the veloc-
ity space and resulted in a consistent description of all the regimes of
the system evolutionwith considerable accuracy. The velocity plateau
occurs due to the relaxation of the initial con�guration. Then, for
small initial velocities, the energy grows with a characteristic expo-
nent close to 1/2, characteristic of normal di�usion; otherwise, it will
decrease exponentially for velocities larger than the saturation speed.
Finally, the ensemble reaches a stagnation state independent of the
initial con�guration.

The stagnation regime is analogous to a thermalized state, where
the distribution function becomes stationary and its temperature can
be used to characterize the energy reservoir, here encompassing the
vibrating boundary and the restitution constant. A dynamical tem-
perature was de�ned to make a connection with thermodynamics
that resulted in analogous equations for the energy of an ideal gas
in an actual thermal system.
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