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Sistema de Equacoes Diferenciais

d — v —
%t =X = 1o0y) Equacdes de primeira ordem
d%t =y =09(XY) Sistema auténomo



Trajetéria no Espaco de Fase = br(l —r)

Mapa de Poincaré

{ro, 0,0, ...}

Atrator:
ciclolimitecomr=1

Figure 11.20 Poincaré map for a limit cycle of a planar system.

The system 3—: =0.2r(1 — 1), i—:} = 1, has a limit cycle r = 1. The line segment L

is approximately perpendicular to this orbit. Successive images 1,12, . . ., of initial

Chaos

point 19 under the Poincaré map converge tor = 1. .
Alligood et al.



Sistema Nao Autonomo

X+yX+ a’X = %cos(a)t)

Introduzirdo as variaveisy, z
z=t - z=1

y = X

obtemos

y
% cos(wz) Yy - “’02 X Sistema autndmo
=1
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Exemplo de Sistema Integravel:
péndulo simples

mli?8 + mglsed =0 -
g = ¢

¢:—/sen9

Equacaodastrajetorias no espacode fase:
a6/ - _ 9 _ _
qu—(_%)senﬁ . -9/ serpdo = g d ¢

0 ¢* — acosd=C ;a:Z% C = cte




Espaco de Fase
Péndulo Simples
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Uma curva para
X cada valor de C
W

Figure 7.14 Solution curves of the undamped pendulum.

(a) Level curves of the energy function. (b} The phase plane of the pendulum. The
solutions move along level curves; equilibria are denoted by dots. The variable x is
an angle, so what happens at x also happens at x + 2. As a results, (a) and (b) are
pericdic in x with period 2.



Oscilador Harmonico Amortecido

X+ yx +a°x=0
X =y

_ _ 2
vy aix - 9, s vy el
x (t) = Ae™' + Be™!

= Jl-y:VB] A=y -4d
x(t) = aexp[-y2 yt cos(%t +a)]

a, a dependenda condicaoinicial



Ponto Fixo

d L P ay
dt_x_f(x1y)_0

dy =y =g(x,y) =0

O ponto P(x, y*) é um ponto fixo



Estabilidade do Ponto Fixo

Pontc Pé assintéticamene estave se

im,_ . (X, y) - (X,y)
P @& um atrator

Ponto P é estavelse

im, ., (X, y)=(x,y)
Casocontrario é instavel



Estabilidade Estrutural

As solucdoegda equacaodo pénduloideal
X + w’'x =0
saoalteradasseconsideramosatrito (y#0)

X+yX+a°x=0



Exemplos de Pontos Fixos

Referéncia Principal: Chaos
K. Alligood, T. D. Sauer, J. A. Yorke
Springer (1997)



Figure 7.1 The family of solutions of x = ax.
{a) a = Q: exponential growth (b) a < 0: exponential decay.
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Figure 7.2 Phase portraits of X = ax.
Since x is a scalar function, the phase space is the real line . (a) The direction of

solutions is away from the equilibrium for a = 0. (b) The direction of solutions is
toward the equilibrium for a < 0.



(b)

Figure 7.3 Solutions of the logistic differential equation.

(a) Solutions of the equation x = x(1 — x). Solution curves with positive initial
conditions tend toward x = 1 as t increases. Curves with negative initial condi-
tions diverge to —oe. (b) The phase portrait provides a qualitative summary of the

information contained in (a).



T = x =1
x=0
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Figure 7.4 Slope field of the logistic differential equation.
At each point (¢, x), a small arrow with slope ax(1 — x) is plotted. Any solution

must follow the arrows at all times. Compare the solutions in Figure 7.3.



Figure 7.5 Solutions that blow up in finite time.

Curves shown are solutions of the equation x = x*. The dashed curve in the upper
left is the solution with initial value x(0) = 1. This solution is x(t) = 1 /(1 — t),
which has a vertical asymptote at x = 1, shown as a dashed vertical line on the
right. The dashed curve at lower right is also a branch of x(t) = 1 /(1 — t), one that
cannot be reached from initial condition x(0) = 1.
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Figure 7.6 Vector field and phase plane for a saddle equilibrium.
(a) The vector field shows the vector (x,y) at each point (x, y) for (7.14). (b) The
phase portrait, or phase plane, shows the behavior of solutions. The equilibrium

(x,y) = (0,0) is a saddle. The time coordinate is suppressed in a phase portrait.




Figure 7.7 Phase plane for a saddle equilibrium.
For (7.16), the origin is an equilibrium. Except for two solutions that approach the
origin along the direction of the vector (3, —1), solutions diverge toward infinity,

although not in finite time.



Figure 7.8 Phase plane for Equation (7.17).
The coefficient matrix A for this system has only one eigenvector, which lies along
the x-axis. All solutions except for the equilibrium diverge to infinity.



Figure 7.9 Phase planes for pure imaginary eigenvalues.

(a) In (7.18), the eigenvalues are *=i. All solutions are circles around the origin,
which is an equilibrium. (b) In (7.23), the eigenvalues are again pure imaginary.
Solutions are elliptical. Note that for this equilibrium, some points initially move
farther away, but not too far away. The origin is (Lyapunov) stable but not attracting.




Figure 7.10 Phase planes for complex eigenvalues with nonzero real part.
(a) Under (7.21), trajectories spiral in to a sink at the origin. The eigenvalues of the
coefficient matrix A have negative real part. (b) For (7.22), the trajectories spiral

out from a source at the origin.




Figure 7.11 A three-dimensional phase portrait.
In Example 7.13, the origin (0, 0,0) is a saddle equilibrium. Trajectories whose
initial values lie in the plane move toward the origin, and all others spiral away

along the x-axis.
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Figure 7.14 Solution curves of the undamped pendulum.

(a) Level curves of the energy function. (b} The phase plane of the pendulum. The
solutions move along level curves; equilibria are denoted by dots. The variable x is
an angle, so what happens at x also happens at x + 2. As a results, (a) and (b) are
pericdic in x with period 2.
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Figure 7.15 Potential energy functions.

(a) The potential function for the pendulum is P(x) = 1 — cos x. There are inhnitely
many wells. (b) The double-well potential P(x) = x* /4 — «2 /2.




Figure 7.16 Drawing phase plane curves from the potential.

(a) Graph of the potential energy function P(x). Each trajectory of the system is
trapped in a potential energy well. The total energy x*/2 + P(x) is constant for
trajectories. As a trajectory with fixed total energy E; tries to climb out near x;
or x3, the kinetic energy %* /2 = E; — P(x) goes to zero, as the energy E converts
completely into potential energy. (b) A periodic orbit results: The system oscillates

between positions x; and x;.



Exemplos de Orbitas Periddicas
e Conjuntos Limites

Referéncia Principal: Chaos
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Dimensaodo espacode faselimita as formasdo comportameto
assintotio das solucdesdos sistemasutonomos.

Na linha, solucdeslimitadas convergempara um ponto de equilibria
No plano.elas convergema cicloslimites.

No plano nao ha solucoescadticas.

Teoremada curva de Jordan - Teoremade Poincaré Bendixson
No espacotridimersional pode haver caos.



Exemplo
.r =r(l-r)

0=8

Ponto deequilibrio instavel (0,0)
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r =1 orbita periddica — ciclo limite estavel

r = 0=8t+d
1



Exemplo:
.r =-r(d1-r)
0=8

Ponto deequilibrio estavel (0,0)
r =1 orbita periddicainstavel - ciclolimite instavel



Exemplo

>.<: X(a-x), a>0
Pontosde equilibrio: x=0e x=a

Parax, >0, w(Xx,) ={a}
Parax,=0, w(x,) = {0}
Para x, <0, w(X,) ={ }: conjunto vazio



Exemplo

r=r (a-r)
0=b
Origem €é ponto de equilibrio instah

w(@) = {0}
w(r,,0,) = {r=a} ; 0
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Figure 8.1 The definition of an w-limit set.

The point p is in the w-limit set of the spiraling trajectory because there are points
F(t;,vo), F(tz, vo), F(t3,vo) . . . of the trajectory, indicated by dots, that converge
to p. The same argument can be made for any point in the entire limiting circle of

the spiral solution, so the circle is the w-limit set.



Exemplo

.r:r(a—r)

6 = serfd + (r- a)’

(a,0)
Pontosde equilibrio:< (a, )
(0,0)

w(0) = {0}
w(r,,8,) ={r=a}; Ur,#0
w(a,s,) = (a,8=0,m)



Figure 8.3 Examples of m-limit sets for planar flows.

(a) The phase plane for Example 8.5 shows the circle r = a as an attracting periodic
orbit of system (8.3). The origin is an unstable equilibrium. The w-limit set of
every trajectory except the equilibrium is the periodic orbit. (b) The phase plane
for Example 8.6 looks very similar to the phase plane in (a), except that in this
example there are no periodic orbits. There are three equilibria: the origin and the
points (a, 0) and (a, 7). Every other point on the circle r = a is on a solution called
a connecting arc, whose a- and w-limit sets are the equilibria. The w-limit set of
each nonequilibrium solution not on the circle is the circle r = a.



(c)

Figure 8.4 Planar limit sets.

The three picrures illustrate the three cases of the Poincaré-Bendixson Theorem.
(a) The limit set is one point, the origin. (b) The limit set of each spiraling trajectory
is a circle, which is a periodic orbit. (c) The limit set of the outermost trajectory is
a figure eight. This limit set must have an equilibrium peoint P at the vertex of the
“eight”. It consists of two connecting arcs plus the equilibrium. Trajectories on the
connecting arcs tend to P ast — wandas ¢ — —a.



Duas freqénciasincomensudiveis formam um torus T?

Movimento preencheuma superficie toroidal
em um volume tridimersional.

a //B
i D

(a) (b) (c)

Figure 8.9 A dense orbit on the torus.



