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Memristors (abbreviation of memory and resistor), introduced as the fourth fundamental electrical circuit
element, remember the electric charge that flowed through it. These nonlinear elements are considered as a class
of two terminal resistive devices and offers a lot of possible applications in various areas. In this article, we review
the dynamical behaviour of some electrical circuits with memristors. Initially, we show that a simple circuit with a
capacitor and an inductor connected to a memristor exhibits periodic and chaotic attractors. After that, we show
that the known Chua circuit, with a nonlinear resistance, can generate bifurcations and chaos. Substituting
the nonlinear resistance by a memristor, the modified Chua circuit exhibits coexistence of attractors. Another
known circuit, the Colpitts, is made of a combination of capacitors and inductors containing a bipolar junction
transistor. We show that the modified Colpitts circuit, created by substituting the transistor by a memristor,
presents multistability and coexistence of many attractors.
Keywords: Memristor, chaos, electric circuit, Chua, Colpitts.

1. Introduction

In 1971, Chua [1] proposed the fourth fundamental
passive circuit element, called memristor. Memristor
is a portmanteau of the words memory and resistor.
Its valuable property is the possibility of changing the
resistance as a function of the current, memorising the
alterations. The first practical memristive device was
based on a thin of titanium dioxide and fabricated by
a group at HP Research Labs in 2008 [2]. It exhibits a
pinched hysteresis between the current and the voltage.
Nowadays other kinds of memristors have been devel-
oped [3].

Memristors offer a lot of potential applications in
different areas, such as electrical engineering and com-
puter science. They have been widely used in hardware
security [4] and neural network [5]. Wang et al. [6]
proposed a memristive chaotic system to achieve the
encryption of image. Tan and Wang [7] demonstrated
that a neural model composed of two neurons based on
the memristor can show firing pattern transitions and
different attractors. The memristors can also be used to
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generate digital modulate signals [8] and to implement
programmable circuits [9].

A great deal of research has been devoted to analyse
the dynamic behaviour of circuits with memristors [10].
Properties of basic electric circuits constructed from
resistors, capacitors, inductors, and mainly memristors
have been reported [11].

In this article, we introduce some chaotic electric
circuits and how their dynamics is modified by including
a memristor. Initially, we introduce a simple circuit, with
a capacitor and an inductor coupled with a nonlinear
active memristor [12], and show that this circuit presents
periodic and chaotic attractors. After that, we present
the common Chua and Colpitts nonlinear circuits that
also exhibit chaotic attractors. The Chua circuit has
been used as source of pseudo random signals and in
secure communication [13]. The Colpitts circuit is able
to generate high frequency sinusoidal signals and optical
signals with application in optoelectronics [14]. However,
when we replace the nonlinear resistance by a memristor
in the Chua circuit, the modified circuit presents coex-
isting periodic and chaotic attractors [15]. Furthermore,
for a sinusoidal voltage stimulus, this modified Chua
circuit presents complex transient dynamics [16]. Finally,
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we introduce the Colpitts circuit composed of a combina-
tion of capacitors and inductors [17]. Furthermore, when
we substitute the exponential nonlinear term in the Col-
pitts system by an ideal memristor, we find, depending
on the initial condition, extreme multistability [18].

This paper is organised as follows. In Section 2, we
introduce the memristor and a mathematical model, as
well as some values of the parameters commonly used in
the literature. A three circuit elements in series, a mod-
ified memristor Chua circuit, and a modified memristor
Colpitts circuit are presented in Section 3. Depending on
the parameter values, the three circuit elements in series
can exhibit periodic and chaotic attractors, as shown
in Subsection 3.1. Subsections 3.2 and 3.3 show that
coexisting attractors can be find in modified memristor
circuits based on Chua and Colpitts oscillators. Finally,
we draw our conclusions in Section 4.

2. Memristor

Memristor is an abbreviation of memory resistor, namely
a resistor with the capability to hold data in memory.
It is composed of electrode and dielectric layers, as well
as substrate. The materials play an important role in
its performance [3]. The memristor model reported by
Strukov et al. [2] is based on a two-layer film composed of
undoped (TiO2) and doped oxygen vacancies (TiO2−x)
with platinum electrodes (Pt), as shown in Fig. 1.

The memristor model is described by [2]

V = M · I, (1)

M = RON
w

D
+ ROFF

(
1 − w

D

)
, (2)

where V is the voltage potential, M is the generalised
resistance, I is the electric current, and w is the state
variable of the device [19]. RON and ROFF correspond
to the low and high resistance, respectively [11]. D
represents the full length of the memristor.

Equation (1) can be rewritten as I = G · V , where the
memductance is G = 1/M [10]. The time evolution of w
is given by

ẇ = η · f(w, p) · I = η · f(w, p) · V

M

=
η · f(w, p) · v0 · sin

( 2πt
T

)
Ron

w
D + (1 − w

D ) · ROFF
, (3)

Figure 1: Schematic representation of the memristor composed
of undoped (TiO2) and doped oxygen vacancies (TiO2−x) with
platinum electrodes (Pt).

Table 1: Description and values of parameters [2].

Description Parameter Value
η Polarity 1
D Length of titanium 1 nm

diode memristor
ROFF High resistance in low 70 Ω

concentration dopant
RON Low resistance in high 1 Ω

concentration dopant
p Integer value in the 10

nonlinear function
v0 Voltage Amplitude 1 V
T Intrinsic period of oscillation 20 s
w0 Initial device value [0.0,1.0] nm

where η corresponds to the polarity, v0 the voltage
amplitude, T the period of potential oscillation, and t
the time. In Eq. (3), f(w, p) = 1 − (2w − 1)2p is the
window function of the nonlinear dopant drift and p is
a positive integer number [2, 20, 21]. Table 1 shows the
description and some values of the parameters commonly
used in the literature [2].

To illustrate the typical memristor temporal
behaviour, we apply a periodic potential V (t) to it.
Thus, Fig. 2 displays the memresistance variable M ,
and current passing behind set I. The state variable of
the device has the initial value w(t = 0) = w0 as the
minimal, as well as the initial resistance as maximal
M(w0). We see that oscillation in the applied potential
(Fig. 2(a)) is able to change the state of the memristor
device (Fig. 2(b)). As a consequence, the memresistance
(Fig. 2(c)) generates oscillations in the current passing
by the device (Fig. (2(d)).

Figure 3 exhibits I as a function of V for different
values of w0. For w0 = 0.0 nm, I is directly proportional
to V , as shown in Fig. 3(a). In Figs. 3(b) and 3(c) for
w0 = 0.5 nm and w0 = 0.6 nm, respectively, we see a

Figure 2: Temporal evolution of (a) V , (b) w, (c) M , and (d) I.
We consider the parameters according to Table 1. We observe
periodic oscillations.
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Figure 3: I as a function of V for (a) w0 = 0 nm, (b) w0 = 0.5
nm, (c) w0 = 0.6 nm, and (d) w0 = 0.8 nm. Depending on w0,
it is possible to observe the existence of a pinched hysteresis
effect, as shown in the panels (b) and (c).

current-voltage characteristic of the memristor device,
that is the pinched hysteresis effect. For w0 = 0.8 nm,
the I − V curve is a straight line through the origin. To
obtain the I ×V curves, we consider V = v0 ·sin(2πt/T ).

3. Circuits

3.1. Three circuit elements in series

The nonlinear dynamic behaviour of memristors have
been analysed in oscillatory and chaotic circuits [22].
Muthuswamy and Chua [12] proposed a circuit with
a linear passive inductor, a linear passive capacitor,
and a nonlinear active memristor. Figure 4 displays a
schematic circuit diagram that has the three elements in
series.

The dynamic equations of the circuit are given by

ẋ = y

C
,

ẏ = − 1
L

[x + β(z2 − 1)y], (4)

ż = −y − αz + yz,

Figure 4: Schematic diagram for the three circuit elements in
series [12]. The circuit is composed of a linear passive inductor
(L), a linear passive capacitor (C), and a nonlinear active
memristor (M).

Figure 5: Phase portraits of y(t) versus x(t) for C = 1.2, L =
3.3, β = 1.34, (a) α = 1.15, and (b) α = 0.85. The panels (a)
and (b) show periodic and chaotic attractors, respectively.

Figure 6: (a) Bifurcation diagram and (b) Lyapunov exponents
as a function of the control parameter α for C = 1.2, L = 3.3,
and β = 1.34. The blue (α = 1.15) and green (α = 0.85)
dashed lines correspond to the α values considered in Figs. 5(a)
and 5(b), respectively.

where x corresponds to the voltage across the capacitor
C and y is related to the current through the inductor
L. The variable z is the internal state of the memristive
system. The parameters α and β are associated with the
memristive device.

Figure 5 displays y(t) versus x(t) for C = 1.2, L = 3.3,
and β = 1.34. The panels (a) and (b) exhibit a periodic
attractor for α = 1.15 and a chaotic attractor for
α = 0.85, respectively. The chaotic attractor shows sen-
sitivity to initial conditions identified by the spectrum
of Lyapunov exponents [23]. The system is chaotic when
the maximal Lyapunov exponent is positive [24].

In Fig. 6(a), we present the bifurcation diagram of the
maximum values of x(t) as a function of α. The diagram
shows period doubling as α increases and a parameter
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range with chaotic behaviour. By observing the maximal
Lyapunov exponent in Fig. 6(b), the negative (periodic
attractor) and positive (chaotic attractor) values can be
compared with the bifurcation diagram to confirm the
periodic and chaotic attractors.

3.2. Modified memristor Chua circuit

Around 1983, Chua invented an electronic circuit that
produces irregular behaviour [25]. The circuit has a
nonlinear negative resistance, known as Chua diode.
In 1984, Matsumoto [26] demonstrated numerically the
appearance of chaotic attractors in the Chua circuit.
Experiments confirming the existence of periodicity and
chaos from the Chua circuit were reported by Zhong and
Ayrom [27] in 1985. After that, dynamical properties of
this circuit have been theorethically investigated [28, 29].

A memristive circuit can be derived from the Chua
circuit by replacing the Chua diode with the mem-
ristor [22], as shown in Fig. 7. Periodic and chaotic
trajectories were observed in experimental setup of
modified Chua circuit [30]. Xu et al. [31] found multiple
attractors in a memristive Chua circuit.

The dimensionless model of the modified Chua circuit
is described by [15]

ẋ = a(y − x + xM(w)),
ẏ = x − y − z, (5)
ż = by,

ẇ = −cx − dw + x2w,

where x and y are related to the voltages across the
capacitors, z corresponds to the current through the
inductor, and w is associated with the internal voltage
of the memristor. The memresistance M(w) is defined
as α − βw2 and a, b, c, d, α, and β are the control
parameters.

Figure 8(a) exhibits three periodic attractors, while
Fig. 8(b) displays one periodic attractor (red line) and
other chaotic (green line). We consider b = 24, c = 37,
d = 12, α = 1.2, β = 0.5, (a) a = 9, and (b) a = 12.
In Fig. 9, we compute the bifurcation diagram of the
maximum values of z as a function of the control
parameter a. The diagram is plotted by forward (black)
and backward (red) for b = 24, c = 37, d = 12, α = 1.2,
and β = 0.5. It is possible to observe period-doubling
cascades to chaos and various narrow windows in which
chaos goes to periodic behaviour. We find the existence

Figure 7: Schematic diagram for the Chua circuit with a non
ideal voltage controlled memristor [15]. The memristor replaces
the Chua diode.

Figure 8: Phase portraits of z(t) versus x(t) showing the
coexistence of attractors for b = 24, c = 37, d = 12, α = 1.2,
β = 0.5, (a) a = 9, and (b) a = 12. The panel (a) displays
three periodic attractors, while the panel (b) exhibits a periodic
(in red) and a chaotic attractor (in green).

Figure 9: Bifurcation diagram of the local maximum of the
dynamical variable z as a function of the control parameter a
for b = 24, c = 37, d = 12, α = 1.2, and β = 0.5. The blue
and black lines mark the a values used in the phase portraits of
Figs. 8(a) and 8(b), respectively.

of coexisting attractors, also called multistability. The
diagrams show that periodic attractors coexist, as well
as chaotic attractors with different complexities coexist.
The blue and black lines mark the a values used in the
phase portraits of Figs. 8(a) and 8(b), respectively.

Depending on the initial conditions, the trajectory can
move toward different attractors. Figure 10(a) displays
initial conditions x(0) and y(0) for orbits converging to
three different attractors with period one (white, blue,
and red). In Fig. 10(b), we observe trajectories going to
a chaotic attractor (green region) and others going to a
attractor with period one (red region).

3.3. Modified memristor Colpitts circuit

In 1918, Colpitts [32] invented a type of oscillatory
circuit that utilises a combination of capacitors and
inductors. The oscillating frequency can be adjusted
from a few Hertz up to 109 Hertz (microwave region).
For this circuit, there are numerical and experimental
evidences of periodic and chaotic behaviours [33–35].
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Figure 10: Basins of attraction z(0)×x(0) with y(0) = w(0) =
0.0 for attractors depicted in Fig. 8(a) (a = 9) and Fig. 8(b)
(a = 12). The white, blue, and red regions correspond to subsets
of the initial conditions of different attractors with period one,
while the green region corresponds to a chaotic attractor.

Figure 11: Schematic diagram for the Colpitts circuit where
BJT is a bipolar junction transistor [36]. The circuit has a BJT
as the gain element and a resonant network composed of a pair
of capacitors (C1 and C2) and an inductor (L).

Figure 11 displays the classical configuration of the
Colpitts oscillator with a bipolar junction transistor
(BJT) [36].

Considering normalised parameters and dimensionless
state variables, the mathematical model is given by [37]

ẋ = g

Q(1 − k) [z − n(y)],

ẏ = g

Qk
z, (6)

ż = −Qk(1 − k)
g

(x + y) − 1
Q

z,

where x and y are associated with the voltages across
the capacitors, z is related to the current through the
inductor, while g, Q, and k are constants. n(y) is an
exponential nonlinear term defined as

n(y) = e−y − 1, (7)

that is related to the voltage-current relation of the BJT.
Memristors have been introduced into the Colpitts

circuit by replacing the BJT element to study the
dynamical behaviour [38]. Zhang et al. [18] reported
multistability in a memristor based Colpitts system.
The memristive circuit is created by substituting the
exponential nonlinear term by a memristor. The model
is formulated as

ẋ = az − aW (w)y,

ẏ = az, (8)

ż = −0.5(x + y)
a

− bz,

ẇ = y, (9)

where W (w) = α − βw2, a = 2g/Q, and b = 1/Q.
In Fig. 12, we plot w versus z for a = 5.2, b = 0.9,

α = 0.5, and β = 0.1. Considering the same values of
the control parameters and different initial conditions,

Figure 12: w(t) versus z(t) for a = 5.2, b = 0.9,
α = 0.5, and β = 0.1. The panels show the coexis-
tence of many attractors, where we consider as initial condi-
tions (a) (−1, 0, 0, −3.2) (point attractor in black star) and
(−1, 0, 0, −3.4) (period 1 limit cycle), (b) (10−9, 0, 0, 3.3)
(period 2 limit cycle), (c) (10−9, 0, 0, −0.8) (period 3 limit
cycle), (d) (10−9, 0, 0, 3.6) (asymmetric chaotic double-scroll
attractor), (e) (10−9, 0, 0, 0) (symmetric chaotic double-scroll
attractor), and (f) (−1, 2, 0, 2.2) (unbounded orbit).
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the panels show that the modified memristor Colpitts
circuit exhibits the coexistence of many attractors. For
the initial conditions (−1, 0, 0, −3.2) and (−1, 0, 0, −3.4),
we find a point attractor (black star) and a period 1
limit cycle (blue line), respectively, as shown in the
panel (a). The panel (b) displays a period 2 limit
cycle for (10−9, 0, 0, 3.3) and (c) shows a period 3 limit
cycle for (10−9, 0, 0, −0.8). In the panels (d) and (e)
for (10−9, 0, 0, 3.6) and (10−9, 0, 0, 0), respectively, we
observe asymmetric and symmetric chaotic double-scroll
attractors. The panel (f) exhibits an unbounded orbit for
(−1, 2, 0, 2.2).

4. Conclusions

The memristor is the fourth fundamental passive circuit
element that exhibits a pinched hysteresis loop in the
current versus voltage plane. It has attracted much
attention of researchers due to applications in several
areas of integrated circuit design and computing. Over
the last few years, many experiments and mathemati-
cal models have been proposed to study the dynamic
behaviour of memristive circuits.

In this work, we present some memristive circuits that
can exhibit chaotic oscillations. We focus on the sim-
plest, Chua, and Colpitts circuits. The simplest circuit
constructed from a capacitor and an inductor connected
to a memristor shows periodic and chaotic attractors.
By replacing the Chua diode with the memristor, it is
possible to observe chaotic attractors and multistability.
With regard to the Colpitts circuit, it displays complex
nonlinear phenomena by including a memristor. Depend-
ing on the parameter, the modified memristor Colpitts
circuit exhibits extreme multistability.
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