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Particle drift driven by electrostatic wave fluctuations is numerically computed to describe the

transport in a gradient velocity layer at the tokamak plasma edge. We consider an equilibrium

plasma in large aspect ratio approximation with E� B flow and specified toroidal plasma velocity,

electric field, and magnetic field profiles. A symplectic map, previously derived for infinite coherent

time modes, is used to describe the transport dependence on the electric, magnetic, and plasma

velocity shears. We also show that resonant perturbations and their correspondent islands in the

Poincar�e maps are much affected by the toroidal velocity profiles. Moreover, shearless transport

barriers, identified by extremum values of the perturbed rotation number profiles of the invariant

curves, allow chaotic trajectories trapped into the plasma. We investigate the influence of the toroidal

plasma velocity profile on these shearless transport barriers. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4955321]

I. INTRODUCTION

Tokamak plasma confinement is limited by the electro-

static turbulence and the associated particle transport at the

plasma edge.1,2 The turbulence-driven particle transport is

mainly caused by the particle E� B drift3–5 at the plasma

edge, and the fluctuating electrostatic field is associated with

drift waves, driven by equilibrium radial gradients, propagat-

ing in the poloidal and toroidal directions.6 Several experi-

ments in tokamaks show this transport reduced by properly

changing the equilibrium radial profiles of the electric and

magnetic fields.7–9

To investigate the influence of the electric and mag-

netic fields profiles on the particle transport at the tokamak

plasma edge, a guiding-center model was proposed to

describe the particle transport, driven by drift waves propa-

gating in the plasma edge, for large aspect ratio tokamaks

with an equilibrium E� B poloidal flow.10,11 This model

has been applied to numerically investigate the onset of

transport barriers in tokamaks.12,13 Complementary, influ-

ence of the E� B poloidal flow on the turbulence and

plasma edge transport has been experimentally identified3,4

and theoretically investigated.14

The model introduced in Ref. 11 was used to derive, for

a spectrum with infinite coherent time modes, a non integra-

ble symplectic map that describes test particle transport in

sheared plasmas. This drift map has been used to numeri-

cally investigate the transport dependence on electric and

magnetic shears spatial profiles.13 On the other hand, toka-

mak experiments and initial simulations show that particle

transport depends on the particle velocity profile.15–18

However, the influence of the velocity profile on the particle

transport has not yet been much explored in the mentioned

drift map.

In this work, we apply the drift map derived in Ref. 11

to numerically obtain Poincar�e maps which show the influ-

ence of particle toroidal velocity profile on the particle trans-

port at the plasma edge. In particular, assuming equilibrium

profiles for electric and magnetic fields, and plasma flow, we

give examples of changes in the shearless invariant lines,

observed at the radial position where the rotation number

profiles have an extremum. These shearless lines act as inter-

nal particle transport barriers separating trajectories in the

phase space. Considering a non-monotonic radial electric

field profile, for both the monotonic and non-monotonic

safety factor profiles, we give examples of the influence of

the uniform and non-uniform velocity profiles on the trans-

port and the periodic structures seen in these maps.

In Section II, we present the symplectic map that

describes the particle trajectories. In Section III, we intro-

duce the equilibrium electric field, safety factor, and parallel

velocity profiles. In Section IV, the parallel velocity effects

are investigated for a monotonic safety factor profile. In

Section V, we analyze such effects for a safety factor non-

monotonic profile and show how the particle transport

increases with the potential amplitude. The conclusions are

left to the Section VI.

II. DRIFT MAP

The considered plasma configuration corresponds to a

layer of a large aspect ratio tokamak. In the considered

model, particle trajectories are described by the guiding-

center equation of motion

dx

dt
¼ vk

B

B
þ E� B

B2
; (1)

where x ¼ ðr; #;uÞ is written in local polar coordinates with

r as the radial position, # and u, respectively, as the poloidal

and toroidal angles. The electric field is composed by a fluc-

tuating component ~E ¼ �r~/ plus an equilibrium radial

field Er, and the magnetic configuration is introduced by the

safety factor profile for B � Bu � B#. Here, vk is the parti-

cle velocity along to the toroidal direction. In this approxi-

mation, the safety factor can be calculated as q ¼ rBu=RB#:
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For the fluctuating potential, we use the finite mode drift

wave spectrum,

~/ðx; tÞ ¼
X

M;L;n

/m;l;n cos ðM#� Lu� nx0tÞ; (2)

where all mode amplitudes /M;L;n are equal for the consid-

ered range of radial position, M and L define the dominant

spatial modes in this coordinate system, and x0 defines the

lowest angular frequency with substantial amplitude in the

drift wave spectrum. Considering an infinite number of

modes with frequencies nx0, it is possible to introduce im-

pulsive iterations at t ¼ 2pn=x0 .

For convenience, we assume action and helical angle

variables,11 such as I ¼ ðr=aÞ2 and W ¼ ðM#� LuÞ, respec-

tively. In Ref. 11, for the considered wave modes, the fol-

lowing symplectic drift map equations were derived:

INþ1 ¼ IN þ
4p M

a2 B x0

/ML sin vð Þ; (3)

vNþ1 ¼ vN þ R1ðINþ1Þ þ R2ðINþ1Þ; (4)

R1 Ið Þ ¼
vk Ið Þ

x0 R q Ið Þ M � L q Ið Þ
� �

; (5)

R2 Ið Þ ¼ � M

x0 a B

Er Ið Þffiffi
I
p ; (6)

where v ¼ W=2p. To solve these equations, we have to intro-

duce the electric and magnetic equilibrium fields. Furthermore,

the parallel velocity profile vkðIÞ can be inserted in this model

considering its experimental dependence with the radial plasma

position.19 Since we are interested in studying what occurs near

the plasma edge where R1ðIÞ � R2ðIÞ, the resonance condi-

tions of interest are mainly determined by the safety factor and

the parallel velocity profile that appears in R1ðIÞ.
For /ML ¼ 0, the map is integrable, and all orbits are

regular, either periodic or quasi-periodic for any initial con-

dition, I ¼ I0 and Dv � R1ðIÞ þ R2ðIÞ. In this case, the rota-

tion number XðIÞ is a constant along to the orbit for each

initial action I0. Then, each invariant line is horizontal in the

phase space and characterized by its rotation number. The

wave inclusion ; /ML 6¼ 0, breaks the integrability, and I0 is

not anymore a constant of motion. Even so, for the rippled

invariant lines, we can define the rotation number as the limit

X ¼ limi!1 DWi=i: Thus, in general, the rotation number

X ðIÞ depends on the I value.

On the other hand, considering the wave perturbation,

the map describes a mixed phase space with regular and cha-

otic orbits. The particle transport occurs whenever the orbits

are chaotic, and for these orbits, the rotation number is not

defined. In this context, the remaining invariant curve acts as

transport barriers, but, in general, they can be destroyed by

increasing the perturbing wave amplitude.20 However, an

invariant line may resist to be broken if their rotation number

is an extremum. This shearless line acts as lasting internal

transport barrier,21 limiting the transport to each side of

phase space, and a strength perturbation amplitude is

required to break it allowing a global transport.

III. ELECTRIC, MAGNETIC, AND VELOCITY PROFILES

In this work, we assume a spatial dominant mode

M=L ¼ 15=6 and a non-monotonic radial electric field Er to

investigate the influence of vk profiles for monotonic and

non-monotonic magnetic configurations given by the safety

FIG. 1. Radial electric field (a) and

safety factor (b) with monotonic profile

(solid line) and non-monotonic profile

(dashed line).

FIG. 2. Radial velocities for positive uniform profile (green line), negative

uniform profile (red line), and sheared profile (blue dashed line) at the

plasma edge.
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factor profiles. For that, particle parallel velocity with posi-

tive uniform, negative uniform, and sheared profiles is com-

bined with both magnetic configurations. The parameters

and profiles used in the present work are compatible with

those chosen in Ref. 19 to simulate the transport in TCABR

tokamak.

The non-monotonic electric field profile is given by the

expression Er ¼ 3ar2 þ 2br þ c, where the coefficients are

FIG. 3. Poincar�e maps for potential mode amplitude /ML ¼ 250 mV and positive uniform velocity (a), negative uniform velocity (b), and sheared velocity (c)

profiles showed in Fig. 2. The shearless curve is depicted in red in (c). For these maps, we used a monotonic safety factor profile showed in Fig. 1(b). Rotation

number profiles at W=2p ¼ 0 for positive uniform velocity (d), negative uniform velocity (e), and sheared velocity (f).
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a ¼ 80:00� 103, b ¼ 31:95� 103, and c ¼ 3:00� 103 (see

Fig. 1(a)). All results of this study are obtained by assuming

this non-monotonic radial electric field that is seen as a fac-

tor to develop a particle transport barrier that allows trapping

chaotic trajectories inside the plasma.13 For monotonic

safety factor profile, we use qðIÞ ¼ 2:00þ 3:00 I2 and for

non-monotonic one qðIÞ ¼ 5:00� 6:30 I2 þ 6:30 I3, see Fig.

1(b). These profiles are chosen to investigate the influence of

FIG. 4. Poincar�e maps for potential mode amplitude /ML ¼ 250 mV and positive uniform velocity (a), negative uniform velocity (b), and sheared velocity (c)

profiles showed in Fig. 2. The shearless curves are depicted in red in (a), (b), and (c). For these maps, we used a non-monotonic safety factor profile showed in

Fig. 1(b). Rotation number profiles at W=2p ¼ 0 for positive uniform velocity (d), negative uniform velocity (e), and sheared velocity (f).
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magnetic and electric shears, combined to the particle paral-

lel velocity, on the particle transport.

The simulations are performed using the particle parallel

velocities vk ¼ 2:5 km=s; vk ¼ �2:5 km=s, and vkðIÞ ¼
2:5tanhð10:0 I � 9:6Þ ½km=s� in the case of sheared profile

characterized by gradients at the plasma edge (see Fig. 2).

These velocity profiles are compatible with the experimental

measurements in TCABR tokamak.19 The lowest angular

frequency in the power spectrum obtained by floating poten-

tial measurements is x0 ¼ 6� 104 rad=s. Finally, for this

tokamak configuration, we use R ¼ 61 cm, a ¼ 18 cm, and

B ¼ 1:1 T.12,13,19 Despite using TCABR parameters in this

work, this methodology can be explored in different toka-

maks to investigate turbulent transport in tokamaks edge.

IV. PARALLEL VELOCITY EFFECTS WITH
MONOTONIC SAFETY FACTOR PROFILE

Initially, we investigate the particle trajectories for each

of the three parallel velocity profiles, shown in Fig. 2, with

the electric field profile of Fig. 1(a) and the monotonic safety

factor profile of Fig. 1(b). For each velocity profile, we

present a set of orbits in the phase space and the rotation

number profiles, calculated as defined in Section III, i.e., for

orbits starting with a fixed initial helical angle W in the phase

space. The periodic orbits are observed around the radial

position where the rotation number assumes rational values

and the shearless radial position is located at the maximum

or minimum of the rotational number profiles.

Figure 3 shows Poincar�e sections of the drift map for

/ML ¼ 250 mV using three different velocity profiles. For

positive uniform velocity profile, we observe resonance con-

dition around I ¼ 0:5 and chaotic particle trajectories occur

for I > 0:8, as shown in Fig. 3(a). Changing vk for a negative

uniform velocity, we observe the positions of hyperbolic

points replaced by stable elliptic points, as seen in Fig. 3(b).

The Poincar�e map for sheared velocity profile is shown in

Fig. 3(c), where we observe the inner island as the one

around I ¼ 0:5 seen in Fig. 3(b). However, we observe the

periodic structures embedded in a chaotic sea with the ellip-

tic points located at W=2p � 0 as those seen in Fig. 3(a).

We present in Figs. 3(d)–3(f) the rotation number pro-

files according to Figs. 3(a)–3(c), respectively. For compari-

sons, the rotation number profiles are calculated not only for

FIG. 5. Poincar�e maps for potential mode amplitudes /ML ¼ 1 mV (a), /ML ¼ 20 mV (b), /ML ¼ 65 mV (c), and /ML ¼ 100 mV (d) for sheared velocity profile

showed in Fig. 2. The shearless curves are depicted as the same color of those showed for the sheared points in Fig. 6. For these maps, we used a non-

monotonic safety factor profile showed in Fig. 1(b).
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/ML ¼ 250 mV; the perturbing wave amplitude value used to

obtain the phase space, but also for /ML ¼ 0, assuming ini-

tial conditions at W=2p ¼ 0.

In Fig. 3(d), we obtain negative values for rotation num-

ber due to the changes DW from positive to negative values.

Thus, altering the signal of vk, we modify the helicity varia-

tion. Note in Fig. 3(a) the island around I ¼ 0:5, which cor-

responds to a resonance condition with null global rotation

number. The changing of vk signal in Fig. 3(e) leads to the

replacement from elliptic point to a hyperbolic one, located

around I ¼ 0:5. In Fig. 3(f), we indicate the coordinate for

which dX=dI � 0, position correspondent to the shearless

curve depicted in red for the mapping of Fig. 3(c).

Therefore, the maximum value of the numerically obtained

rotation number profile for sheared velocity is observed at

I � 0:86 in Fig. 3(f). With this observation, we determine,

for an initial condition (I ¼ 0:86, W=2p ¼ 0), the shearless

curve in the map of Fig. 3(c), i.e., the location of the barrier

is identified by the shearless point of the rotation number

profile.

V. PARALLEL VELOCITY EFFECTS WITH NON-
MONOTONIC SAFETY FACTOR PROFILE

In addition to Sec. IV, we investigate the parallel veloc-

ity effects over the particle transport when assuming the

non-monotonic safety factor profile, showed in Fig. 1(b). For

positive uniform velocity profile, we observe in Fig. 4(a) a

double resonance, with twin islands located at I � 0:7 and

chaotic particle trajectories for I > 0:9. As observed in Sec.

IV, the change to the negative uniform velocity profile shifts

the position of elliptic to the hyperbolic points, as seen in

Fig. 4(b). In case of sheared parallel velocity profile, we

obtain a mapping characterized by both radial regions of

Figs. 4(a) and 4(b), for low and high I values, but with an

evidence of a saddle-node bifurcation, as seen in Fig. 4(c).

The periodic structures observed in these mappings can

be explained by the rotation number profiles X, showed in

Figs. 4(d)–4(f). From these profiles, we observe twin islands

caused by a resonance with rational number of X. By com-

paring the position of the shearless line with the twin islands

in Figs. 4(a) and 4(b), we recognize the occurrence of a

bifurcation involving the island reconnection.22 In Fig. 4(c),

we observe a resonance that leads to a different topology,

not observed in Figs. 4(a) and 4(b), discussed later on.

The map for sheared velocity and non-monotonic safety

factor profile is now further studied to show the influence of

mode amplitude on the shearless bifurcations. In Fig. 5, we

present mappings and colored shearless invariant curves

obtained for sheared velocity using the following mode

amplitudes: 1 mV, 20 mV, 65 mV, and 100 mV. Figures

5(a)–5(c) have two shearless curves, while Fig. 5(d) has only

one. Figures 6(b)–6(e) show the corresponding rotation num-

ber profiles with the shearless points indicated by the same

color used to represent the shearless curves in Fig. 5. Note

that, for comparison, Fig. 6(a) shows the rotation number

profile for null mode amplitude with two shearless points

due to the non-monotonic equilibrium profile (as expected

from R1ðIÞ expression given by Eq. (5)).

As the amplitude mode increases the twin islands show

a saddle-node bifurcation, in which the two shearless curve

positions are displaced from the initial radial positions seen

for low amplitudes. Thus, in Fig. 5(a), even for the low am-

plitude /ML ¼ 1 mV, we observe the twin islands. Increasing

the amplitude to /ML ¼ 20 mV, the twin islands about I �
0:8 go through a reconnection, as showed in Fig. 5(b). The

two shearless curves approach each other as the perturbation

parameter increases further, as seen in Fig. 5(c) for

/ML ¼ 65 mV. The twin islands also approach to the inner

island, originating a saddle-node bifurcation, where the ellip-

tic points are aligned and sharing the same periodic structure

for /ML ¼ 100 mV, as seen in Fig. 5(d). Furthermore, only

one shearless curve survives such bifurcation. The displace-

ment of the shearless curves and the bifurcations, with the

increase of potential mode amplitude, is confirmed by the

maximum and minimum of rotational number profiles

showed in Figs. 6(b)–6(e).

Finally, increasing further the perturbation for

/ML ¼ 300 mV, part of the invariant curves are destroyed

and the saddle-node bifurcation is surrounded by chaotic tra-

jectories, as shown in Fig. 7(a). Nevertheless, the shearless

curve still survives as confirmed by the rotational number

profile, obtained for initial conditions with W=2p ¼ �0:5,

shown in Fig. 7(b).

Complementary, the drift map has also been obtained to

investigate how the particle transport becomes significant

with the potential mode amplitude increase. Here, we use a

color scale relative to the particle initial position to evaluate

how the particle transport changes with the potential

FIG. 6. Rotation number profiles at W=2p ¼ 0 for the set of maps showed in

Fig. 5. The sheared points are depicted using the same colors of those for the

shearless curves in Fig. 5.
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amplitude. Thus, Fig. 8 shows examples of the mappings, for

four different potential amplitudes, having the same initial

radial positions indicated by the color scale. As a conse-

quence of the potential amplitude dependence, the same

initial colored points are more spread in the phase space for

higher amplitudes, as we recognize in Figs. 8(a)–8(d).

In Fig. 8(a), for a low perturbation, /ML ¼ 1 mV, only a

negligible localized transport is noticed. In Fig. 8(b), radial

FIG. 7. Poincar�e map for potential mode amplitude /ML ¼ 300 mV using non-monotonic safety factor profile of Fig. 1(b) and sheared velocity of Fig. 2. The

shearless curve is depicted in red in (a). Rotation number profile (b) for W=2p ¼ �0:5 for the same parameters of (a).

FIG. 8. Symplectic maps for sheared velocity profile of Fig. 2 and potential mode amplitudes /ML ¼ 1 mV (a), /ML ¼ 65 mV (b), /ML ¼ 300 mV (c), and

/ML ¼ 500 mV (d). The color scale in these maps indicates the initial radial particle positions showed in (a).
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particle displacement is still negligible, but the invariant

curves are deformed as the potential mode amplitude is

increased to /ML ¼ 65 mV, i.e., the trajectories fill radial

positions far away from those observed in Fig. 8(a). On the

other hand, the trajectories are chaotically spread at the

plasma edge for /ML ¼ 300 mV, as seen in Fig. 8(c). In Fig.

8(d), we observe chaotic trajectories around the saddle-node

bifurcation with particle trajectories much displaced from

initial positions. These results show long radial particle dis-

placements for several initial conditions, moving to long dis-

tance radial positions for which the velocity changes due to

the considered velocity radial profile (see Fig. 2). Therefore,

these maps allow understanding how the chaos and radial

particle displacement develop as the amplitude mode

increases at the plasma edge.

VI. CONCLUSIONS

A symplectic drift map was used to describe the particle

drift driven by electrostatic wave fluctuations in a velocity

shear layer at the tokamak plasma edge considering a large

aspect ratio approximation with E� B flow. We showed that

the particle transport at the tokamak plasma edge is much

affected by the parallel particle toroidal velocity profile.

With this procedure, we obtained test particle trajecto-

ries for chosen safety factor, electric field, and velocity pro-

files. At the plasma edge, the trajectories are mainly

determined by the safety factor and velocity profiles and are

identified as regular or chaotic. The chaotic trajectories,

associated with the chaotic transport, changed with the ve-

locity profile. For both monotonic and non monotonic mag-

netic configurations, we observed robust shearless barriers,

provided by the gradient velocity layer, separating trajecto-

ries in the phase space. We also observe how resonance and

shearless curve bifurcations affect the particle transport.
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