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The transport of particles in the phase space is investigated in the Fermi-Ulam model. The system consists of a
particle confined to move within two rigid walls with which it collides. One is fixed and the other is periodically
moving in time. In this work we investigate, for this model, the location of invariant curves that separate chaotic
areas in the phase space. Applying the Slater's theorem we verify that the mapping presents a family of invariant
spanning curves with a rotation number whose expansion into continued fractions has an infinite tail of the
unity, acting as local transport barriers. We study the destruction of such curves and find the critical parameters
for that. The determination of the rotation number in the vicinity of one of the considered spanning curves
allowed us to understand the dynamics in the vicinity of the considered curve, both before and after criticality.
The rotation number profile showed us the fractal character of the region close to the curve, since this profile
has a structure similar to a “Devil's Staircase”.

© 2022 Published by Elsevier Ltd.

1. Introduction

The study of two-dimensional Hamiltonian systems connects sev-
eral areas, due to the capacity of the Hamiltonian formalism to describe
a great diversity of models. This formalism is applied to channel flows
[1,2], transport properties [3-5], magnetic field lines [6,7], waveguides
[8,9], Fermi acceleration [10,11] among others [12,13]. An important
part of the study of Hamiltonians, for quasi-integrable systems, is asso-
ciated to the called KAM theorem (stated by Kolmogorov, demonstrated
for flows by Arnold and for maps by Moser) [14-17]. This theorem guar-
antees the persistence of some invariant tori (invariant curves) for
quasi-integrable maps, eventually, these invariant tori are destroyed
by sufficiently large perturbations. However, for small perturbation
values, some of these tori persist and act as transport barriers [18], in ad-
dition to limiting the size of the chaotic sea. In these circumstances,
these curves play a crucial role in the study of transport properties, dif-
fusion, and scales in the chaotic sea, among other applications.

We investigate the destruction of these curves in the Fermi-Ulam
model. This model was initially introduced by Fermi [19] to explain
the acceleration of cosmic rays. According to him, charged particles
traveling in the interstellar medium would be accelerated by oscillating
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electromagnetic fields coming from stars and galaxies. Later, based on
this proposal, Ulam [20] proposed a model in which a particle would
be confined between two rigid walls, colliding between them, one
being fixed and the other moving periodically in time. Over the years
there has been a wide variety of work involving this model, in which sci-
entists seek to understand and explore its properties, this is due to the
relevance this model has in the field of dynamical systems. Among
these works, it is worth mentioning [21] where the authors reduced
the Fermi problem to a Hamiltonian form and using this technique
they estimated the location of absolute barriers in the phase space of
the system. However, the determination of these barriers with high pre-
cision is still little explored for this model. Works such as [22,23] only
confirm the existence of these curves, but do not show their position
in phase space nor predict the value of the parameter from which
they are destroyed.

Invariant curves are orbits with irrational rotation in phase space
and over the circle. In this context, such orbits can be related to Slater's
theorem [24]. This theorem states that a translation on a unit circle has
at most three different return times and that these times are part of the
expansion into continued fractions of the irrational used in the transla-
tion. Our purpose is to determine with high precision the location of in-
variant curves for the Fermi-Ulam model through Slater's theorem and
thus understand the behavior of these curves and predict their break-
age. For this class of systems, these curves play an essential function re-
garding the confinement and transport of orbits, since this property is
not observed in high-dimensional systems.
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The paper is organized as follow: in Section 2 we present the model
as well as some of its properties and make an approximation of
the model using the Standard Map as in [25], which allows us to esti-
mate the location of the first invariant spanning curve. In Section 3
we use Slater's theorem, which is based on recurrence times, to deter-
mine with high precision the location and destruction of a family of in-
variant curves. Next, in Section 4, through the rotation number profile
we analyze the neighborhood of one of the invariant curves to under-
stand the dynamics in its vicinity and in Section 5 we present our final
considerations.

2. The model

The model consists of a classical particle that moves between two
walls, one fixed and the other movable. The particle collides elastically
with the walls, where it assumes that the walls have infinite mass,
such walls allude to the magnetic fields with which the particles collide,
as proposed by Fermi. The position of the movable wall is given by
Xw(t) = Xp cos (wt) where Xj is the amplitude of the motion and w is
the frequency, meanwhile the fixed wall is located at X = #. In order
to avoid the numerical resolution of transcendental equations, which
can be very expensive from a computational point of view, we assume
that the distance between the walls is fixed, therefore, the version
of the model we consider in this paper is the so called static wall
approximation [21,26]. This simplified version maintains most of the
properties observed in the full version without requiring the solution
of the transcendental equations.

The mapping describing the dynamics of the model is written as

b1 = [d)n +v£] mod 21
n

Vi = |V" —2€ Sin(¢n+1)|’

T: 1)

where we considered a set of dimensionless variables such as € = Xy/¢,
Vi, = vp/(w#) with v, representing the velocity of the particle and
¢ = wt. Fixed points for this mapping can be obtained by applying the
following conditions: V.1 = V, = Vand ¢p+1 = ¢p = ¢ + 2km,
where k = 1,2,3, ... identifies the number of oscillations that the
moving wall completes between collisions. Simultaneously applying
the conditions for the equilibrium state, we have the following fixed

points: (V,¢) = (%, 0) which are hyperbolic and (V,¢) = (%, )

which are elliptical as long as the condition is satisfied, these points
are highlighted in the Fig. 5(a,b).

In Fig. 1 we show the phase space for this mapping withe =5-10"%,
through which it is possible to notice a mixed structure containing a
large sea of chaos coexisting with islands of stability and invariant span-
ning curves. It is well known in the literature that invariant spanning
curves act as barriers preventing a particle in the chaotic region below
the curve from evolving to a higher energy region above the curve.
Thus, the first invariant spanning curve divides the phase space into
two distinct regions, the first, below it, called the global chaos region
and the second, above the curve, defined as the local chaos region.
This behavior allows us to consider that such a model can be approxi-
mated locally by the Standard Map establishing a connection between
these two models [27], since for the Standard Map it is already known
from both analytical and numerical results that there is a critical param-
eter related to this type of curve.

However, in the vicinity of the first invariant curve there are other
invariant curves and, as we increase the control parameter, these invari-
ant curves (irrational tori) are destroyed until the last invariant curve is
broken and the chaos that was local becomes global, so there is a critical
value of the parameter from which the curve ceases to exist. In this
sense, we reinforce that the comparison of the Fermi-Ulam model
with the Standard Map is interesting since for the Standard Map this
critical value that defines the transition is already known.
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Fig. 1. Phase space for the Fermi-Ulam model given by Eq. (1) with the invariant spanning
curve found by the Slater's theorem highlighted in red. The dashed line corresponds to the
approximation given by Eq. (2) with £ = 5- 10~ (dashed line orange) and with £ = &, =
5.652 - 10~* (dashed line blue). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

To derive the Standard Map from Eq. (1) we use a linearization close
to the first invariant spanning curve as performed in [25,28]. When the
second equation of the mapping (1) is written replacing V.1 = V+ A
Va1 with AV/V<1 and Taylor expanding it till first order and that
when compared with the equations of the standard mapping leads to

2
v0.9716...

This result gives us an approximation of the location of the first in-
variant spanning curve. We know that the chaotic sea region is confined
to the lowest energy domain and limited by the first invariant spanning
curve. Therefore, for sufficiently long times, the velocity V approaches a
saturation value that depends on the € parameter, where V = % with

- Ve @

being known as the saturation exponent. Through Eq. (2) we havea = %
in good agreement with numerical results present in the literature [29,
30]. However, although this result provides an approximation of the
first invariant curve, in the next section we will use a method based
on Slater's Theorem that allows us to determine with high precision
the position not only of the first invariant curve, but of a family of curves
of the type spanning, making it possible to study some dynamic proper-
ties of the mapping.

3. The method

Several techniques have been proposed to investigate the behavior
of invariant curves, some analytical [31] and others numerical [32-34].
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Among them, one that stands out is the method proposed by Greene
[34] given its great precision. However, the cited methods present com-
plex mathematics or have numerical implementation difficult and ex-
pensive from the computational point of view. Thus, to apply to our
model we chose Slater's theorem, as in [35,36]. Its implementation is
relatively simple and the computational cost is low. And even so, it al-
lows determining the critical parameter related to a given curve with
a known rotation number, giving robust results comparable to Greene’s
method. Furthermore, through this technique it is possible to determine
the position of these curves with high precision, allowing them to be
easily located in the phase space.

The theorem shows that for an irrational rotation number w and for
some connected interval there are at most three different return times.
Furthermore, in the case of three different return times, the largest one
of them is equal to the sum of the other two and yet at least two of them
are consecutive denominators in the continued fraction expansion of
the irrational number o,
(()=[ag;ﬂl,ﬂz,ﬂ3,...]Eﬂg+71 (3)
G+ g

ay +——F

1
az +—

Therefore, for an orbit on an invariant curve we will have only three
return times and these times will be part of the expansion in continued
fractions of the rotation number corresponding to the orbit.

As predicted by KAM theory, invariant curves with suffiently irratio-
nal rotation number persist when the perturbation is sufficiently small.
Alternatively when the perturbation is large enough, converse KAM the-
ory predicts that there are no invariant curves. Greene [34] conjectured
that the last invariant curve for the Chi{l}lgov‘s map has a rotation num-

1+v5

ber equal to the golden mean y = =[1;1,1,1,...]. As an exam-
ple, in Table 1 we show the expansion into continued fractions of the
known golden mean vy, as well as some of its convergents Pn_ Note that
g, values satisfies the recurrence equation fn

Gn = qn—2 t+Gqn-1, (4)

forn = 3,4, ... with g; = g2 = 1, generating the well-known Fibonacci
sequence. So, based on Slater's theorem, the return times for a curve
with this rotation number 'y are consecutive numbers in the Fibonacci
sequence.

John Greene [34] conjectured that the locally more robust invariant
curves have a number that is noble. Complementing Greene’s theory,
Fox [37] showed that invariant curves with noble numbers are locally
more robust, even for models other than the Chirikov’s map. An irrational
number o is said to be noble if its expansion into continued fractions has a
golden mean tail, i.e., it becomes an infinite sequence of 1's at some point,
= [ap; Ay, 0y, ...,dy, 1. MacKay and Stark presented strong numerical
evidence for the robustness of noble invariant curves in [38], where
they evidence the robustness of the curve with noble rotation numbers
in several generalized standard models. Thus, our proposal is to analyze

Table 1
Representation in continued fractions of the golden mean vy as well as some of its conver-
gents obtained by truncation of the expansions.

n a, Continued Convergent
Fraction

1 1 11 1/1

2 1 [1:1] 2/1

3 1 [1;1,1] 3/2

4 1 [1;1,1,1] 5/3

5 1 [1:1,1,1,1] 8/5

6 1 [1;1,1,1,1,1] 13/8

7 1

1;1,1,1,1,1,1] 21/13
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a family of invariant curves with rotation number of the type @ = [ao; 1]
in the Fermi-Ulam Model. Noble numbers of this type are considered
the most irrational, in the sense that they are the least easily approxi-
mated by rational numbers and, therefore, have a slower convergence
in their expansion into continued fractions. Therefore, we believe that
curves with these rotation numbers should be more robust, at least lo-
cally. Thus, we will determine with high precision the position of each
one of these curves in the phase space, as well as study the destruction
of than curves and find the critical parameter for those. The Fermi-
Ulam Model always presents invariant curves regardless of the value
of the parameter ¢, but the position of these curves varies accordingly.

The first step to apply the method is to define the rotation number to
be investigated. We start our investigation with rotation numbers equal
to the golden mean y = [1;1] or any shift of this value @ = [a; 1], be-
cause in this way the sequence generated by the denominators of the
convergents (g,) will always be the same and will generate the
Fibonacci sequence. Then we set a value of the angular variable ¢ =
3.0 and vary the value of the action V. For each pair (¢o, Vo) we apply
Slater's theorem, that is, we calculate the return time (number of
iterations) that the orbit takes to return to an interval 6 close
to (¢o,Vp). Once these times are calculated, if there are only three
distinct times, by Slater's theorem it is possible to conclude that the
point (¢o, Vo) is on one invariant curve. Whether, in addition, these
three times are consecutive numbers of the Fibonacci sequence, it
means that this is the wanted invariant curve. If not, we take a step
AV in the action variable V and repeat the procedure indicated above,
until Slater's theorem is observed and so the pair (¢, V) for which the
condition was satisfied belongs to the invariant spanning curve.

In Fig. 1 the curve highlighted in red obeys Slater's theorem and was
obtained using the described method. For this curve the return times
found were I'1 = 75025, I, = 121393 and I3 = 196418, with
recurrence interval 5 = 10~ step AV = 10~ and coordinates (¢. =
3.0,V. = 0.0481812264816). This curve plays an important role in
dynamic systems, as it acts as a barrier that limits the chaotic sea below
it, preventing an orbit in the chaotic sea from entering the stability
region. For comparison, we indicate in orange the approximate last
invariant curve obtained by using the approximation given by eq. (2),
namely, e =5-107%

The method can still be used to determine the critical parameter &,
for a given curve, that is, the value of & from which the curve is
destroyed. However, it is worth noting that the position of the curve
varies slightly as we change the value of the parameter ¢, as the
determination of &, requires successive applications of the method.
Once a point (¢, Vp) of the curve is determined by the procedure
indicated above, we increase the value of € and repeat the procedure
to find the new position of the curve. This procedure is repeated until
Slater's theorem prediction is no longer observed. And the last value
of & for which the condition was observed is the critical parameter &,
for the studied curve. This means that in the vicinity of this curve, the
other invariant spanning curves have already been destroyed, leaving
only it or a thin layer containing it.

Applying this technique to the curve highlighted in Fig. 1, we find
that the critical parameter & for this curve is &, = 0.0005652, this
means that from this value this curve is destroyed. In Fig. 2 we
highlight the region close to curve 1 (red curve) for € < g, (Fig. 2(a))
and for ¢ = g, (Fig. 2(b)). It is possible to notice for & < & the
existence of other spanning curves close to curve 1. However, for ¢ =
&. many of these curves and also other structures are destroyed giving
rise to chaos. Note that for € = &, curve 1 still exists, leading to believe
that such a curve is actually quite robust.

In order to investigate in more detail the neighborhood of this curve,
we apply again Slater's theorem, now for a region very close to the curve
studied shown in Fig. 3. In this part of the analysis we did not choose
the value of the rotation number, instead we did a sweep along the
line ¢ = 3.0, corresponding to the dashed magenta line in Fig. 3(a,b),
and with a step in the variable V in the order of 10, For each pair
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Fig. 2. Detail of the phase space in the vicinity of the curve 1 (red curve), (a) e=5-10"*and (b) &€ = & = 5.652 - 10~ (c, d) Same region as (a) and (b) where the colour scale corresponds
to the decimal part of the rotation number. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

(o, Vo) we check if Slater's theorem was satisfied, that is, it has only 3
return times, the largest of which is equal to the sum of the other two.
If so, according to the theorem, the pair (¢, Vo) belongs to a quasi-
periodic orbit, which can be a spanning curve or, for example, an island.
In Fig. 3(a), where ¢ < &, the theorem was satisfied a few times and
in these cases we highlighted in blue some of the curves that satisfied
it. Doing the same procedure for € = & (Fig. 3(b)) we found some
islands that presented recurrence times according to Slater's theorem,
which we highlight again in blue. However, we did not find other
spanning curves in this region that met the theorem, only curve 1.
This indicates that the curve studied is in a very thin and robust

0.0485

layer and that it is the most robust invariant spanning curve in the
analyzed location or is very close to it. For € > & this curve is also
destroyed allowing chaos to advance. This critical value & allows us to
find a better approximation when we use Eq. (2), as can be seen in
Fig. 1 where it is possible to notice that the blue dashed line
representing the approximation is very close to the invariant spanning
curve.

Extending Slater's theorem to other regions of the phase space, more
precisely to regions of high energy, it was possible to find other curves
that also satisfied Slater's theorem. All curves highlighted in Fig. 5 met
the theorem. These curves have a rotation number equal to the golden

Fig. 3. Magnification of the phase space in the vicinity of the curve 1 (red curve). The blue curves satisfied Slater's theorem, (a) ¢ = 5 - 10~* and (b) & = & = 5.652 - 10~*, (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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mean v, or an integer shift of that value. Therefore, the recurrence times
for these curves are consecutive numbers in the Fibonacci sequence. The
Table 2 summarizes the position of each of these curves as well as the
critical parameter found for each of them. The results presented in
Table 2 allow us to see that the curves are consecutively destroyed,
starting from the low energy curve (curve 1) to the highest energy
curve (curve 6). This result was plotted in the graph of Fig. 4 and with
a power-law fit we recovered the saturation exponent o = 1/2 deter-
mined in Eq. (2).

With the theorem it is possible to analyze other curves with rotation

numbers different from @ = [ao; 1], such as curves with rotation number

® = [ay; 2, 1]. Curves with these rotation numbers have convergents (Zi)
n

such that the sequence generated by g, continues to satisfy the recurrence
Eq. (4), now with g; = 1 and g, = 2. Thus, the return times for these
curves are consecutive numbers from this new sequence. For
example, the curve with rotation number ® = [ao;2, 1] is located in
the vicinity of curve 1 and has return times I = 121393, I, =
196418 and I's = 317811, with 6 = 10~* and step AV = 10~ 13 and
(¢ = 3.0,Vp = 0.0496539561477). Regarding the critical parameter
we find & = 0.00051, which means that this curve is destroyed before
curve 1 with @ = [ag; 1].
In general, the sequences p, and g, satisfy the recurrences

Pni2 = Ani2Ppi1 + Dy 5)
Gni2 = Ani2qn1 +qn, (6)

for all n = 0, with pp = ag, p1 = apa; + 1, o = 1 and q; = a;.
Furthermore, py+1Gn — Pngn+1 = (—1)", for all n > 0. With these
results it is possible to study other curves of the phase space, which
have rotation number  that generate in their convergent sequences
of g, different from the Fibonacci sequence. For, once the rotation
number ® is known and consequently its expansion in continued
fractions, the return times for this curve are consecutive numbers of
this new sequence of g, given by eq. (6). With this, the critical
parameter for these curves can also be calculated and it is possible to
predict the rupture of these curves. In this work, we focus on studying
only the curves with noble rotation numbers, firstly because they are
robust curves and also because of the practicality since the sequence
generated by the g, is a Fibonacci sequence for these cases.

4. Rotation numbers

The study of invariant curves in two-dimensional maps that con-
serve the area in phase space is closely linked to the concept of the rota-
tion number. An orbit {(¢;, V;) : t € Z} of mapping 1, has rotation number
o if the limit

1N
= ,}ggﬁg Q(Vr) 7
exists. In Eq. (7), >M10(V;) = ¢ — ¢o and N corresponds to the
number of iterations.

Table 3 presents the values of the rotation numbers calculated from
Eq. (7) for each of the curves highlighted in Fig. 5. It is important to note

Table 2
Critical & value for each of the curves in Fig. 5.
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Fig. 4. Plot of V vs. €. A power-law fit gives & = 0.4987(1).

that for each of these curves the rotation numbers differ only in the
whole part, its decimal part being equal to the golden mean 1, as can
be seen in the continued fraction expansion in the last column of the
table. Furthermore, the rotation numbers found for each of the curves
are noble numbers, as proposed by Fox [37]. Particularly, the noble
numbers form a set of quadratic irrationals, that is, they can be written
in the form: (P + vM)/S, where P, M, S € Z, like those shown in the third
column of the Table 3. Moreover, the invariant curves located in the
low-energy region have a higher rotation number than those located
in the high-energy region, that is, for higher values of V. More precisely,
for the curves found from Slater's Theorem, their rotation numbers de-
crease by one unit as we take a curve higher up. It even reaches the last

1+v5 _ | 618033...

As highlighted above, in Fig. 2 we show the dynamics in the neigh-
borhood of the curve 1 (red curve) with the phase space constructed
for the parameter before the criticality € < & (Fig. 2(a)) and for € = &,
(Fig. 2(b)). In Fig. 2(c,b) we have the same region of the phase space,
but the colour scale is given by the decimal part of the rotation
number, calculated from Eq. (7). In Fig. 2(c), € = 5 - 1074, it is
possible to notice two distinct regions, one in shades of green with
® < 0.6180339... and the other in shades of yellow with
> 0.6180339.... Moreover, chaotic dynamics does not lead to the
convergence of the rotation number. The boundary between these
two regions corresponds to the invariant spanning curve. Therefore,
the orbits above the curve have a lower number of rotation than those
below the curve. In Fig. 2(d), with € = 5.652 - 10~ we can see an
advance in the chaotic regions caused by the increase in the
parameter &. However, the curve still exists for this parameter value
and it acts as a barrier preventing chaos from entering into the region
above the curve. This effect was also observed for the other five curves
in Fig. 5 found using Slater's theorem. This evidence reinforces the
idea that invariant spanning curves with rotation number ® = [ap; 1]
are quite robust, at least in the layer where each one of them persists.

curve (curve 6) with rotation number © =

Table 3

Rotation numbers found for each of curves in the Fig. 5. Column 1 identifies the curve. Col-
umn 2 furnishes the rotation number obtained from Eq. (7), which numerical value is very
close to the analytical result shown in column 3 foresaw from the expansion displayed in

& v column 4.
Curve 1 0.0005652 0.04818861506 Curve 1 6.6180339815 [6;1,1,1,1,1,1,...]
Curve 2 0.0007850 0.05678598945 Curve 2 5.6180339845 [5:1,1,1,1,1,1,...]
Curve 3 0.0011640 0.06911780565 Curve 3 4.6180339989 [41,1,1,1,11,...]
Curve 4 0.0019000 0.08829265188 Curve 4 3.6180339829 [3;1,1,1,1,11,..]
Curve 5 0.0036478 0.12219771899 Curve 5 2.6180339686 [2;1,1,1,1,11,...]
Curve 6 0.0096495 0.19841892983 Curve 6 16180339660 [1;1,1,1,1,11,...]
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0.02

|—=curve 5

e —=curve 4
k5 < - curve 3
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T E———— - CUTVE |

Fig. 5. (a) Phase space for the Fermi-Ulam Model with € = 5 - 10~ All invariant curves found from Slater's Theorem are highlighted. Elliptical fixed points are indicated by red circles.

(b) Magnification of the region below the first invariant spanning curve (red curve). (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

In order to understand the dynamics close to the invariant spanning that in area-preserving maps, the area under an invariant set as a func-

curves, we calculated the rotation number profile in the vicinity of curve
1. In Fig. 6(a) we highlight the region close to (red curve), the rotation
number was calculated along the dashed blue line and its fractional
part represented in Fig. 6(b). The rotation number profile has a fractal
characteristic, very similar to the “Devil's Staircase” [39]. It is known

0.049

tion of frequency is a Devil's staircase [40]. Our result is analogous to the
presentation in [40], however, in our case the action V as a function of
the rotation number  that generated a staircase.

The first analytic theory for the Devil's staircase was described by
Aubry [41,42] in an extended Frenkel-Kontorova model as a

0.048

0.55 0.6 0.65 0.7  0.75

Fig. 6. (a) Detail of the phase space in the vicinity of the first invariant spanning curve (red curve). (b) Rotation number profile calculated along the blue line highlighted in (a), some ro-
tation number values are indicated in the figure and an enlargement is made in the region near the invariant curve. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)
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consequence of the analyticity break transition. This theory did not in-
volve any numerical calculation. Aubry in [43] described two exact
models that exhibit a Devil's staircase. The first was a discrete Frenkel-
Kontorova model and the second was an Ising chain over an external
magnetic field. Additionally, this Devil's staircase structure can be
found in a variety of physical situations.

Still in Fig. 6(b), we indicate some values of the rotation number

which form the Farey sequence [44], that is, if g and £ are neighbors,

then the next term that appears between them according to the Farey
order is g—i-;;' so, the term between % and % is . Furthermore, the
terms of this sequence are Fibonacci sequence numbers as well as the
terms of the continued fraction expansion in the rotation number @ of

the curve.

5. Discussions and conclusions

We used Slater's theorem to determine the break-up of invariant
curves in the phase space of the Fermi-Ulam model and the associated
critical parameters. Such theorem relates the recurrence times and the
continued fractional expansion of the curve rotation number. These re-
currence times depend on the size of the recurrence interval §, which
gets larger and larger as we decrease the 6 value. Longer times represent
a better approximation of the irrational rotation number by continued
fractions since these times are denominators in the expansion. How-
ever, it is necessary to be careful when choosing 8, avoiding the need
for a very large number of iterations and, consequently, high computa-
tional cost.

Through Slater's theorem, we were able to find the position of a fam-
ily of locally robust invariant spanning curves. The use of the theorem
allowed us to study the criticality for each of these curves. We deter-
mined the parameter ¢, related to each curve and thus we were able
to predict their breakage. These curves are consecutively destroyed
from bottom to top in phase space, as we increase the value of the &
parameter. With curve 1 (Fig. 5) being the first to be destroyed, with
& = 0.0005652 and curve 6 (Fig. 5) the last, with &, = 0.0096495.

An analysis near the first invariant spanning curve (curve 1) revealed
that as we increase the value of the parameter ¢, the periodic structures
and invariant curves close to the curve are destroyed, as predicted by
the KAM theory. Finally, for &. = 0.0005652, in this region, the only
invariant spanning curve that still survives is curve 1. Such behavior
was observed for all other curves in Fig. 5 found from Slater's
theorem. Although we do not yet have a mathematical procedure to
prove that the highlighted invariant curves are the most locally robust,
we found strong numerical evidence that they belong to a robust thin
layer and that such curves are more robust in the analyzed region.

Furthermore, the rotation number for these curves decreases as the
curve is located further up in the phase space. The rotation number pro-
file in the vicinity of the curves presented a structure similar to a “Devil's
Staircase”. The organization of the rotation numbers in this structure
follows a Farey tree and the terms that belong to the Fibonacci sequence
converge to the position of the invariant spanning curve in the region.
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