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For magnetically confined plasmas in tokamaks, we have numerically investigated how Lagrangian chaos
at the plasma edge affects the plasma confinement. Initially, we have considered the chaotic motion
of particles in an equilibrium electric field with a monotonic radial profile perturbed by drift waves.
We have showed that an effective transport barrier may be created at the plasma edge by modifying
the electric field radial profile. In the second place, we have obtained escape patterns and magnetic
footprints of chaotic magnetic field lines in the region near a tokamak wall with resonant modes due
to the action of an ergodic magnetic limiter. For monotonic plasma current density profiles we have
obtained distributions of field line connections to the wall and line escape channels with the same spatial
pattern as the magnetic footprints on the tokamak walls.

 2008 Elsevier B.V. All rights reserved.

1. Introduction

In the program to develop the controlled thermonuclear fusion,
tokamaks have been used to carry out experiments with magneti-
cally confined plasmas [1]. In the last years it became evident that
the plasma confinement strongly depends on the confining electric
and magnetic fields spatial profiles at the plasma edge [2]. The in-
fluence of these fields on the plasma wall interaction, the plasma
edge electrostatic turbulence, and the anomalous particle transport
induced by this turbulence are nowadays under investigation in
all tokamaks. As for the magnetic fields, chaotic field lines at the
plasma edge have been found to play a key role on plasma–wall
interaction in tokamaks [3–5]. Since charged plasma particles fol-
low magnetic field lines to leading order, one of the undesirable
effect of chaotic field lines is the concentration of heat and particle
loadings on the tokamak wall that deteriorates the overall plasma
confinement quality [6–8]. These topics are among the main inves-
tigations to be addressed in the new tokamak ITER that has been
designed to achieve plasma conditions required in a nuclear fusion
reactor. Thus, it is important to consider the influence on particle
transport due to these complementary kinds of particle motion.
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Furthermore, the anomalous particle transport induced by the
plasma edge turbulence arises from some combination of the elec-
tric and magnetic fields [9]. Hence a comprehensive description
of the observed anomalous particle transport has to take into ac-
count the electric and magnetic field spatial profiles at plasma
edge. The complexity of the energy transfer between waves and
particles makes difficult a direct attack to this problem by, e.g.,
computer codes based on a kinetic description of particles inter-
acting with electric and magnetic fields chaotic in space and time.
In spite of such difficulties, some common issues exist such that
we can grasp some physically interesting issues from the isolated
analysis of chaotic magnetic and electric fields. These conservative
fields can be described by Hamiltonian systems with chaotic solu-
tions [10].

Our main goal in this paper is to investigate effects from elec-
tric and magnetic sheared fields on plasma confinement through
a combination of numerical simulation results and concepts from
Hamiltonian dynamics theory. In the plasma edge, shear occurs for
the equilibrium electric field radial profile related to drift wave dis-
persion relation. In fact, this field causes a E×B force which drives
particle drift flow modifying the experimentally observed parti-
cle transport [2,9]. We performed numerical simulations of par-
ticle motion by solving the canonical equations from a drift-kinetic
Hamiltonian considering the action of two waves with a phase-
difference, which leads to a non-integrable system, for which there
are periodic, quasi-periodic, and chaotic trajectories. We showed
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that, by modifying the electric field profile, particle transport can
be reduced by the displacement of barriers at the plasma edge.

Concerning the magnetic sheared equilibrium field we have
added the field of an ergodic magnetic limiter so as to generate
non-integrable field line configurations and Lagrangian chaos. Our
numerical simulations used parameters taken from the Brazilian
tokamak TCABR, for which an ergodic limiter has been designed
to control plasma oscillations [11,25]. Thus, we showed that the
magnetic line escape to the wall depends on the equilibrium and
resonance parameters and presents a magnetic footprint similar to
those recently observed for discharges in tokamaks with chaotic
field lines [13,14]. As far as other tokamaks are concerned, ergodic
limiters have been used to improve plasma confinement in TEXT-
UPGRADE [5], TORE SUPRA [12], TEXTOR [13], and DIII-D [14].

Our analysis is based on numerical algorithms used in chaos
theory to investigate and describe chaotic orbits and the creation
and destruction of transport barriers. One of these algorithms con-
sists on the obtention of area-preserving Poincaré maps for both
magnetic field lines and particle drift trajectories [10]. Another
kind of algorithms we have used to analyze our results is for the
numerical obtention of homoclinic tangles. Since the latter rep-
resent highly unstable invariant sets, the numerical procedure to
obtain them must carefully avoid the divergence of orbits near the
hyperbolic points due to the chaotic nature of the orbit [15,16].
Moreover, the chaotic orbits were integrated for a very long time in
order to obtain the recurrence and escape properties described in
the paper. Without the adoption of these algorithms to our prob-
lems in tokamak plasma, the presented results could not have been
obtained.

The rest of this paper is organized as follows: in Section 2 we
consider the electric sheared configuration through the interaction
of particles with one and two electrostatic waves in a uniform
magnetic field. Section 3 deals with the magnetic sheared case by
presenting the model fields for the tokamak equilibrium field and
the ergodic limiter perturbation, for the obtention of a field line
map, and our numerical results concerning escape patterns and
magnetic footprints. Our conclusions are left to the last section.

2. Particle transport barriers

Experiments indicate that the plasma edge behavior depends
on the anomalous particle transport caused by the observed elec-
trostatic turbulence [9]. Thus, it is important to estimate the con-
tribution to this transport due to chaotic particle orbits driven by
the turbulent fluctuation. To do that, in this work we study the
transport of particles in a magnetically confined plasma, due to
electrostatic drift waves. The adopted model describes the trajec-
tory of the guiding center of a particle in a uniform magnetic field
perpendicular to a radial electric field perturbed by drift waves,
using the Hamiltonian description for the guiding center trajec-
tory [17].

The E × B drift produced by the equilibrium radial electric field
and a dominant wave is represented by the integrable part of the
Hamiltonian, while the other part contains the perturbation repre-
senting the fluctuating electric field associated to other drift waves.
We study the resonances and island chains, created at the plasma
edge and associate the anomalous plasma edge transport to the
Lagrangian chaotic transport of the guiding centers of ions [17]. In
this way we obtain chaotic orbits that determine the particle ra-
dial transport, based on experimental data obtained in tokamaks
to get numerically realistic predictions [18,19].

Single particle motion in one drift wave is described by an in-
tegrable Hamiltonian system and can be solved analytically. For
a resonant wave, the phase space around a two-dimensional lat-
tice of counter rotating rolls separated by a separatrix is created
in the resonant region. The particles cannot cross the separatrix so

that they are confined to motion within a single roll [17]. The sec-
ond wave, with an amplitude smaller than that of the first wave,
is treated as a perturbation. The Hamiltonian is no longer time-
independent such that a particle is no longer confined to a single
roll [17]. Thus, qualitative features of this transport can be approx-
imated by a low-dimensional dynamical system with island chains
in phase space due to the superposition of two dominant drift
waves.

We describe the superposition of poloidal drift waves as a
Hamiltonian system. The drift velocity of the guiding centers are
given by [17]:

v = −∇φ × B
B2 , (1)

which is equivalent to the following set of differential equations:

vx = dx
dt

= − 1
B0

∂φ(x, y, t)
∂ y

, (2)

v y = dy
dt

= 1
B0

∂φ(x, y, t)
∂x

, (3)

representing canonical equations obtained from the Hamiltonian as

H(x, y, t) = 1
B0

φ(x, y, t). (4)

Here we consider the drift wave caused by two waves. Using
dimensionless variables in a frame moving with the plasma phase
velocity of the first wave, we obtain the Hamiltonian

H(x, y, t) = φ0(x) − u1x + A1 sin(kx1x) cos(ky1 y)

+ A2 sin(kx2x) cos
(
ky2(y − ut)

)
, (5)

where u = ω2/ky2 − ω1/ky1 is the phase velocity difference be-
tween the second and the first waves, and u1 = ω1/ky1. x and y
correspond to radial and poloidal coordinates.

When the system has only one wave (A2 = 0), the Hamiltonian
is integrable. In this case it is relevant the dimensionless trapping
profile U [17]:

U (x) = 1
A1kx1

[
dφ0(x)

dx
− u1

]
∼ v E − u1, (6)

which gives how sensitive is the background equilibrium system to
the second wave perturbation and how intense the radial transport
would be [19].

In order to investigate the effects of electric field we choose a
potential with a monotonic radial profile

φ0(x) = Ax2 + Bx, (7)

where the parameters A and B can be adjusted by the electric
potential profile of a tokamak discharge. Consequently, from the
choice of the electric potential in Eq. (7), the trapping parameter
becomes

U (x) = 1
A1kx1

(2Ax + B − u1). (8)

Fig. 1 depicts two U (x) linear profiles as a function of the ra-
dial position x normalized by the plasma radius. In this figure the
profile described by the dashed line has the extreme values of U
near to 0.8, and for the dot dashed line the extreme values are
around 1.3. Superposition of two waves lend us to chaotic scenery.
It is important to notice the grid of islands and the influence of
the second wave for arising the chaos [19]. We analyze the influ-
ence of presence of the second wave for the two different electric
field profiles.

From the previous work done with constant electric potential
profile [9,17,18,20], it is known that the islands chain cover entirely
the phase space when U (x) = 0 and this is the configuration with
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Fig. 1. Radial profiles I (dashed line) and II (dot-dashed line) of the trapping param-
eter U (r) for the case of a monotonic electric field.

the highest transport rate. It is also reported that for U (x) = 0 we
have a resonant condition, v E = u1. This means that the poloidal
drift velocity is equal to the wave phase velocity, (1/B0)φ

′
0 = u1,

which is also confirmed by experiments in tokamaks [21]. Fig. 2(a)
shows the configuration of the islands with one wave. It is impor-
tant to notice the presence of the barriers at x = 0.8 and x = 1.2
where the trapping profile is maximum for Umax = 0.8. These bar-
riers describe a zonal flow. Fig. 2(b) shows how the transport de-
pends on the grid of the first wave islands and the second wave
amplitude. Moreover, we can see that the particles describe chaotic
motion above and below the zonal flow and around the elliptic
points.

As the electric potential in Eq. (7) increases by the change of
the parameters A and B , we notice in Fig. 3(a) a stronger flow
takes place at the extreme regions at x = 0.85 and x = 1.2, and also
a island size reduction inside the flows. The resonant condition,
u1 = Ex occurs at those radii x̄ given by U (x̄) = 0.

Fig. 2(a) depicts a phase space plot for the integrable Hamilto-
nian system consisting of the profile I and one wave (A2/A1 = 0).
Without the second wave there is no chaos and the phase space
exhibits some periodic structures where U ≈ 0, consisting on is-
lands chains centered at fixed points. The particular island chain,
occurring at the radial location wherein U (x̄) = 0, turns to be the
place where the second wave acts more intensively generating a
chaotic layer. Such a resonant island chain occurs at x̄ ≈ 1.0. Com-
plementary, in the region where |U | < 1 the phase space is mixed
with partial barriers separating small island.

The superposition of two drift waves turns the Hamiltonian sys-
tem a non-integrable one, with the consequent breakdown of a
number of invariant curves (in the phase plane) and the conse-
quent formation of homoclinic chaos. Fig. 2(b) shows the perturbed
phase plot obtained by adding a second wave with amplitude
A2/A1 = 0.2 to the integrable system of one wave. The separa-
trix orbits connecting the hyperbolic-points are the first ones to
become chaotic when the second wave is added. The orbits near
the elliptic points remain closed, while orbits near the hyperbolic
points are chaotic, filling some nonzero area in the phase plane
with a bounded radial excursion, thus contributing to particle dif-
fusion along this direction. Small islands of stability still exist near
the elliptic points, but large scale transport takes place due to the
more pronounced radial excursion of orbits throughout the chaotic
layer. The partial barriers are broken and cannot limit the particle
radial transport in this region.

In Figs. 3(a) and 3(b) we consider the equilibrium profile II for
one and two waves, respectively. We see that an additional bar-
rier appear in the region for which U ≈ 1 separating the island

(a)

(b)

Fig. 2. Increase of ergodicity with the wave-amplitude ratio. (a) First wave islands
and the zonal flow for Umax = 0.85, A2/A1 = 0 in x × y plane. (b) Two waves,
A2/A1 = 0.2, with zonal flow at x = 0.85 and x = 1.2.

chains seen in the previous figures. This barrier appears due to the
electric field shear increase according to the profile II. As a conse-
quence of this variation, the orbit ergodization is reduced to the
internal part of the plasma edge. This result shows that the trans-
port can be reduced by changing the radial electric field profile,
such that |U | > 1.

3. Escape patterns of magnetic field lines

A second problem related to transport control in fusion plas-
mas is the study of the field line escape that reach the tokamak
wall. The field lines are determined by the superposition of two
magnetic fields; one in the toroidal direction and the other in the
poloidal direction. The superposition of these fields produces mag-
netic field lines with a helical shape, lying on constant pressure
surfaces called magnetic surfaces, with topology of nested tori [1].
As we have a toroidal symmetry, the equilibrium quantities do
not depend on azimuthal angle ϕ . The magnetic field line equa-
tion can be viewed as Hamilton equations describing an integrable
system, where the angle ϕ plays the role of time. Introducing a
small helical magnetic perturbation, the Hamiltonian system be-
comes almost-integrable [2,22]. In this work we use an ergodic
magnetic limiter (EML) to generate a small localized perturbation,
where the explicit dependence on ϕ reflects the break of symme-
try [5,23–26]. The EML creates resonances in the plasma and it can
be designed to excite resonances closer or farther from the toka-
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(a)

(b)

Fig. 3. Increase of ergodicity with the wave-amplitude ratio. (a) First wave islands
and the zonal flow for Umax = 1.30, A2/A1 = 0 in x × y plane. (b) Two waves,
A2/A1 = 0.2, with zonal flow at x = 0.85 and x = 1.2.

mak wall, depending on the mode numbers chosen for the limiter
winding.

First of all we describe the equilibrium magnetic field lines,
choosing an appropriate coordinate system. The choice of this sys-
tem is determined by the symmetries exhibited by the system. For
the so-called local coordinates (r, θ,ϕ) that are a kind of cylin-
drical coordinates with toroidal curvature, the coordinate surfaces
r = constant hardly coincide with actual equilibrium magnetic
surfaces [1]. A better choice would be the toroidal coordinates
(ξ,ω,Φ) [28], but their coordinate surfaces are not suitable as
well. We have used in this paper a polar toroidal non-orthogonal
coordinate system (rt , θt ,ϕt), given by [29]

rt = R ′
0

cosh ξ − cosω
, θt = π − ω, ϕt = Φ, (9)

in terms of the usual toroidal coordinates (ξ,ω,Φ), where R ′
0 is

the magnetic axis radius. They are related to the local (or pseudo-
toroidal) coordinates (r, θ,ϕ) by the following relations

rt = r
[

1 − r
R ′

0
cos θ +

(
r

2R ′
0

)2]1/2

, (10)

sin θt = sin θ

[
1 − r

R ′
0

cos θ +
(

r
2R ′

0

)2]−1/2

, (11)

such that, in the large aspect ratio limit (rt ( R ′
0), rt and θt be-

come r and θ , respectively [29].

Fig. 4. Some coordinate surfaces of the polar toroidal coordinate system in the ϕ = 0
plane.

Fig. 4 shows some coordinate surfaces of the (rt , θt ,ϕt) sys-
tem. Note that the rt = const. curves have a pronounced curvature
in the interior region of the torus, from where we start counting
poloidal θt angles. Moreover, the origins of these two coordinate
systems are the magnetic axis. Finally, the relation of the magnetic
axis radius R ′

0 with the coordinate R is

R2 = R ′ 2
0

[
1 − 2

rt

R ′
0

cos θt −
(

rt

R ′
0

)2

sin2 θt

]
. (12)

The equilibrium magnetic fields in tokamaks can be obtained
from MHD equilibrium theory. The expansion caused by a pres-
sure gradient is counter-balanced by the Lorentz force produced
by the plasma current density. Thus, the equilibrium magnetic field
lines lie on constant pressure surfaces, or magnetic surfaces. This
property can be described by a scalar function, a surface quan-
tity Ψp , such as B0 · ∇Ψp = 0, where B0 is the plasma equilib-
rium magnetic field and the magnetic surfaces are characterized
by Ψp = constant [1]. The tokamak equilibrium magnetic field
B0 is obtained from an approximated analytical solution of the
Grad–Schlüter–Shafranov equation in these coordinates [29], such
as Ψp ≈ Ψp(rt).

Thus, in the large aspect ratio limit the equilibrium flux func-
tion Ψp does not depend on θt . The intersections of the flux sur-
faces Ψp = constant with a toroidal plane are not concentric circles
but rather present a Shafranov shift toward the exterior equato-
rial region [29]. Hence, as commonly observed in tokamaks [1],
equilibrium flux surfaces can be approximated by rt = const. coor-
dinate surfaces. In this large aspect limit case, the Grad–Schlüter–
Shafranov equation simplifies as

1
rt

d
drt

(
rt

dΨp

drt

)
= µ0 J (Ψp), (13)

where J is the toroidal component of the equilibrium plasma cur-
rent density. In this work we have used a toroidal peaked current
density profile, commonly observed in tokamaks discharges, given
by [1]

J (rt) = I p R ′
0

πa2 (γ + 1)

(
1 − r2

t

a2

)γ

, (14)

where I p and a are the total plasma current and plasma radius,
respectively, and γ is a positive constant.

In this equilibrium, the contravariant components of the equi-
librium field are given by
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Fig. 5. Scheme of an ergodic magnetic limiter.

B1
0(rt , θt) = − 1

R ′
0rt

∂Ψp

∂θt
= 0, (15)

B2
0(rt , θt) = 1

R ′
0rt

∂Ψp

∂rt
= µ0 I p

2πr2
t

[
1 −

(
1 − r2

t

a2

)γ +1]
, (16)

B3
0(rt , θt) = −µ0 I

R2 = µ0 Ie

2π R ′ 2
0

[
1 − 2

r2
t

R ′
0

cos θt

]−1

, (17)

where Ie ≈ −I/2π is the total current in the toroidal field coils in
the large aspect ratio approximation [26]. The field line revolutions
along the torus can be calculated by using the rotational transform,
given by ι = 2π dθt/dφ. In fusion plasmas is conventionally used
the safety factor q(rt) instead of rotational transform, such as, ι =
2π/q(rt). The safety factor of the magnetic surfaces is given by,

q(rt) = 1
2π

2π∫

0

B3
0(rt , θt)

B2
0(rt , θt)

dθt , (18)

which results in a parabolic profile.
The design for the ergodic magnetic limiter to be considered

in this paper is essentially the same as in Ref. [26], and con-
sists of Nr current rings of length , located symmetrically along
the toroidal direction of the tokamak (Fig. 5). These current rings
may be regarded as slices of a pair of external helical windings
located at rt = bt , conducting a current Ih in opposite senses
for adjacent conductors. The role of these windings is to induce
a resonant perturbation in the tokamak, and to achieve this ef-
fect we must choose a helical winding with the same pitch as
the field lines in the rational surface we want to perturb. This
has been carried out by choosing the following winding law [26]
ut = m0(θt + λ sin(θt)) − n0ϕt = constant, where λ is a tunable pa-
rameter.

The magnetic field BL produced by the resonant helical wind-
ing, from which we build the EML rings, is obtained by neglecting
the plasma response. In this case, BL is assumed to be a vac-
uum field, such that it comes from solving Laplace’s equation with
proper boundary conditions at the tokamak wall. We were able
to obtain an approximated analytical solution, such that, in low-

est order, the only non-vanishing component of the corresponding
vector potential is [26]

AL3(rt , θt ,ϕt) = −µ0 Ih R ′
0

π

(
rt

bt

)m0

cos(m0θt − n0ϕt). (19)

Since the equilibrium field is axisymmetric, its represents, in
terms of the Hamiltonian description for the field line flow, an
integrable dynamical system. We may set the azimuthal angle,
ϕt = t , as a time-like variable, and put field line equation in a
Hamiltonian form

dJ
dt

= −∂ H
∂ϑ

, (20)

dϑ

dt
= ∂ H

∂J
, (21)

where (J ,ϑ) are the action-angle variables of a Hamiltonian H .
The action is defined in terms of the toroidal magnetic flux and
the angle is a modified poloidal angle. These variables are given
by [26]:

J (rt) = 1

2π R ′ 2
0 BT

∫
B0 dσ3 = 1

4

[
1 −

(
1 − 4

r2
t

R ′ 2
0

)1/2]
, (22)

ϑ(rt , θt) = 1
q(rt)

θt∫

0

B3
0(rt , θt)

B2
0(rt , θt)

dθ

=
[

1 − 4
r2

t

R ′ 2
0

]1/2 θt∫

0

dθ

1 − 2(rt/R ′
0) cos θ

= 2 arctan
[

1
Ω(rt)

(
sin θt

1 + cos θt

)]
, (23)

where dσ3 = R ′
0rt drt dθt ê3 and

Ω(rt) =
(

1 − 2
rt

R ′
0

)1/2(
1 + 2

rt

R ′
0

)−1/2

. (24)

The addition of the magnetic field produced by a resonant helical
winding characterized by Eq. (19) may be regarded as a Hamilto-
nian perturbation

H(J ,ϑ, t) = H0(J ) + H1(J ,ϑ, t) (|H1/H0| ( 1) (25)

= 1

BT R ′ 2
0

Ψp0(J ) + 1

BT R ′ 2
0

AL3(J ,ϑ, t). (26)

In order to include the effect of the finite length , of each EML
ring, which is typically a small fraction of the total toroidal circum-
ference 2π R ′

0, we model its effect as a sequence of delta-functions
centered at each ring position [26]:

HL(J ,ϑ, t) = H0(J ) + ,

R ′
0

H1(J ,ϑ, t)
+∞∑

k=−∞
δ

(
t − k

2π

Na

)
, (27)

where the Na rings are symmetrically distributed in the toroidal
direction.

We can derive, due to the impulsive perturbation, a strobo-
scopic map for field line dynamics, by defining Jn and ϑn as the
action and angle variables just after the nth kick due to a lim-
iter ring at the toroidal positions ϕk = 2kπ/Nr , with k = 0,1, . . . ,
Nr − 1 [26].

Jn+1 = Jn + ε f (Jn+1,ϑn, tn), (28)

ϑn+1 = ϑn + 2π

Nrq(Jn+1)
+ εg(Jn+1,ϑn, tn), (29)

tn+1 = tn + 2π

Nr
, (30)
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where

f (J ,ϑ, t) = −∂ H1(J ,ϑ, t)
∂ϑ

, (31)

g(J ,ϑ, t) = ∂ H1(J ,ϑ, t)
∂J

, (32)

and the perturbation intensity is

ε = −2
(

,

2π R ′
0

)(
Ih

I

)
, (33)

which can be considered as a small parameter, since in exper-
iments we usually have , ( 2π R ′

0 and Ih ( I . This procedure
has been successfully used to introduce relevant maps in different
Hamiltonian systems. For example, the standard map describes a
rotor perturbed by a periodic sequence delta function kicks similar
to that used in our map [10]. Even so, those maps are obtained
through the integration of differential equations involving delta
functions, which can be ill-defined in some cases. However, there
exists a rigorous method for deriving such mappings from equa-
tions with impulsive functions [27].

To apply these procedures to obtain the numerical simulations
described in this paper, we choose an equilibrium characterized by
the following parameters: a/R ′

0 = 0.28 and b/R ′
0 = 0.35, where a

is the minor plasma radius, R ′
0 is the major tokamak radius, corre-

sponding to the magnetic axis, and bt is the minor tokamak radius.
We also choose q(a) = 5.00 and q(0) = 1.05, corresponding to the
safety factors at the plasma edge and magnetic axis, respectively,
for which γ = 3.0. For this equilibrium the monotonic safety factor
profile in terms of the action variable is presented in Fig. 6.

We make the limiter field, with Na = 4 rings, resonate with the
magnetic surface with safety factor q = 4.0 or q = 5.0 by choos-
ing the perturbation parameters as λ = 0.5276 and λ = 0.5894 and
the mode numbers (m0/n0 = 8/2) or (10/2), respectively. Fig. 7
shows the Poincaré map for the (8,2) (a) and (10,2) (b) perturba-
tions. For these cases the limiter currents are Ih/I p = 0.040 and
Ih/I p = 0.017, respectively. In these figures the main resonance
positions in the phase space are indicated by arrows with their
rational values of the safety factor. The island chains due to these
resonances although partially destroyed, can be recognized. In ex-
ternal part of the plasma there are mixed regions with islands and
chaotic lines, while more inside the plasma whole magnetic sur-
faces can be identified.

Fig. 6. Safety factor profile for equilibria with γ = 3.0. The minor radius of tokamak
vessel is denoted by b.

The non-uniformity of the outer chaotic region due to an er-
godic limiter can be described by the distribution of the con-
nection lengths of field lines in the plasma edge. The connection
length, Ncl(r, θ), is the number of toroidal turns it takes for a field
line, originating from a given initial condition located at (r, θ) in
the Poincaré section, to reach the tokamak wall. In our case we
can set the tokamak wall at the same radius of the ergodic limiter
rings, at rt = bt . The field line is considered lost when it reaches
this radial position. The connection length indicates a rough esti-
mate of the escape time for a particle, passing through the point
(r, θ), to hit the tokamak wall. Recent experiments have shown
that the radial structure of the electron temperature and density
at different times of the discharge reveals a correlation between
the connection length and the heat flux [30]. There has been ob-
served that most of the heat content is brought from the plasma
core wall by the field lines with relatively large connection lengths
(namely, those with Ncl > 4).

The connection length depends on the position at the chaotic
region in the Poincaré section and, since the chaotic region is non-
uniform, as shown in Figs. 7(a) and 7(b), we expect a non-uniform
distribution of connection lengths in our system. We have numer-
ically computed the distribution of the connection lengths for the
maps of Figs. 7(a) and 7(b), by using grids of points on the chaotic
region of the corresponding phase portraits, each point serving as

(a)

(b)

Fig. 7. Increase of ergodicity with the ratio between the perturbing current and the
equilibrium plasma current. Poincaré section of a tokamak perturbed by an EML,
for a safety factor profile with γ = 3.0, Nr = 4, (a) (m0,n0) = (8,2), λ = 0.5276,
and Ih/I p = 0.040, (b) (m0,n0) = (10,2), λ = 0.5894 and Ih/I p = 0.017.
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(a)

(b)

Fig. 8. Connection lengths in the range [1,200] for the Poincaré sections shown
in Figs. 7(a) and 7(b). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

a different initial condition. In fact, the connection lengths take on
values in a wide interval, from Ncl = 1 to Ncl ≈ 104.

We depict, in Figs. 8(a) and 8(b), the connection lengths for
each point of this grid, within intervals from 1 to 200 turns. For
each interval, the number of turns are indicated by using a color
scale. We have chosen a bounded radial portion of the toroidal sec-
tion, since we are interested on the escape of the field lines near
to the tokamak wall (initial conditions with Ncl > 200 belong al-
together in black (brown on on-line version) regions). The regions
with short and long connection lengths are also called laminar and
ergodic, respectively. The laminar region is convenient for the pur-
pose of the ergodic limiter, i.e., to isolate the plasma bulk from the
wall. Thus, comparing the two ergodic limiters considered in this
work we claim that the (10,2) configuration is more appropriated
since its laminar region is larger even for a lower current Ih con-
sidering in this work.

Moreover, fractal structures can be seen in Figs. 8(a) and 8(b).
From these examples we can see that not only the connection
lengths of the field lines are important, but also their radial pen-
etration depths. For example, there are field lines with small con-
nection lengths starting near the wall or in the vicinity of the
island chains. Those field lines produce a quite uniform escape
pattern, i.e. without a noticeable concentration on a given region
of the wall, and hence should not contribute to the heating de-
position patterns observed on the wall. The field lines around the
islands with high penetration depth are more evident for the (8,2)
mode [Fig. 8(a)] than for the (10,2) one [Fig. 8(b)]. Field lines with
connection lengths higher than a given limit (say, Ncl = 4000), can
be considered as effectively trapped. Hence a region with large
connection lengths in the toroidal section represents an effective
transport barrier.

Another feature of the non-uniform escape patterns is their
dependence on the safety factor at plasma radius, qa . To investi-
gate this dependence we calculated for a large number of initial
conditions at the tokamak wall uniformly poloidally distributed
the connection length of each line (i.e. the number of toroidal
turns for the line to return to the tokamak wall). The intervals of
points with same connection lengths (expressed in a color scale)
are depicted in Figs. 9(a) and 9(b) as a function of qa for the
mode numbers (8,2) and (10,2), respectively, with magnifications
shown in Figs. 9(c) and 9(d), respectively. We have varied qa so
as not to change the limiter current Ih , hence we have instead
to vary the plasma current I p ; from Ih/I p = 0.024 for qa = 3.0,
to Ih/I p = 0.040 for qa = 5.0 for mode number (8,2) and from
Ih/I p = 0.010 for qa = 3.0, to Ih/I p = 0.017 for qa = 5.0 for mode
number (10,2).

We can identify in Figs. 9(a) to 9(d) boomerang-shaped regions
for several connection lengths interval, similar to the measure-
ments performed in the tokamak TEXTOR [31]. The sequence of
boomerangs are associated to the line stickiness and the escape
channels to the wall. The former depends on the last remnant
island chain, while the latter is determined by the remnant ex-
ternal island chain around the last remnant island chain on the
plasma edge [31,32]. As discussed in Ref. [31,32], the structures
(wave-like disturbances) in Figs. 8 and 9 are caused by the hetero-
clinic tangles associated to the hyperbolic points of the dominant
islands.

An empirical observation related to the distribution of mag-
netic field lines incident on the tokamak wall is the so-called
magnetic footprint. In our procedure this is determined by the de-
position pattern of the field lines from the chaotic region on the
wall. A poloidal distribution of the magnetic footprints shown in
Figs. 10(a) and 10(b). The histograms in these figures are obtained
by multiplying the number of the lost field lines by their connec-
tion lengths for perturbation currents of Ih/I p = 0.040 for a mode
number (8,2), and Ih/I p = 0.017 for a mode number (10,2). The
comparison of Figs. 10(a) and 10(b) indicate that (10,2) chaotic
limiter induces a spread distribution of field lines on the wall.
Thus, the arrangement (10,2) is more adequate for the chaotic lim-
iter since it avoids a high concentration of the field lines with high
connection lengths which could carry high energetic particles from
the plasma bulk to the wall.

4. Conclusions

In this work we applied the Lagrangian chaos theory, consid-
ering typical parameters of fusion plasmas confined in tokamaks.
We discussed two effects observed at the plasma edge, namely, the
chaotic anomalous particle transport from the E × B drift motion,
as well as the distribution of chaotic magnetic field lines at the
wall.
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(a) (b)

(c) (d)

Fig. 9. Intervals of same connection lengths computed at the tokamak wall, as a function of the edge safety factor, corresponding to the Poincaré section shown in Figs. 7(a)
and 7(b). (c) and (d) are magnifications of a selected region in (a) and (b), respectively.

Initially, we explored a dynamical mechanism by which the
particle transport is achieved and showed how alterations on the
electric field radial profile at the plasma edge can modify this
transport within this region. Thus, the phase space can be strongly
ergodized by this process within the region where the trapping
parameter vanishes. On the other hand, by increasing the trap-
ping parameter a particle transport barrier can appear at this re-
gion.

Finally, we analyzed the escape of chaotic magnetic field lines
due to resonant perturbations created at the plasma edge by an
ergodic limiter. For the numerical analysis we considered pertur-

bations with different mode numbers. The field line mappings
indicate that limiters with high m are more adequate to reduce
the plasma wall interaction. For example, limiters with (8,2) and
(10,2) mode numbers create more escape channels than those
limiters with (4,1) and (5,1). Moreover, we showed that the
(10,2) configuration is more appropriate than (8,2) configuration
once the former presents a more scattered escape pattern con-
venient to reduce the plasma wall interaction. We showed that
the number and the distribution of the escape channels are deter-
mined by the mean width of the chaotic region and the resonance
from which it starts.
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(a)

(b)

Fig. 10. Histograms for the number of escaping field lines times their connection
lengths, corresponding to the Poincaré sections shown in Figs. 7(a) and 7(b).
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