
PHYSICAL REVIEW E 92, 012905 (2015)

Global ballistic acceleration in a bouncing-ball model
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The ballistic increase for the velocity of a particle in a bouncing-ball model was investigated. The phenomenon
is caused by accelerating structures in phase space known as accelerator modes. They lead to a regular and
monotonic increase of the velocity. Here, both regular and ballistic Fermi acceleration coexist in the dynamics,
leading the dynamics to two different growth regimes. We characterized deaccelerator modes in the dynamics,
corresponding to unstable points in the antisymmetric position of the accelerator modes. In control parameter
space, parameter sets for which these accelerations and deaccelerations constitute structures were obtained
analytically. Since the mapping is not symplectic, we found fractal basins of influence for acceleration and
deacceleration bounded by the stable and unstable manifolds, where the basins affect globally the average
velocity of the system.
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I. INTRODUCTION

Nowadays, one of the most embracing areas of interest
among physicists and mathematicians is the modeling of
dynamical systems [1]. In particular, low-dimensional systems
are very suitable despite the simple modeling. These systems
can present a very complex dynamics leading to a rich variety
of nonlinear phenomena, considering either dissipative and
nondissipative dynamics [2–5].

In 1949, Fermi [6] proposed a mechanism as an attempt
to explain the origin of the high energies of the cosmic rays.
Fermi claimed that particles, which interacted with oscillating
magnetic fields present in the cosmos, would in the average
exhibit a gain of energy. This unlimited growth of energy
is denominated Fermi acceleration (FA). In the literature,
FA applications can be found in several areas as plasma
physics [7,8], astrophysics [9–11], atom optics [12–14],
and especially in billiard dynamics [15–20]. The FA phe-
nomenon is mainly associated with normal diffusion in phase
space, where there is a velocity growth proportional to

√
t .

However, one can still find different regimes of growth, as
exponential [21–24], or with a slower power law growth,
where stickiness phenomenon [25] plays the role of a slowing
mechanism for FA.

The model under study in this paper is the so called
bouncing-ball model [26–28], where basically there is a
free particle suffering elastic collisions with a vibrating
platform under the influence of a constant gravitational
field. In the nondissipative version and depending on the
initial conditions and control parameters, the bouncing ball
presents unlimited energy growth [2]. Despite the sim-
ple dynamics, applications for this model can be found
in dynamic stability in human performance [29], vibra-
tion waves in a nanometric-sized mechanical contact sys-
tem [30], granular materials [31,32], experimental devices
concerning normal coefficient of restitution [33], mechan-
ical vibrations [34,35], anomalous transport and diffu-
sion [36], thermodynamics [37], chaos control [38,39], among
others.

In this paper, we investigate the ballistic increase of the
velocity in the bouncer model, where resonances, known as
accelerator modes (AM) (or ballistic modes) [40–45], drasti-
cally influence transport and diffusion properties [46–48]. We
observed that accelerating structures in phase space lead to
a regular and monotonic increase of velocity, hence differing
from the “regular FA” [25]. Complementary to the AM, we
find unstable modes in the antisymmetric position, that we
called deaccelerator modes (DM) [46]. We obtain analytically
the range of the control parameter where both accelerating
and deaccelerating structures are present in phase space,
classifying them with multiple periods of acceleration and
bifurcations. Our numerical results are in good agreement with
the analytical predictions. Analyzing the dynamics considering
the modulated velocity axis, we observe fractal-like basins
delimited by the stable manifolds. They indeed affect globally
the average velocity of the system.

The organization of the paper follows: In Sec. II, we
describe the dynamics of the bouncing-ball model, in both
complete and simplified approaches. Section III is devoted
to the numerical and analytical analysis of the ballistic FA
behavior of the AM. In Sec. IV, we investigate the chaotic
properties of both AM and DM, characterizing their influence
basins. Finally, in Sec. V we draw some final remarks and
conclusions.

II. MODEL

This section is devoted to describe the bouncing-ball model
for both complete and simplified dynamics. A schematic view
of the bouncer model is shown in Fig. 1.

A particle under a constant gravitational field suffers
repeated impacts with an oscillatory platform, whose position
is given by xw(t) = A[cos(ωt + ϕ) − 1], where A is the am-
plitude of the platform oscillation, ω is the angular frequency,
and ϕ is the oscillation initial phase.

The position of the particle between impacts is given by
the free fall equation xp(t) = h0 + vt − gt2/2, where h0 is
the vertical position from which the particle was previously
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FIG. 1. Schematic view of bouncer model.

launched by the platform, v is the launch velocity, t is the
time elapsed since the last impact, and g is the gravitational
acceleration. The instants of impacts are obtained by equating
the platform position and the particle position xw(t) = xp(t).

A. Complete model

Considering elastic collisions, the new launch velocity
will be given by the negative relative velocity between the
particle and the platform just before the impact. Applying this
procedure in a recurrence way, it is possible to obtain a discrete
map that represents the particle velocity vn and the phase of
platform movement ϕn after the nth impact. The time interval
tn+1 and the phase difference between two consecutive impacts
are related by tn+1 = (ϕn+1 − ϕn)/ω. Therefore, a discrete map
that describes the complete bouncer model is written as

A[cos(ϕn) − cos(ϕn+1)] + vn(ϕn+1 − ϕn)/ω

−g(ϕn+1 − ϕn)2/2ω2 = 0,

vn+1 = −vn + g(ϕn+1 − ϕn)/ω − 2Aω sin(ϕn+1). (1)

Since the first mapping Eq. (1) is transcendental, it must be
solved numerically at each collision.

The control parameters A, ω, and g are not independent.
Rewriting the map in terms of a dimensionless velocity
given by Vn = ωvn/(πg) and a dimensionless parameter K =
ω2A/(πg), which is physically interpreted as a ratio between
accelerations of the moving platform and the gravitational
field, we find a new map with only one control parameter K

related to A, ω, and g:

K[cos(ϕn) − cos(ϕn+1)] + Vn(ϕn+1 − ϕn)

− (ϕn+1 − ϕn)2/2π = 0,

Vn+1 = −Vn + (ϕn+1 − ϕn)/π − 2K sin(ϕn+1). (2)

The phase space volume element transforms according
to the determinant of the Jacobian matrix, whose elements
are given by the partial derivatives of map coordinates. The
partial derivatives of ϕn+1 are obtained by indirect differen-
tiation of the first expression of map (2) followed by some
algebra in order to isolate the terms. These expressions are

written as

∂ϕn+1

∂ϕn

= Vn − (ϕn+1 − ϕn)/π + K sin(ϕn)

Vn − (ϕn+1 − ϕn)/π + K sin(ϕn+1)
, (3)

∂ϕn+1

∂Vn

= −π (ϕn+1 − ϕn)

Vn − (ϕn+1 − ϕn)/π + K sin(ϕn+1)
, (4)

∂Vn+1

∂ϕn

= ∂ϕn+1

∂ϕn

[1/π − 2K cos(ϕn+1)] − 1/π, (5)

∂Vn+1

∂Vn

= ∂ϕn+1

∂Vn

[1/π − 2K cos(ϕn+1)] − 1. (6)

Therefore, the Jacobian determinant is given by

det(J ) = Vn + K sin(ϕn)

Vn+1 + K sin(ϕn+1)
. (7)

As can be seen in Eq. (7), the Jacobian depends on the
dynamical variables. As a consequence, the system cannot
be considered conservative neither dissipative since J can be
greater than 1 or less than 1 for distinct regions of the phase
space. This result will be further explained in Sec. IV A.

B. Simplified model

The simplified model is defined considering the platform
position fixed but exchanging momentum with the particle at
each impact as if it was moving. Assuming this approximation,
the time elapsed between consecutive impacts can be easily
found depending only of the velocity Vn. So, considering
(ϕn+1 − ϕn) = 2πVn, the simplified bouncer model is written
as

ϕn+1 = ϕn + 2πVn,

Vn+1 = |Vn − 2K sin ϕn+1|. (8)

The simplified bouncer model defined by Eqs. (8) is
symplectic, as one can easily check. Although the simplified
model does not correspond to the correct dynamics of a ball
bouncing in a moving floor, it can be useful to evaluate
analytical calculations about the position and stability of the
fixed points.

III. FERMI ACCELERATION

In this section, we describe the unlimited energy growth
experienced by the particle during the dynamics. As already
known in the literature [2,25], for K = 0, the system is
integrable, and when we increase K , there is a phase transition
from local chaos to global chaos. Such transition is crucial for
the FA phenomenon to occur. Here, we have the destruction of
the invariant spanning curves, allowing the union of the local
chaotic seas, so a chaotic orbit has a “free path” to diffuse
along the velocity axis.

A. Numerical evidences

Due to the property of diffusion in phase space for global
chaotic dynamics, we see a tendency for the velocity to grow
in the average as the dynamics, as function of the number of
collisions, is evolved. Such behavior is shown in Fig. 2, for
several values of K in the global chaos cases, iterated until 107
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FIG. 2. (Color online) Evolution of the average velocity for
different values of the parameter K . One can see two regimes of
growth. Some curves grow with a power law exponent β1 ≈ 1

2 , and
others grow with exponent β2 ≈ 1. In particular in (b), we may see
a transition from one growth behavior to another growth regime for
K = 0.3819 and 0.4456.

collisions. For this, we define the average velocity as

V = 1

M

M∑
j=1

Vj (n,K), (9)

where M represents an ensemble of 5000 different initial
conditions and Vj (n,K) is expressed by

Vj (n,K) = 1

n

n∑
i=1

Vi, (10)

with n representing the iteration (collision) number.
As shown in Fig. 2, there are two distinct growing regimes.

In one of them, the average velocity grows as a function of
n according to a power law with exponent β1 ≈ 1

2 . The other
growing regime obeys also a power law but with a different
exponent β2 ≈ 1, which means a linear growth. In particular,
there are some values of K that present a transition from one
growth regime to another one, as shown in Fig. 2(b). Also,
there are different ranges for the parameter K which exhibit a
growth in the average velocity in a linear way.

In order to investigate the dependence of control parameter
K on the growth of average velocity, we compute 〈V 〉104 by
Eq. (9) at the end of 104 impacts for different values of K . We
do this considering an ensemble of 5000 initial conditions at
the same value of V at the low energy region and uniformly
distributed in ϕ ∈ [0,2π ]. The result can be seen in Fig. 3,
and reveals that for some specific values of K the growth of
average velocity is greatly favored. For the other cases of K

the acceleration happens as an ordinary manner. The peaks
in Fig. 3 are given by the influence of the AM in the system
dynamics.

In Figs. 4(a)–4(c), we depicted the amplifications of the
most pronounced peaks in the range of K investigated. It is
possible to see in these figures a fine structure on the quantity
〈V 〉104 . This feature indicates some metamorphosis suffered

FIG. 3. (Color online) Particle average velocity evaluated in 104

iterations as a function of the parameter K . The peaks represent the
influence of the AM in the dynamics.

by the AM as we vary K . These will be better explained in
Sec. III B, where analytical and numerical results confirm this
scenario.

There is a qualitative difference on the dynamics exhibited
by the system when the gain of velocity happens as a FA and
as an AM. To clarify this difference, we show in Fig. 5 the
dimensionless vertical positions H of the particle and of the
platform as a function of time. The variable H associated with
particle and platform is related with the vertical distance from
the floor until the particle by means of ω2xp(t)/πg and until
the vibrating platform by means of ω2xw(t)/πg, respectively.
In the case of Fig. 5(a), we select a value of K for which there
is absence of AM. As can be seen for this case, the heights
reached by the particle do not increase always after each
impact, but in the average after several impacts, a growth can be
observed. In contrast, for the AM shown in Fig. 5(b), the gain
of potential energy is always ascendent. The magnifications
included in each figure reveal the reason for this difference.
It resides in the fact that the AM is a very special kind of
dynamics where the impacts always occur for an ascendent
movement of the platform [shown in red (gray)], as can be
seen in magnification of Fig. 5(b). For the conventional FA,
the impacts sometimes occur with the platform in a descendent
movement and this promotes an instantaneous loss of energy,
as can be seen in magnification of Fig. 5(a).

B. Stability estimation

In this section, we use the simplified approach to localize
the position of the AM in phase space and estimate the stability
of these structures as the control parameter K is varied. In the
phase space, the AM consists of regular and repetitive jumps in
the V direction. The simplest case happens when the mapping
leads one point in phase space to another at same value of
ϕ and shifted in the V direction by adding an integer l. We
designate this kind of dynamics as period-1 AM with step
size l. For the sake of simplicity we adopt l = 1 in this work
without loss of generality. The period of the AM refers to the
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FIG. 4. Amplifications of Fig. 3 around K values corresponding
to AM of (a) period-1, (b) period-2, and (c) period-4.

number of map iterations until a repetition of coordinates in
a modulated phase space. Using the simplified map described
by Eqs. (8) we obtain the relation for the AM coordinates
Vn+1 − Vn = 1 = −2K sin(ϕn+1). If we impose an artificial
periodicity along the V direction in the phase space, the period-
1 AM is indistinguishable from a period-1 fixed point. The
map (8) provides the position of the period-1 AM center as

V ac = 1, (11)
ϕac = arcsin (−1/2K). (12)

FIG. 5. (Color online) Dimensionless position (H ) correspon-
dent to the particle in black and correspondent to the vibrating
platform in red (gray) as a function of dimensionless time for
a dynamics for initial conditions ϕ0 = −2.48, V0 = 3.22 and (a)
K = 0.35 during 700 impacts and (b) K = 0.322 during 130 impacts.
In each figure it is possible to see a magnification of horizontal scale
revealing the platform positions at each impact.

To determine the stability of the period-1 AM, we linearize
the system around the position (V ac,ϕac) via the Jacobian
matrix calculated at this point. The calculation of eigenvalues
leads to a characteristic expression as follows:

P (λ) = det

(
1 − λ 2π

−2K cos ϕac 1 − 4πK cos ϕac − λ

)
,

P (λ) = λ2 − λ(2 − 4πK cos ϕac) + 1 = 0. (13)

The stability condition will be satisfied since the eigenval-
ues are complex (elliptical fixed points). So, we may obtain

|2 − 4πK cos ϕac| < 2 → 0 < 4πK cos ϕac < 4. (14)

Replacing Eq. (12) on the relation given by Eq. (14) we can
express the stability condition of the period-1 AM as a function
of parameter K:

0.5 < K <
√

1/π2 + 1/4. (15)
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The range of the parameter K calculated by the simplified
model corresponds to the AM shown in Fig. 4(a). Although
Eq. (15) and the numerical result shown in Fig. 4(a) refer
to different models, the agreement between them reveals that
the simplified model is efficient to determine the position and
stability of AM in complete bouncer model.

To corroborate the assumption that the complete model
behavior indicated in Figs. 4(a)–4(c) corresponds to the AM
obtained by means of simplified model, we perform the
calculation of stability of the period-2 AM in order to compare
with Fig. 4(b). To do this we need to obtain a second iterated
map version of map given in Eq. (8). This procedure leads to

ϕn+2 = ϕn + 4πVn − 4πK sin(ϕn + 2πVn),

Vn+2 = Vn − 2K sin(ϕn + 2πVn) − 2K sin ϕn+2. (16)

This version of the map does not allow us to find an
analytical expression for the position (V ∗,ϕ∗) of the period-2
AM since we have a transcendental equation depending on
V ∗. However, we can find, after some algebra, the relation
sin(ϕ∗) = (1 − 2V ∗)/2K between the period-2 AM coordi-
nates. The Jacobian of the map in Eq. (16) is written in terms
of the following partial derivatives:

∂ϕn+2

∂ϕn

= 1 − 2B, (17)

∂ϕn+2

∂Vn

= 4π − 2πB, (18)

∂Vn+2

∂ϕn

= −B/π − A(1 − 2B)/π, (19)

∂Vn+2

∂Vn

= 1 − 2B − 4A(1 − B), (20)

where the auxiliary variables are A = 2πK cos(ϕ∗), B =
2πK cos(ϕ∗ + 2πV ∗). The eigenvalues of the Jacobian matrix
at the position of the period-2 AM are given by

λ = 1 + 2(AB − A − B) ± 2
√

f (ϕ∗,V ∗), (21)

where f (ϕ∗,V ∗) is an expression that must be negative for the
eigenvalue to become complex. So, we obtain

f (ϕ∗,V ∗) = A2B2 + A2 + B2 + 3AB

− 2(AB2 + A2B) − A − B. (22)

As we cannot analytically find the position (V ∗,ϕ∗) de-
pendent on K , we adopt as procedure to follow numerically
these coordinates as the control parameter K is varied. After
replacing the values of (V ∗,ϕ∗) numerically obtained in the
expression of Eq. (22), we plot the dependence of f (ϕ∗,V ∗)
with the parameter K in Fig. 6.

The range of K , where f (ϕ∗,V ∗) is negative, corresponds
to a period-2 AM. This range is verified in Fig. 4(b) as a large
increase on the 〈V 〉104 dependence. Again, we conclude that
the behavior of complete model shown in Figs. 4(a)–4(c) is due
to AM, and the stability of these modes can be estimated by the
simplified model. However, we can observe some fluctuations
and drastic decreases of the quantity 〈V 〉104 along the AM
range of stability. Also, the curves in Figs. 4(a) and 4(b) extend
further than predicted by Eqs. (15) and (22), respectively. The
explanation to these features is done by the analysis of the

FIG. 6. Plot of Eq. (22). The K interval where the function
f (ϕ∗,V ∗) is negative corresponds to the stable regime of the period-
2 AM.

bifurcations and the resonances around islands of acceleration
in the simplified model.

There is a crucial difference between the AM present
in the complete and in the simplified model. Due to the
symplectic feature of the simplified model, the corresponding
AM constitute periodic islands when we plot the coordinate
V modulated between [0,1]. So, the AM of the simplified
model just affect the dynamics of initial conditions taken
inside these special kinds of islands. On the other hand, the
complete model is not area preserving and due to this reason
the AM affect globally the dynamics of the system. However,
the bifurcations and resonances suffered by the islands of
acceleration in the simplified model correspond to changes on
the global influence of the accelerating structure on the whole
phase space of the complete model. Although the global status
of the AM is always observed in complete bouncer model, for
some K parameters, the initial conditions that are affected by
this behavior may be different.

To demonstrate this we show in Fig. 7 a sequence of
bifurcations and shape changes suffered by the island of
acceleration of period-1, obtained by the simplified model.
As this structure is located at V = 1 on the border of mod[1]
phase space, Fig. 7 is shown as mod[2] phase space for a better
visualization.

As one can see by comparing Fig. 4(a) with Figs. 7(b)
and 7(c), the first decrease of the quantity 〈V 〉104 corresponds
to a reduction of the island area due the ejection of the period-4
secondary chain of islands at the parameter K ≈ 0.5285. After
this ejection, the center of the accelerating island recovers its
stability, as can be observed in Fig. 7(d) for the parameter
K ≈ 0.54. At this parameter value it is possible to see an
increase of the quantity 〈V 〉104 observed in Fig. 4(a). A very
strong resonance of the main island with a period-3 chain of
islands can be observed in Fig. 7(e), where most of the stable
area lies on the secondary chain rather then in the main island.
The ejection of the period-3 secondary islands can be observed
in Fig. 7(f), almost vanishing the area of acceleration. This
phenomenon was also observed in standard map and called
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FIG. 7. Impact maps of simplified model in phase space V mod[2] versus φ around the period-1 acceleration island and control parameter
(a) K = 0.5055, (b) K = 0.5252, (c) K = 0.5285, (d) K = 0.54, (e) K = 0.5491, (f) K = 0.5530, (g) K = 0.5773, (h) K = 0.5958, and (i)
K = 0.6012.

“period-3 catastrophe” [40,43]. For the complete bouncer
model we can associate this phenomenon to the drastic
decrease in global acceleration of initial conditions, as can
be observed at K ≈ 0.555 in Fig. 4(a). Again, the increase of
K parameter value restores the central island stability, which
suffers a period-doubling bifurcation of its central fixed point
at the parameter K ≈ 0.6 given by Eq. (15).

As we can observe in Fig. 4(a), the K parameter associated
with high values of the quantity 〈V 〉104 stands further than
predicted by Eq. (15). Therefore, although the center of the
accelerating island has undergone a bifurcation at K parameter
value predicted by Eq. (15), the remaining islands from the
bifurcation continue to affect the acceleration of some initial
conditions near that region. When we continue to increase the
value of K parameter, these trajectories are destroyed due to
the natural period-doubling sequence. The same scenario of
resonances and bifurcations is observed for the period-2 AM
in the range of parameters 0.3205 � K � 0.326, associated to
the fluctuations observed in Fig. 4(b).

The period-4 AM in the parameter range 0.234 � K �
0.25 shown in Fig. 4(c) experiences a different sequence of
resonances and bifurcations. To exemplify this scenario, we
show in Fig. 8 a sequence of phase space zoomed in one of the
four islands of the period-4 AM.

One can observe in Figs. 8(a) and 8(b) that the first
slight decrease of the quantity 〈V 〉104 observed in Fig. 4(c)
is associated with a resonance between the central island and
a period-3 secondary chain of islands. The ejection of the
secondary islands does not represent an extinction of the stable
island as occurred in Fig. 7(f). Instead, the first extinction of
stable island occurs at K ≈ 0.2380 as shown in Fig. 8(c) by
a period-doubling bifurcation suffered by the central fixed
point. This fixed point becomes hyperbolic and then, by the
increase of K , becomes elliptical again at K ≈ 0.2389 as can
be seen at Fig. 8(d). After that, a new resonance with a period-3
secondary chain of islands causes a period-3 catastrophe at
K ≈ 0.242 as can be seen at the sequence of Figs. 8(e)–8(g).
The period-3 catastrophe almost vanishes the stable island area
and causes a dip of 〈V 〉104 on the curve of Fig. 4(c). At the
sequence, the central fixed point recovers its stability and its
the lost area as shown in Fig. 8(h). The final extinction of
the AM is caused by another period-doubling bifurcation at
K ≈ 0.2480 as can be seen in Fig. 8(i).

IV. STRUCTURE OF ACCELERATION

We analyze how the velocities increase in the phase space
with repetition of islands and structures by plotting the V
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FIG. 8. Impact maps of simplified model in phase space V mod[1] vs φ around the period-3 acceleration island and control parameter (a)
K = 0.2354, (b) K = 0.2374, (c) K = 0.2380, (d) K = 0.2389, (e) K = 0.2409, (f) K = 0.2411, (g) K = 0.2418, (h) K = 0.2465, and (i)
K = 0.2480.

variable modulated between 0 and 1. Initially, for K parameters
chosen from the intervals of Figs. 4(a)–4(c), in Figs. 9(a)–9(c)
we represent points with the color blue (dark gray) or red (light
gray) in phase space, for trajectories with Jacobian values
smaller or larger than the unity, respectively.

A. Phase space

As can be seen in Fig. 9, there are regions in phase
space with high and low concentration of points, indicated
by circles and squares as the structures of acceleration and
deacceleration, respectively. The regions of high concentration
of points mean that the impacts for many different initial
conditions happen at a same value of ϕ and the velocity V

jumps regularly at each impact.
As the phase space is modulated in the V direction, the

accelerating structure appears like an attractive fixed point.
The deaccelerating structures have the same interpretation, but
considering the backwards way map. When we consider the
forward map, the deaccelerating structures in the modulated
phase space can be seen as unstable regions acting to reduce
the energy of the particle at each impact. The color division
in the phase space reveals that the accelerating structures
are located at shrinkage regions, while the deacceleration

structures are located at expanding region of phase space.
The regular islands are located partially at each region. As
a consequence, the accelerating structures attract most of the
initial conditions in the chaotic sea while the deaccelerating
structures only influence the initial conditions very close to
the periodic point at their centroid during a limited number of
impacts.

As shown in Fig. 10, the DM and AM have different natures,
as the first one takes the velocity down in a linear way, working
as a repulsive point, the second one, accelerates the particle
also in a linear way, acting as an attracting point or sink.
Although we are dealing with a nondissipative system, we
observe an asymptotic convergence. Such peculiar behavior is
only observed considering modulated values of velocity. By
considering the complete values of velocity, we have a linear
growth or linear decay of this variable, depending on the AM
or DM influences.

The curve shown in Fig. 10(a) shows a very special initial
condition chosen exactly inside the DM, located near the
V ≈ 180. Once this DM has a repelling nature, we may see
a decrease in the velocity until the orbit leaves the influence
zone of the DM and reaches the chaotic sea, where its velocity
grows, in average, with a power law exponent β ≈ 1

2 . Also,
we notice that the linear decay has a coefficient near 1

3 ,
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FIG. 9. (Color online) Impact map during 200 iterations of 80
initial conditions in phase space V mod[1] vs ϕ for control parameter
(a) K = 0.54, (b) K = 0.322, and (c) K = 0.237. The blue (dark
gray) region of phase space corresponds to Jacobian values smaller
than the unity, while the red (light gray) regions correspond to values
larger than the unity. The structures of accelerating are indicated by
circles, while the deaccelerating structures are indicated by squares.

FIG. 10. (Color online) Evolution of a single initial condition as
function of n. In (a), the initial condition was given right inside the
DM, which explains the linear decay in the beginning of the dynamics.
In (b), the initial condition was chosen in the chaotic sea. After some
collisions, it finally enters in the domain region of the AM, which is
represented by the linear growth in the end of the curve.

indicating that the parameter K = 0.3819 is associated with a
period-3 DM. In Fig. 3, this structure can be identified as a less
pronounced AM between the period-1 and period-2 indicated.

On the other hand, in Fig. 10(b), the initial condition was
chosen in the chaotic sea, and after a few collisions, the orbit
starts to grow with a power law exponent β ≈ 1

2 , and suddenly
it bends towards a linear growth regime. This linear growth is
due to the presence of the AM in the system. Also, the linear
growth has a coefficient ≈ 1

3 , indicating that the AM has also
the same period-3 of the DM. It is important to clarify that
an orbit will only reach a DM if we give the initial condition
inside its influence zone. After the orbit leaves this zone, it
could converge to an influence zone of an AM.

To identify the DM and AM influence zones, we introduce
Fig. 11. We said already that an orbit can reach a DM only if
the initial condition was chosen right inside of it. In Fig. 11(a),
it is shown a grid of 1000 × 1000 initial conditions, in a
particular region of the phase space where DM is located
for K = 0.3819, so a period-3. We establish a criteria to
verify if an initial condition was under the influence of the
DM: a decreasing velocity reached the condition V � 64 at
the collision (n). This condition defines a hole, i.e., a region
defined in phase space [25,49,50]. Once an orbit reaches it, we
marked its iteration of escape, and start to iterate a new initial
condition [25,49,50]. This characteristic escape collision is
represented by a color gradient in the logarithmic scale of
Fig. 11(a), where the red (gray) represents fast escape through
the limit decreasing velocity and the DM itself, yellow and
green (light gray) represent orbit under the the influence zone
of the DM, and finally blue and black (dark gray) mean that the
orbits never reached the hole, or took a long time to reach it.

Now, looking at Fig. 11(b), one can see the attracting nature
of the AM, where a single initial condition was evaluated for
K = 1.001, which means a period-1 AM. We can see the orbit
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FIG. 11. (Color online) (a) Grid of initial conditions with and escape velocity V = 64. The logarithmic color scale shows the iteration
of each initial condition had escaped through the hole, where red (gray) indicates fast escape or the DM itself; yellow and green (light gray)
indicate the influence zone of the DM and blue and black (dark gray) orbits that never reached the escape velocity, or took a long time to do it.
In (b), we show a zoom-in of the converging nature of the AM, where a single initial condition was iterated until 106 collisions, and converged
to an asymptotic behavior. Here, the color scale represents the number of collisions. Also, in (b) the figure was made concerning the velocity
axis taken mod[1].

converging to the point located in V = 0.400 and ϕ = 2.725.
The color scale represents the number of collisions, where from
green (light gray) to blue and black (dark gray) the collisions
are increasing. It is good to emphasize that the plot of Fig. 11(b)
was made concerning the velocity axis taken mod[1], and a
zoom-in window was established in the region of the AM, that
is the reason we may see a convergence instead of a growing
behavior, as shown in Fig. 10(b).

B. Escape basin

The global feature of the AM in the complete bouncer model
allows initial conditions far from the center of the accelerating
structure to increase their velocities in a ballistic way. In other
words, there exists a set of initial conditions that collapses into
the accelerating structure, and this set varies its domain with
the change of K . We call this set of initial conditions as the
“escape basin” of the AM.

In this section, we investigate the relation between the
escape basin of the period-1 AM with the stable and unstable
manifolds in the phase space. First, to determine which initial
condition collapses into the accelerating structure, we set a grid
of (104 × 104) initial conditions in phase space and obtain the
average acceleration associated with of each one by means of
Eq. (10) after 103 iterations. We define the escape basin of
the AM as the set of initial conditions whose final average
velocity after 103 iterations (〈V 〉103 ) is, at least, 93% of 〈V 〉103

at the center of the accelerating structure. After testing, we
conclude that the difference of 7% between the center and
the less accelerated initial condition is due to the maximum
transient experienced by initial conditions that belong to the
escape basins before their collapse into the center. In Fig. 12,
we plot in black the escape basin of the period-1 AM at
K = 0.54. We repeat the same procedure, considering the
backward version of the map. The set of initial conditions
accelerated in backwards maps represents the basin of the DM
and is shown in red (gray) in Fig. 12.

The escape basin structure of both AM and DM can be
explained by the stable and unstable invariant manifolds of

hyperbolic points in the phase space. The invariant manifolds
are sets of points whose forward and backward iterations
belong to the same set. For stable manifold, forward iterations
converge to a hyperbolic saddle point, while for unstable
manifold, backward iterations converge to the hyperbolic
saddle point, as the number of iterations goes to infinity.
The nonuniformity in the invariant manifolds concentration
is usually related with pronounced filaments of manifold
branches that form a kind of escape channel, which drive
particles to the high energy region of the phase space [51,52].

To explain the escape basin structure, we obtain the stable
and unstable manifolds of the complete version of the bouncer
model. A method to obtain a numerical approximation to these
invariant manifolds is to consider the first n0 (say, 10) forward
and backward images of a set of a large number of initial

FIG. 12. (Color online) Escape basins of period-1 AM (K =
0.54) represented in black by initial conditions with 〈V 〉3

10 larger than
93% of 〈V 〉3

10 evaluated at the center of the accelerating structure.
The same considering the backward map represented in red (gray)
indicates the basin of the DM.
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FIG. 13. Stable and unstable manifolds, represented respectively
in black and gray, emanating from the saddle point at (V ∗; ϕ∗) =
(0.549; π ).

conditions (say, 107) over the eigendirections of the linearized
system near a saddle point embedded in the chaotic sea. When
the phase space is filled by chaotic orbits (global chaos), the
invariant manifolds are indifferent to the specific saddle point
chosen. For the case of parameter K = 0.54, we observe a
global chaos in phase space as shown in Fig. 9(a), which allows
us to choose arbitrarily the saddle point located at (V ∗; ϕ∗) =
(0.549; π ) to apply the procedure described. The resulting
invariant stable and unstable manifolds are shown in Fig. 13
in black and gray, respectively. We can observe in this figure
a good correspondence between Figs. 12 and 13. Actually,
the accelerating structure fills the empty spaces left between
the branches of the stable manifold while the deaccelerating
structure fills the empty spaces left between the branches of
the unstable manifold. These branches of manifolds act like a
labyrinth path in the phase space, guiding the initial conditions
until they reach the center of the accelerating structure, or the
center of the deaccelerating structure, if the mapping were
iterated backwards.

V. CONCLUSIONS

The dynamics of a bouncing-ball model was investigated
under the influence of accelerating structures known as

accelerator modes (AM). These modes appear in the dynamics
only for a restricted range of the control parameter, which
was analytically obtained in order to explain the accelerating
scenario range. It was done for AM of different periods and
their respective bifurcations.

When the dynamics is evaluated under the presence of
these modes, the velocity of the particle increases in a regular
and monotonic way, which gives us a linear growth of the
mean velocity of an ensemble of particles. On the other hand,
the velocity has a normal diffusive growth, according to a
power law β ≈ 1

2 . In some cases, we may have these two
distinct regimes coexisting in the dynamics. This indicates
that some initial conditions initiate their dynamics exhibiting
FA and then collapse in an AM and begin to increase its
velocity in a linear way. This feature was explained by the
fact that the complete bouncer model is not symplectic. For
this reason, the accelerating structure represents an attractive
region on modulated phase space affecting globally the system
dynamics. Complementary with the AM, we find in the
antisymmetric position of them the so called deaccelerated
modes, which have unstable nature. If an initial condition is
given in the DM zone of influence, we observe a decay on
the velocity. Also, we observed the existence of basins of
acceleration and deacceleration, where their boundaries are
drawn by the stable and unstable manifolds, respectively.

It would be interesting, in a close future, to investigate if
these phenomena could be extended to other nondissipative
vibrating and impact systems, as billiards. In time, we could
try to extend the bouncing-ball model to a quantum version
and verify if we would have the same effects observed in other
quantum systems [53–55]. Also, due the global characteristics
of the AM in this system, it could be used to investigate the
distribution of the AM of different periods in the K parameter
range. Until now, it was a challenging task using symplectic
maps since the initial conditions tested are rarely located inside
the islands of acceleration (which location is unpredictable
in most of the cases). With a model that exhibits a global
behavior for the AM, any sufficiently great ensemble of initial
conditions could be used to identify the AM existence and its
period.
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