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We have studied the effects of perturbations on the cat’s cerebral cortex. According to the

literature, this cortex structure can be described by a clustered network. This way, we construct a

clustered network with the same number of areas as in the cat matrix, where each area is described

as a sub-network with a small-world property. We focus on the suppression of neuronal phase syn-

chronisation considering different kinds of perturbations. Among the various controlling interven-

tions, we choose three methods: delayed feedback control, external time-periodic driving, and

activation of selected neurons. We simulate these interventions to provide a procedure to suppress

undesired and pathological abnormal rhythms that can be associated with many forms of synchroni-

sation. In our simulations, we have verified that the efficiency of synchronisation suppression by

delayed feedback control is higher than external time-periodic driving and activation of selected

neurons of the cat’s cerebral cortex with the same coupling strengths. VC 2016 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4945796]

The mammalian cerebral cortex has features of complex

networks, as well as it is involved in cognitive functions

and complex perceptual. In the literature, the cat’s brain

is one of the cortical networks for which information is

widely available. The cat’s corticocortical network is

organised into the visual, auditory, somatosensory-motor,

and frontolimbic regions, and can be separated into 65

cortical areas. The areas connected by fibres of different

densities can be described through a connectivity matrix.

By means of the cat connectivity matrix, we have studied

the suppression of neuronal phase synchronisation.

Synchronisation might be behind the way we perceive

objects, but it is also responsible for abnormal behav-

iours. Clinical evidences pointed out that synchronisation

of a small group of neurons plays a key role in some path-

ological conditions such as Parkinson’s disease, tremor,

and epilepsy. For this reason, the study of control of

undesirable neuronal rhythms is relevant to restore nor-

mal spiking activity in a neuronal network. We focus, in

particular, on three methods of intervention: delayed

feedback control, external time-periodic driving, and

activation of selected neurons. We have observed that

these methods can suppress neuronal phase synchronisa-

tion and consequently can induce a mean field amplitude

death (MFAD). Morever, with regard to suppression, we

demonstrate that delayed feedback control has a better

efficiency than external time-periodic driving and activa-

tion of selected neurons. We also show the importance of

a time delay in the feedback control. Therefore, our

results may help the understanding not only of suppres-

sion of synchronisation in mammalian cerebral cortex

but also to develop methods of interventions for the treat-

ment of severe neurological and psychiatric diseases.

I. INTRODUCTION

The cerebral cortex is an important part of the mamma-

lian brain, and it is the outer covering of gray matter over the

brain’s hemispheres. It is responsible for cognitive tasks

such as emotion, complex thought, memory, language com-

prehension, and consciousness.1 In the literature, it is possi-

ble to find information about the structure of the cerebral

cortex network for the macaque monkey,2 Caenorhabditis
elegans,3 the cat,4 etc. The cat’s cerebral cortex connectivity

data were first published by Scannell and Young.5 The cat’s

corticocortical network can be separated into 65 areas, and

the areas are connected by fibres of different densities that

can be described through a connection matrix. The areas are

separated into four clusters or cognitive regions named as

visual, auditory, somatosensory-motor, and frontolimbic.

We study a model of neuronal network that contains a

connectivity configuration in accordance with the cat ma-

trix.6 The clusters formed by cortical areas with common

functional roles are responsible for the complexity of the

cat’s network.7–9 With this in mind, we consider that each

element of the matrix has a sub-network with a small-world

property.10 The small-world network is clustered like regular

networks which has a path length comparable to random

networks. The short path length is due to the existence ofa)Electronic mail: antoniomarcosbatista@gmail.com
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long-range connections. Stam et al.11 presented studies about

the presence of small-world characteristics in functional

brain networks, and they also showed that Alzheimer’s dis-

ease is characterised by a loss of small-world property.

Epilepsy in a small-world network was investigated by

Netoff et al.12 They modelled activity in hippocampal slices

by considering small-world networks of excitatory neurons

that reproduce bursts and seizures.

In recent years, mathematical models to describe neuro-

nal networks have been studied very intensively. Neuronal

mathematical models can take many forms, e.g., differential

equations such as the Hodgkin-Huxley model13 and the

Hindmarsh-Rose model,14 as well as models with discrete

time as the Rulkov map.15,16 In this work, we consider a

coupled Rulkov map network that presents not only discrete

time but also discrete space. The Rulkov map presents two

different time scales, where the variable with slow dynamics

is responsible for the modulation of bursts in the fast vari-

able.17 Networks of coupled Rulkov maps have been used in

studies on neuronal phase synchronisation,18,19 suppression

of bursting synchronisation,20 and pattern formation.21

In the coupled map Rulkov network, the mean field

exhibits large amplitude periodic oscillations when the neu-

rons are bursting at approximately the same times, namely,

when the network presents phase synchronisation, whereas

the mean field exhibits small amplitude oscillations if the

neurons are not bursting in phase.18 This way, in this work,

suppression of phase synchronisation means to get the ampli-

tude of the mean field strongly reduced; in other words, the

suppression induces a mean field amplitude death (MFAD).

Oscillation quenching, e.g., oscillation (OD) and amplitude

death (AD), is a fundamental emergent phenomenon in

coupled oscillators.22

Neuronal synchronisation can be found in neuronal

activities due to coupling among neurons or by means of

common inputs. Studies have demonstrated the importance

of synchronisation of oscillatory phases between different

brain regions in memory processes.23 Roelfsema et al.24 real-

ised studies recording local field potentials from electrodes

implanted in the cortex of cats. They verified large-scale syn-

chronisation when cats were submitted to a sudden change in

a visual pattern. Synchronisation in ensembles was also stud-

ied by Ivanchenko et al.,25 who observed a second-order

phase transition to synchronisation. Axmacher et al.26 veri-

fied that specific forms of cellular plasticity during subse-

quent stages of memory formation are induced by

synchronisation. Nevertheless, there are evidences that cer-

tain brain disorders are related to neuronal synchronisation,

e.g., epilepsy that results from high and extended synchroni-

sation.27 Moreover, synchronisation of neuronal activity is a

common finding in patients with Parkinson’s disease.28 Levy

et al.29 demonstrated that Parkinsonian patients are charac-

terised by synchronised high-frequency activity in the sub-

thalamic nucleus.

In face of neuronal synchrony in brain disorders, we

study here three methods to suppress undesired synchronisa-

tion: delayed feedback control, external time-periodic driving,

and activation of selected neurons. The delayed feedback con-

trol was proposed by Rosenblum and Pikowsky30 to suppress

synchronised pathological brain rhythms through a delayed

feedback signal.31 Batista et al.32 observed that feedback con-

trol in networks of Hodgkin-Huxley-type neurons with chemi-

cal synapses can present more energy saving when compared

to other suppression methods. Feedback control is a method

that has been implemented in clinical applications by means

of functional magnetic resonance imaging-based neurofeed-

back.33 With regard to external time-periodic driving, it was

verified that electrical stimulation of deep brain structures can

reduce or completely suppress seizures.34 In addition, the

method about activation of selected neurons was used by Han

and Boyden.35 They used light pulses on genetically targeted

neurons not only for activation but also for inhibition of neu-

ronal activity.

All in all, we consider a clustered network that is com-

posed of the matrix of corticocortical connections in the cat

with small-world sub-networks using as local dynamics a

two-dimensional map to describe the neuronal activity. We

build small-world sub-networks according to the procedure

proposed by Newman and Watts,36 who inserted randomly

chosen shortcuts in a regular network. With the objective of

finding an effective way of suppression of neuronal synchro-

nisation, we study 3 methods: external time-periodic signal,

neuron control with light, and time-delayed feedback signal.

One of our main numerical results is to show that the time-

delayed feedback signal is more effective than the control

with light and periodic signal in the cat’s cerebral cortex. We

also verify that a perturbation in the frontolimbic region

affects the other regions.

This paper is organised as follows: In Section II, we pres-

ent the mathematical model of the neuronal network. Section

III shows the burst phase synchronisation. Section IV exhibits

our numerical results with the different methods of suppres-

sion of neuronal phase synchronisation. In Section V, we

draw our conclusions.

II. CLUSTERED NETWORK OF RULKOV NEURONS

We consider, as neuronal model, the Rulkov map15 that

reproduces neuronal bursting by means of two variables and

is given by

xnþ1 ¼
a

1þ x2
n

þ yn;

ynþ1 ¼ yn � r xn � qð Þ;
(1)

where xn is the fast dynamical variable, yn is the slow dy-

namical variable, a controls the duration of bursts, and r and

q describe the slow time-scale. Figure 1 exhibits an irregular

sequence of bursts of the fast variable, where nk denotes

when the neuronal bursting starts, and k is an integer.

In accordance with the matrix that describes the cortico-

cortical connectivity of the cat’s brain, given by Scannell

et al.,4 we build a clustered neuronal network. Figure 2

shows the densities of connections by means of colours,

where we can see white for no connections, sparse connec-

tions in red, intermediate connections in blue, and dense con-

nections in green. Each one of the 65 areas is modelled by a

small-world network with 100 neurons and 5% of shortcuts.

043107-2 Lameu et al. Chaos 26, 043107 (2016)



The cortical areas classified as sparse (red) have 50 randomly

directed connections. The intermediate connectivities (blue)

and the dense connectivities (green) have 100 and 150 ran-

domly directed connections, respectively.

The areas are separated into 4 cognitive regions: visual,

auditory, somatosensory-motor, and frontolimbic. The visual

region is composed of 18 cortical areas and the auditory of

10 areas, while the somatosensory-motor and the frontolim-

bic present 18 and 19 cortical areas, respectively. The values

of percentages, in Figure 2, describe the amount of connec-

tions between regions in relation to the total connectivity in

the matrix. For instance, inside the visual region, there is

16.62% of the total connectivity, and the percentage of con-

nections to the visual region from the auditory region is

equal to 1.34%. The frontolimbic region has the largest

amount of connections in the cat matrix.

In this work, the dynamics of the clustered network is

based on the cat matrix and given by19

x
i;pð Þ

nþ1¼
a i;pð Þ

1þ x
i;pð Þ

n

� �2
þy i;pð Þ

n þge

2
x i�1;pð Þ

n þx iþ1;pð Þ
n �2x i;pð Þ

n

� �

�gc

XQ

d¼1

XP

f¼1

A d;fð Þ; i;pð ÞH x d;fð Þ
n �h

� �
x i;pð Þ

n �Vs

� �� �
þKn;

(2)

y
ði;pÞ
nþ1 ¼ yði;pÞn � rðxði;pÞn � qÞ; (3)

where (i, p) denotes the neuron i (i¼ 1, 2,…, Q) in the cortical

area p (p¼ 1, 2,…, P), Q¼ 100 and P¼ 65 are the quantity of

neurons in each small-world subnetwork and the number of

cortical areas, respectively. The third term of the first equation

corresponds to the electrical coupling with strength ge, and the

fourth term is the chemical coupling with strength gc. In the

chemical coupling term, the chemical connection between one

neuron (i, p) and another neuron (d, f) is given by the adja-

cency matrix A(d,f),(i,p). In addition, H(x) is the Heaviside step

function, where h¼�1.0 is the presynaptic threshold for the

chemical synapse, and Vs is the reversal potential. In our

FIG. 1. Time evolution of the fast variable in the Rulkov map (Eqs. (1)),

where nk denotes when a new bursting starts, and k is an integer.

FIG. 2. Density of connections between

cortical areas classified as absence of

connection (white), sparse (red), inter-

mediate (blue), and dense (green). The

percentages correspond to the amount

of intra- and interconnections in relation

to the total connectivity matrix.
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simulations, we have considered that the a(i,p) are randomly

distributed in the interval [4.1, 4.4], r¼ 0.001, q¼�1.25,

h¼�1.0, Vs¼ 1.0 for excitatory synapses, Vs¼�2.0 for in-

hibitory, and 3 different methods for the perturbation Kn. With

regard to the synapses, we consider that the electrical synapses

are the connections between the nearest neighbours inside the

small-world networks, while the chemical synapses are the

shortcut connections inside the small-world and connections

between areas. We have also considered 75% of excitatory

and 25% of inhibitory chemical synapses in all the networks.

III. NEURONAL PHASE SYNCHRONISATION

In the following, we calculate the neuronal phase by

means of the time evolution within each burst, varying from

0 to 2p as n evolves from nk to nkþ1 (Fig. 1):

/n ¼ 2pk þ 2p
n� nk

nkþ1 � nk
: (4)

Through the phase, we compute the Kuramoto’s order pa-

rameter Rn to check the synchronous behaviour,37 which is

given by

z lð Þ
n ¼ R lð Þ

n exp iU lð Þ
n

� �
� 1

Nl

X
j2Il

exp i/ j;Ilð Þ
n

� �
; (5)

where Rn and Un are the amplitude and the angle of a centroid

phase vector, respectively. Il denotes the cognitive areas, with

l¼ 1 for visual, l¼ 2 for auditory, l¼ 3 for somatosensory-

motor, and l¼ 4 for frontolimbic. Nl corresponds to the num-

ber of neurons of each area. The phase of the neurons j, in the

cortical area Il, is denoted by /j;Il
n . The order parameter is

equal to 1 for a completely synchronous behaviour and much

less than 1 for uncorrelated phases.

The phase synchronisation as a function of the coupling

strength can be analysed by means of the time average order

parameter, given by

�R ¼ 1

nfinal � ninitial

Xnfinal

ninitial

Rn; (6)

where nfinal � ninitial is the time window for measurements.

Figure 3 shows �R as a function of the chemical coupling

strength gc for each cortical region, where the value of the

electrical coupling ge¼ 0.05. We see that the values of satu-

ration of �R for the visual and the somatosensory-motor

regions are larger than those for the auditory and the fronto-

limbic regions. The auditory region presents a small percent-

age of intraconnections, and due to this fact, it is not possible

to observe a strong synchronised state. Consequently, �R satu-

rates at a value smaller than 0.8. In addition, we also observe

that all transitions are of second-order.

IV. SUPPRESSION OF NEURONAL PHASE
SYNCHRONISATION

Strong neuronal synchronisation can be associated with

brain disorders, such as epilepsy and Parkinson’s disease.

Due to this fact, we have studied methods of suppression of

neuronal phase synchronisation. As a diagnostic tool of sup-

pression, we use the suppression factor S,38 given by

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Mnð Þ
Var Mp

nð Þ

s
; (7)

where Var() is the variance, Mn and Mp
n are the mean fields

of the fast dynamical variable xn in the absence and presence

of the control, respectively. The variance of Mp
n is small

when synchronisation is suppressed; consequently, the sup-

pression factor S is strongly increasing theirs. Nevertheless,

S has a value approximately equal to one when the control is

not efficient to suppress synchronisation.

We have considered three methods of suppression

known in the literature: delayed feedback control, external

time-periodic driving, and activation of selected neurons.

(i) In the delayed feedback control, the last term in Eq.

(2) has the following form:

Kn ¼
1

Nl

X
i;pð Þ2Il

x i;pð Þ
n�s ; (8)

where Nl is the total number of neurons of the cogni-

tive area l in that the mean field is calculated, s repre-

sents the number of iterations before, and the control

is only applied in one of the four cognitive areas to

neurons randomly chosen at each iteration.

(ii) With regard to external time-periodic driving, we

consider

Kn ¼ I sinðxnÞ; (9)

where I¼ 1 and x¼ 1 are the amplitude and fre-

quency of the perturbation, respectively. The time-

periodic driving is also applied on the 100 neurons

randomly chosen in the cognitive area.

(iii) The third method is similar to light stimulation; in

other words, a neuron receives a light pulse and goes

FIG. 3. Average order parameter �R (Eq. (6)) of the cat’s cognitive brain

regions as a function of the chemical coupling strength gc for a fixed electri-

cal coupling ge¼ 0.05. We consider 50 000 iterations where the first 20 000

were excluded as transient.

043107-4 Lameu et al. Chaos 26, 043107 (2016)



to a state where it is forced to spike. In our simula-

tions, 100 randomly chosen neurons are activated

(xn¼ 1.2) in a specific cognitive area when the pertur-

bation is applied.

In Figure 4, the suppression factor S is calculated for the con-

trols applied on (a) the visual, (b) the auditory, and (c) the

somatosensory-motor regions by varying the chemical cou-

pling strength gc. The feedback is represented by orange and

red lines for s equal to 10 and 200 iterations, respectively. The

external time-periodic driving is denoted by a green line,

whereas the activation of the selected neurons is represented

by a blue line. Our results show that the feedback control with

s equal to 200 does not produce a suppression of the synchro-

nisation. Conversely, for s¼ 10, for activation, and for time-

periodic driving, it is possible to get a suppression with S> 2

for gc< 0.01. The activation and the time-periodic driving

have approximately the same behaviour of the suppression

factor. We also verify that the feedback with s¼ 10 presents

the largest value of S. In addition, the other cognitive areas do

not suffer a significant effect from these controlled areas (vis-

ual, auditory, and somatosensory-motor); in other words, the

unperturbed areas remain in a synchronised state.

In the same way that the controls are applied on the visual,

the auditory, and the somatosensory-motor, we apply them on

the frontolimbic area. Unlike the cases before, the uncontrolled

cognitive areas show a small influence from the suppression in

the frontolimbic area. S has its maximum value approximately

equal to 2 in a small range of gc, as shown in Figure 5 for the

visual, the auditory, and the somatosensory-motor areas. In the

frontolimbic area, the values of S have a behaviour similar to

that obtained in Figure 4. In fact, the feedback with s¼ 10

exhibits the best efficiency compared with the activation, the

time-periodic driving, and with s¼ 200.

In view of our results from the delayed feedback control

better than the activation and time-periodic driving, we analyse

how S is affected by the time delay s and the percentage of per-

turbed neurons Np. In Figure 6, we see S in the bar for the num-

ber of perturbed neurons versus s, where the delayed feedback

is applied on (a) the visual, (b) the auditory, (c) the

somatosensory-motor, and (d) the frontolimbic areas. The black

regions correspond to the case in which the cognitive area does

not present a suppression of synchronisation (S� 1), the grey

regions exhibit a small suppression of synchronisation with the

suppression factor in the interval 1< S� 3, and the white

regions show the values of Np and s where the feedback delayed

control is more efficient (S> 3). As a result, we verify that the

method by means of feedback delayed control is efficient not

only for different Np values but also for small time delays.

The time evolution of the mean field for the black region

in Figure 6 exhibits large amplitude oscillations, as a result

of the synchronised behaviour. In the white region, where

there is no evidence of synchronisation, the mean field has

small amplitude oscillations. Oscillation quenching has been

investigated in systems of coupled nonlinear oscillators,22

that are classified in: oscillation (OD) and amplitude death

(AD). In our simulations, we have verified that the 3 methods

of suppression can induce a mean field amplitude death

(MFAD). This way, S can be used as a diagnostic tool of

FIG. 4. Suppression factor S calculated for the area where the controls are

applied as a function of the chemical coupling strength gc for ge¼ 0.05 and

the different controls applied on (a) the visual, (b) the auditory, and (c) the

somatosensory-motor areas.

FIG. 5. Suppression factor as a func-

tion of the chemical coupling strength

for (a) the visual, (b) the auditory, (c)

the somatosensory-motor, and (d) the

frontolimbic areas, where the controls

are applied on the frontolimbic area

and ge¼ 0.05.
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MFAD and enables, in future works, studies about MFAD in

networks with other topologies and local dynamic models.

V. CONCLUSIONS

In this work, we have studied suppression of burst phase

synchronisation in a neuronal network with a structure

according to the corticocortical connections of the cat’s

brain. We have considered the cat matrix, where each corti-

cal area has a sub-network with small-world properties.

Considering an initial configuration in that the neuronal

network presents a synchronous behaviour, we have applied

and compared three different suppression methods: delayed

feedback control, external time-periodic driving, and activa-

tion of neurons. As a result, we verify that it is possible to

obtain suppression by means of the three methods. The meth-

ods produce suppression only in the cortical areas where

they are applied, except when they are applied on the fronto-

limbic area. We observe a small suppression in the other

areas when the perturbations are applied on the frontolimbic

area. This occurs due to the fact that the frontolimbic area

has a larger external connectivity than the other areas.

In our simulations, using the suppression factor as a

diagnostic tool, the delayed feedback control has shown the

best efficiency compared with the external time-periodic

driving and the activation of neurons. In addition, we have

verified that the delayed feedback is better for small values

of the time delay in a large range of the number of controlled

neurons. The delayed feedback control does not damage the

neurons due to the fact that it uses a signal amplitude coming

from by neuronal activity.
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