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Some dynamical properties for an ensemble of non-interacting classical particles along
chaotic orbits and transport properties over the chaotic sea for the problem of a step
and time dependent potential well are considered. The dynamics of each particle is
described by a two-dimensional, nonlinear and area preserving mapping for the variables
energy and time. The phase space is of mixed-type and contains periodic islands, a set of
invariant KAM curves and chaotic seas. The chaotic orbits are characterized by the use of
Lyapunov exponents. Transport over the chaotic sea is considered and scaling exponents
are obtained. A sticky region around a chain of periodic islands produces local and tempo-
rarily trapping of the dynamics and discussions of the rearrangement of the phase space
are made.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The investigation of problems described by potential wells or barriers where the particles are subject to the effect of
noise, or the barriers are assumed to move in time is a subject considered by many researchers from the last decades
[1–5]. Applications in the scientific community may consider either classical and quantum cases. To illustrate applications
of the subject in Bose–Einstein condensates, recently effects of spin–orbit coupling were considered to describe the tunnel-
ing from wells in a Bose–Einstein condensate [6], quantum phase transition induced by atom-pair tunneling [7] and self-
trapping appearing as a consequence of nonlinear effects [8]. Applications of the double well system may also be observed
in resonators where cooling is possible due to a control of the optical forces leading the system to the ground state [9] or
experiments in an optomechanical system where a cavity mode is coupled with a membrane in a double well potential
[10]. In classical description, recent results discussing tunneling from a time dependent potential well using the transfer-ma-
trix technique and shown that the time dependence affects the transmission probability of electrons in the potential [11], the
formalism of Heun confluent was used to solve a family of quasi-exactly double well [12]. Moreover analytical expressions
for the probability of finding a particle in the problem of a Brownian particle in the problem of a double well was recently
obtained [13] while the Fokker–Planck formalism was used to obtain the transmission probability from a time dependent
potential well considering either fast, slow and with small and large noise [14]. It was also considered the description of
the survival probability and escape from one well to the other one due to noise [15]. Indeed the survival probability was
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shown to be exponential when the escape from one well to the other one is quick while long trapping leads the survival
probability to change from exponential to a power law. The slower decay is marked mainly by orbits that survive long in
the dynamics. In mixed phase space, they are related to sticky regions near periodic regions. During the dynamics the
particle passes near enough a regular region and stays trapped there for a while when it then leaves such region.

The model we consider in this paper consists of a classical particle which is confined inside a potential box which contains
two periodically time-dependent square wells. Our main goal is therefore to understand and describe some dynamical as
well as transport properties along the phase space, particularly in the chaotic region, focusing on the escaping dynamics.
The Hamiltonian that describes the model is of the type Hðx; p; tÞ ¼ p2=ð2mÞ þ Vðx; tÞ where x; p and t correspond to the
position, momentum coordinates and time respectively. As we will see in the next section, the potential Vðx; tÞ is controlled
by different control parameters. If they are changed accordingly, a phase transition from integrability – characterized by a
constant energy of the particle – to non-integrability – where the particle may be observed either in a chaotic or regular
dynamics – is observed. The dynamics of the model is described by a two-dimensional non-linear area preserving mapping,
for the variables energy and time. The phase space of the model is of mixed type and shows periodic islands surrounded by a
chaotic sea which is characterized by a positive Lyapunov exponent. The size of the chaotic sea depends on the control
parameters and is limited by a set of invariant KAM curves, which prevents the unlimited energy growth of the particle.
Average properties of the chaotic sea can be described using scaling approach. Near the phase transition from integrability
to non-integrability, critical exponents characterize the laws which describe how the average properties of the chaotic sea
[16], like average energy of the particle or the deviation of the average energy, behave near such a criticality. The critical
exponents may be used to define or set the transition into classes of universality.

When a hole is introduced in the energy axis, the histogram of frequency for the transport of particles, which we observe
to be scaling invariant, grows rapidly until it reaches a maximum and then decreases towards zero at sufficiently long times.
Generally the behavior of the survival probability of the particles in the dynamics as a function of time is observed to be
exponential for short times, reaching a crossover time and turning to a slower-decay regime, due to sticky regions observed
in the phase space [3]. It happens because the model has a mixed phase space which leads to non-uniformity and sticky do-
mains that produce anomalous transport [17–19]. A sticky region traps a particle in the phase space and the escape from this
region happens at a very long time after the entrance. These sticky regions can be identified by the use of Lyapunov expo-
nents, which have typical behavior in such regions [20]. The changeover from fast exponential decay to a slower decay was
also observed recently [15] where the slower decay was due to orbits trapped in metastable regime.

This paper is organized as follows. In Section 2 we describe the model and the mapping that characterizes the dynamics of
the particle. The numerical results and discussions are also presented in this section. Final discussions are drawn in Section 3.

2. The model, the map and numerical results

In this section we construct the equations that describe the dynamics of the model. Some dynamical properties for chaotic
orbits along the phase space are discussed by the use of scaling arguments. The model consists of a classical particle of mass
m confined inside a box of infinite potential at the borders which contains a time varying step potential. Allusions of the time
dependent potential can be made as corresponding to the potential created by atoms placed in sequence along an infinite
long and symmetric chain while the oscillations may denote phonon effects or either the contact of the chain with a thermal
bath. It means that the potential well is getting energy from a thermal bath and is transferring it to the particle. In our
approach, we assume this transference is periodic in time leading to a mixed phase space structure. If the transference is
stochastic, a random diffusion in energy should indeed be observed therefore producing an unlimited growth. A sketch of
the potential is shown in Fig. 1.
Fig. 1. Sketch of the time-dependent potential.
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We emphasise that different kinds of potential shape lead to similar dynamics. For a chain of infinitely many and sym-
metric oscillating square wells with their bottoms moving periodically and synchronised in time, the dynamics leads to dif-
fusion in space, as we can see in the Fig. 2(a). Due to the symmetry of this problem, it is possible to consider only one
symetric potential with periodic boundary conditions, as shown in Fig. 2(b). Moreover it is possible to see that this last figure
is also symetric with respect to the middle of the figure, as shown in Fig. 1.

In this paper we consider the potential as shown in Fig. 1, and it is given by
Fig. 2.
Vðx; tÞ ¼

1; if x 6 0 or x P ðaþ bþ cÞ
V2 cosðx2tÞ; if 0 < x < a

Vb þ V1 cosðx1tÞ; if a 6 x < ðaþ bÞ
Vc; if ðaþ bÞ 6 x < ðaþ bþ cÞ

8>>><
>>>:

; ð1Þ
where the control parameters a; b; c; Vb; Vc; V1; V2, x1; x2 are constants.
The dynamics of the model is made via a discrete mapping which updates the variables energy and time at x ¼ a when the

particle enters at region II. Starting with an initial energy E 6 Vb the full description of the dynamics is made by the consid-
eration of three different situations: (i) the particle does not have enough energy to escape region II and is reflected left hand
side; (ii) the particle escapes region II but does not have enough energy to escape region I and is reflected backwards and;
(iii) the particle escapes region I travels the distance c until reflects left hand side with the same energy and enters regions I
and II. Let us start with case (i) first. We assume that the particle is at the position x ¼ a moving left hand side with an initial
energy E ¼ En P Vb at the time t ¼ tn. When the particle enters region II it suffers a sudden change in its kinetic energy
K 0n ¼ En � V2 cosðx2tnÞ where K 0n ¼ mv 02n =2. Given there are no gradients of the potential, the velocity of the particle is con-

stant inside region II and is equal to jv 0nj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K 0n=m

q
. The time the particle spends traveling the distance a is equal to

Dt0n ¼ a=jv 0nj. It then reaches the infinite potential at x ¼ 0, suffers a reflection and moves backwards until reaches x ¼ a.
In such a position, the total energy of the particle is equal to E0n ¼ K 0n þ V2 cos x2 tn þ 2Dt0n

� �� �
. If

E0n < Vb þ V1 cos½x1ðtn þ 2Dt0nÞ� the particle does not have enough energy to escape region II and suffers a reflection therefore
moving left hand side until x ¼ 0. The escape condition from region II is given by
E0n > Vb þ V1 cos½x1ðtn þ 2iDt0nÞ�; ð2Þ
where E0n ¼ K 0n þ V2 cos½x2ðtn þ 2iDt0nÞ� and i is the smallest integer number that makes Eq. (2) true. The probability of observ-
ing one successive reflection is larger than observing two, that is larger than observing three and so on. A histogram of
frequency for the successive reflections leads to a power law decay with exponent �3, as shown in Fig. 3.

The exponent �3 was also observed for the traversal time in the problem of a periodically time varying barrier [21]. The
exponent �3 however does not seem to be universal. Recently it was observed for a periodically corrugated waveguide [22]
that the histogram of successive (multiple) reflections is described by a power law with exponent �3.76. The periodically
corrugated waveguide model consists in a set of two mirrors where one of them is flat and the other is periodically corru-
gated one. Inside of them there is a beam of light which is specular reflected. The successive reflections are characterized by
the reflections that the beam suffers without leaving the corrugated region. Despite the non-linearity of the two models is
given or by a sine or cosine functions, which have infinite number of continuous derivatives, the chances of a particle getting
trapped in multiple reflections are larger in the potential well than in the corrugated waveguide.

The mapping TA that describes the dynamics of the particle is given by
(a) Sketch of an infinite chain of potential wells; (b) Due to the symmetry of the chain in (a), it is possible to consider only one symmetric potential.



Fig. 3. Plot of the histogram of successive reflections. The parameters used were: r1 ¼ r2 ¼ 1; dr ¼ 0:5; d1 ¼ 0:35, d2 ¼ 0:1 and xr ¼ 1. The orbits were
iterated 1011 times.
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TA :
E0n ¼ En þ V2½cosðx2Dt0f Þ � cosðx2tnÞ�
Dt0f ¼ tn þ 2iDt0n

(
: ð3Þ
When the mapping TA is iterated, the particle enters region I suffering a change in its kinetic energy K 00n ¼ E0n�

½Vb þ V1 cosðx1Dt0f Þ�. The velocity of the particle in region I is also a constant and is given by jv 00nj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K 00n=m

q
. The time for

the particle to travel the distance b is Dt00n ¼ b=jv 00nj. The total energy at x ¼ aþ b is equal to E00n ¼ Vbþ
K 00n þ V1 cos½x1ðDt0f þ jDt00nÞ� with j ¼ 1. The mapping TB is written as
TB :
E00n ¼ E0n þ V1½cosðx1Dt00f Þ � cosðx1Dt0f Þ�
Dt00f ¼ Dt0f þ jDt00n

(
: ð4Þ
Reaching the position x ¼ aþ b two conditions may occur: (ii) E00n 6 Vc , then the particle does not have enough energy to
escape from region I and is reflected backwards. From this situation, j must be made j ¼ 2 and mapping TB is updated. The
particle reaches the position x ¼ a and the energy is given by Enþ1 ¼ E00n and tnþ1 ¼ Dt00f . If the particle escapes region I then
case (iii) applies where (E00n > Vc). The kinetic energy changes abruptly to K 000n ¼ E00n � Vc . The velocity is equal to

jv 000n j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K 000n =m

q
and the time to move the distance c is equal to Dt000n ¼ c=jv 000n j. The particle reaches the infinite potential at

x ¼ aþ bþ c, suffers a reflection backwards and travels the distance c again. At the position x ¼ aþ b it suffers another

change in the kinetic energy Kiv
n ¼ E000n � fVb þ V1 cos½x1ðDt00f þ 2Dt000n Þ�g. The particle reaches x ¼ a and the final energy is given

by Enþ1 ¼ Kiv
n þ Vb þ V1 cos½x1ðDt00f þ 2Dt000n þ Dtiv

n Þ�, where Dtiv
n ¼ b=jv iv

n j is the time the particle spends to travel the distance b

and with velocity v iv
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kiv

n =m
q

. The mapping T 0B is written as
T 0B :

Enþ1 ¼ E00n þ V1 cosðx1tnþ1Þ
�V1 cos½x1ðDt00f þ 2Dt000n Þ�

tnþ1 ¼ Dt00f þ 2Dt000n þ Dtiv
n

8><
>: : ð5Þ
As the mapping is constructed, one sees that there are many control parameters and not all of them are relevant for the
dynamics. They can be reduced using dimensionless variables therefore we have: en ¼ En=Vc; e0n ¼ E0n=Vc , e00n ¼ E00n=Vc;

enþ1 ¼ Enþ1=Vc , D/0f ¼ x1Dt0f , D/00f ¼ x1Dt00f , /nþ1 ¼ x1tnþ1, D/0 ¼ x1Dt0n, D/00 ¼ x1Dt00n, D/000 ¼ x1Dt000n , D/iv ¼ x1Dtiv
n . The con-

trol parameters are written as d2 ¼ V2=Vc; d1 ¼ V1=Vc; xr ¼ x2=x1, dr ¼ Vb=Vc; r1 ¼ b=a; r2 ¼ c=a and Nc ¼ x1a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=2Vc

p
.

The parameter Nc indeed denotes the number of oscillations that the potential well I makes in the interval of time a particle
travels the distance a with total energy E ¼ Vc . All energies are therefore rescaled as a function of Vc . It is important to note
that the parameters d1 and d2 are the dimensionless and rescaled potential. The integrable case is observed for d1 ¼ d2 ¼ 0.
On the other hand if b is null, the region I does not exist. If c is null, the static part of the potential disappear. Another pos-
sibility arises if a is large. For this case, the particle spends much time in region II, making the bottom of the potential well
oscillate many times, increasing the randomness of the system when a particle reaches the position x ¼ a. The parameter
xr ¼ x2=x1 defines an important relationship between x1 and x2. For example, if x1 ¼ x2 the two potential oscillate in
phase and synchronized. If x2 ¼ 2x1, the potential well in region II oscillates twice for each oscillation of the potential in
the region I, for x2 ¼ 3x1, it oscillates three times and so on. If xr is irrational, there is no correspondence between the oscil-
lations of these two potential wells leading them to be out of phase.

With this new set of dimensionless variables and considering the following constrains dr þ d1 < 1; dr � d1 > d2 and
en > dr þ d1 cosð/nÞ, the mapping TA is rewritten as
TA :
e0n ¼ en þ d2 cosðxrD/0f Þ � cosðxr/nÞ

h i
D/0f ¼ ½/n þ 2iD/0� mod2p:

8<
: ð6Þ
If e0n > dr þ d1 cosðD/0f Þ, mapping TB applies with j ¼ 1, then the mapping is written as



Fig. 4.
The par
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TB :
e00n ¼ e0n þ d1 cosðD/00f Þ � cosðD/0f Þ

h i
D/00f ¼ ½D/0f þ jD/00� mod2p:

8<
: ð7Þ
If e00n 6 1 then j ¼ 2 and mapping TB is recalculated. Moreover we can make enþ1 ¼ e00n and /nþ1 ¼ D/00f . On the other hand if
e00 > 1, then mapping T 0B is iterated where
T 0B :
enþ1 ¼ e00n þ d1 cosð/nþ1Þ � cosðD/00f þ 2D/000Þ

h i
/nþ1 ¼ ½D/00f þ 2D/000 þ D/iv � mod2p:

8<
: ð8Þ
The auxiliary variables are given by
D/0 ¼ Ncffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
en � d2 cosðxr/nÞ

p ;

D/00 ¼ Ncr1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0n � dr � d1 cosðD/0f Þ

q ;

D/000 ¼ Ncr2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e00n � 1

p ;

D/iv ¼ Ncr1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e00n � dr � d1 cosðD/00f þ 2D/000Þ

q :
The system is integrable for d1 ¼ d2 ¼ 0 and non integrable for any of the possible combinations: (i) d1 – 0 and d2 ¼ 0; (ii)
d1 ¼ 0 and d2 – 0; or (iii) either d1 – d2 – 0. The parameter Nc denotes the number of oscillations that the potential well I
makes in the interval of time a particle travels the distance a with total energy E ¼ Vc. Therefore an increase in Nc produces
more oscillations of the bottom of the moving potential leading to a possible larger exchange of energy of the particle with
the potential itself, therefore producing an increase of the chaoticity of the system. Given the mapping is now defined, let us
discuss the behavior of the successive reflections. If we defined a characteristic probability in the histogram, say 10�7, and
obtain the number of successive reflections at that probability for different parameters Nc , a typical decay in power law is
observed, as shown in Fig. 4. A power law fitting furnishes a slope of �0:206ð3Þ. This behavior can be used to overlap all
curves of successive reflections onto a single plot, after a suitable rescaling of the axis, as shown in Fig. 4(b).

The phase space that characterizes the dynamics is shown in Fig. 5 for the control parameters Nc ¼ 10; r1 ¼ r2 ¼ 1,
dr ¼ 0:5; d1 ¼ d2 ¼ 0:2 and xr ¼ 1. The structure observed in the figure shows a set of periodic islands, chaotic seas and
invariant KAM curves therefore characterizing the phase space as mixed. Indeed the existence of invariant KAM curves limit
the size of the low energy chaotic sea and prevent the particle to diffuse unlimited in the energy. The existence of the
Plot of the histogram of successive reflections for different control parameters Nc . Their overlap onto a single plot after a suitable rescaling of the axis.
ameters used were: r1 ¼ r2 ¼ 1; dr ¼ 0:5; d1 ¼ 0:35; d2 ¼ 0:1 and xr ¼ 1. The orbits were iterated 1011 times.



Fig. 5. Plot of a typical phase space. The parameters used were Nc ¼ 10; r1 ¼ r2 ¼ 1; dr ¼ 0:5; d1 ¼ d2 ¼ 0:2 and xr ¼ 1. The red dotted line denotes the
position of the first invariant KAM curve. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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invariant KAM curves leads one to describe some average properties of the chaotic sea using power laws and curves play a
fundamental rule in a scaling observed along the chaotic sea as a function of the control parameters. Because of the area
preservation property, a particle moving along the chaotic sea can not penetrate KAM island nor a particle in a KAM island
can not escape from the island.

Let us now discuss some properties of the phase space. To start with, we discuss the Lyapunov exponents. They are indeed
known as an important tool to be used in the characterization of chaotic dynamics. The procedure to obtain the Lyapunov
exponents consists in verify if two sufficiently close initial trajectories diverge exponentially fast from each other as time
evolves. If the system exhibits at least one positive Lyapunov exponent, then it has chaotic components. The Lyapunov expo-
nents are obtained as [23]
kj ¼ lim
n!1

1
n

ln jKðnÞj j; j ¼ 1;2; ð9Þ
where KðnÞj are the eigenvalues of the matrix B ¼
Qn

i Jiðei;/iÞ and Ji is the Jacobian matrix of the system.
Fig. 6(a) shows a plot of the Lyapunov exponent as a function of n for four different initial conditions in the region of low

energy. One sees they fluctuate at the beginning and converge to a regime of constant plateau for large n. Fig. 6(b) shows a
plot of �k� Nc. One observes a tendency of growth of �k as Nc increases. Fig. 6(c) shows a plot of �k�xr . One notes that �k is
about 1:8 for xr ¼ 1, decays slightly reaching a constant plateau of �k � 1:4 for xr ffi 10, passing by a minimum of �k � 1:1
at xr ffi 20 and approaching the plateau of �k � 1:4 for xr ffi 100. The error bars correspond to the standard deviation of an
ensemble of 6 different initial conditions chosen in the chaotic region.

The chaotic sea in the phase space for this model is always limited by a set of invariant KAM curves. They indeed prevent
the particle to diffuse unlimited in the phase space. Having this in mind, let us discuss the behavior of the average energy and
hence the deviation around the average energy. They are defined as
eðn; d;Nc; rÞ ¼
1
n

Xn

i¼1

ei ð10Þ
and the deviation of the average energy as
qðn; d;Nc; rÞ ¼
1
M

XM

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

j ðn; d;Nc; rÞ � ej
2ðn; d;Nc; rÞ

q
; ð11Þ



Fig. 6. Plot of: (a) k� n for 4 different initial conditions chosen along the chaotic sea using r1 ¼ r2 ¼ 1, dr ¼ 0:5; d1 ¼ d2 ¼ 0:2; Nc ¼ 100 and xr ¼ 1; (b)
�k� Nc for Nc 2 ½101;104� using xr ¼ 1; (c) �k�xr for xr 2 ½1;90� using Nc ¼ 100.
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where M denotes an ensemble of different initial conditions. Indeed we set an initial energy e0 ¼ 1:01 and consider
/0 2 ð0;2p� as the different initial phases. Fig. 7 shows a plot of q� n for Nc ¼ 5; r1 ¼ r2 ¼ 1; dr ¼ 0:5; d1 ¼ d2 ¼ 0:2 and
xr ¼ 1. We see that q grows as a power law for small n with slope ffi 0:5 and, after a crossover number nx;q tends to a regime
of saturation qsat. A variation of the parameters Nc and xr produce similar plots but with different crossovers and different
saturation. Therefore we propose that

1. For n� nx, the behavior of q can be described as
qðn;Nc;xrÞ / nb; ð12Þ
where b ffi 0:5 is the acceleration exponent.
Fig. 7. Plot of q� n for r1 ¼ r2 ¼ 1, dr ¼ 0:5; d1 ¼ d2 ¼ 0:2; xr ¼ 1 and Nc ¼ 5.
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2. For n� nx; qsat is given by
Fig. 8.
r1 ¼ r2
qsatðn;Nc;xrÞ / Na1
c xa2

r ; ð13Þ
where a1 and a2 are critical exponents.
3. The characteristic crossover nx is written as
nxðn;Nc;xrÞ / Nz1
c xz2

r ; ð14Þ
where z1 and z2 are dynamical exponents.

The critical exponents can be obtained if the behavior of qsat and nx are obtained as a function of the control parameters.
The critical exponents obtained as a function of Nc are shown in Fig. 8(a) and (b) while for the control parameter xr are
shown in Fig. 8(c) and (d). Fitting the curves shown in Fig. 8 by power laws, we obtain that a1 ¼ 0:6333ð5Þ;
a2 ¼ 0:639ð8Þ, z1 ¼ 1:30ð4Þ and z2 ¼ 1:31ð3Þ. The set of exponents obtained can be used to overlap different curves of q into
a single plot as shown in Fig. 9(a) and (b), after a suitable rescale of the axis.

The behavior of qsat is strongly influenced by the position of the lowest energy invariant KAM curve which defines the
laws of the observables in the chaotic sea [24]. The curve is characterized by a typical value of energy e	 which fluctuates
slightly. Fig. 10(a) shows a plot of the energy of the particle at the invariant KAM curve, which we denote as e	, for two dif-
ferent control parameters, as labeled in the figure. Fig. 10(b) and (c) show plots of e	 as a function of the control parameters
Nc and xr . After fitting a power law in both plots we obtain that the slope is given by a1 ¼ 0:654ð4Þ and a2 ¼ 0:66ð1Þ. These
values are numerically close to those obtained from scaling approach and confirm the influences of the position of the lowest
energy invariant KAM curve over observables in the chaotic sea, as discussed in Ref. [24].

Let us now concentrate to investigate some transport properties along the chaotic sea. We consider an ensemble of initial
conditions started with low energy, say e0 ¼ 2, and evolve them in time seeking for the number of iterations n that each par-
ticle spends until reaches a certain position at the energy axis on the phase space, say h. The ensemble is produced by the
variation of the initial phase / 2 ð0;2p�. When the particle reaches the condition enþ1 P h the number of iterations n is col-
lected, the orbit is stopped and a new initial condition is started. The simulations were carried out using r1 ¼ r2 ¼ 1; dr ¼ 0:5
and d1 ¼ d2 ¼ 0:2. In principle the position h may be either below or above the periodic islands. If below, no regions of trap-
Plot of: (a) qsat � Nc using xr ¼ 1; (b) nx � Nc using xr ¼ 1; (c) qsat �xr using Nc ¼ 100; (d) nx �xr using Nc ¼ 100. The parameters used were
¼ 1; dr ¼ 0:5 and d1 ¼ d2 ¼ 0:2.



Fig. 9. Plot of: (a) q� n for three different values of Nc and xr; (b) After a rescale of the axis, all curves shown in (a) overlap each other onto a single and
universal plot. The parameters used were r1 ¼ r2 ¼ 1; dr ¼ 0:5 and d1 ¼ d2 ¼ 0:2.

Fig. 10. (a) Position of the lowest invariant KAM curve for two values of Nc using xr ¼ 1; (b) e	 � Nc for xr ¼ 1; (c) e	 �xr for Nc ¼ 100 and using only
integer values of xr .
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ping are observed when they indeed are for h above the islands. This procedure allows us to obtain some properties for trans-
port of particles along the chaotic sea.

Fig. 11(a) shows a plot of a histogram of frequency for the orbits that reach the position h in the phase space at certain n.
One sees that the histogram exhibits a peak at np characterizing a most probably n that each particle reaches h. Considering
that the phase space is mixed and periodic islands are present, the tail observed at long n is an evidence of sticky orbits in the
phase space. Some initial conditions can indeed reach h quick, as the short time dynamics indicates 1 < n < np. They lead the
survival probability of particles along the dynamics to be exponential. Trapping near periodic regions however turns the fast
exponential survival probability decay into a slower decay that may be either a power law or a stretched exponential [25].
The long tail of the survival probability characterized by a power law was also observed from orbits lying in metastable es-
tate in a double well potential [15]. We are then interested to describe the behavior of np as a function of the parameters Nc

and xr , as shown in Fig. 11(b) and (c). Fitting a power law on the curves shown in Figs. 11(b) and (c) we obtain that the
slopes are given by z1 ¼ 1:37ð4Þ and z2 ¼ 1:37ð4Þ respectively.

The sticky behavior produces orbits which spend long time dynamics to reach the energy h therefore leading to a prob-
ability that some orbits survive long the dynamics. This situation is observed when h is above the first periodic islands. When
the dynamics is fully chaotic, the survival orbits decay exponentially in time while the sticky dynamics, produced by orbits
visiting very close periodic regions lead to a slower decay (see Ref. [3] for a specific application). The probability that the
orbits survive long the dynamics is defined as
Fig. 11.
for Nc ¼
P ¼ 1
N

XN

j¼1

NsurvðnÞ; ð15Þ
where the summation is taken along the ensemble of N different initial conditions while Nsurv ðnÞ is the number of initial con-
ditions which do not reach h until a time n. Fig. 12(a) shows a plot of the survival probability as a function of n. The major
part of the plot is characterized by an exponential decay with slope �. Plotting ��� Nc and ���xr , as shown in Fig. 12(b)
and (c), one sees that the slopes are respectively z01 � �1:366ð9Þ ¼ �z1 and z02 � �1:36ð4Þ ¼ �z2. These two exponents, de-
spite the reversed sign, are numerically close to the exponents z1 and z2 obtained before using scaling approach.

The localization of the invariant KAM curve is not an easy task as it seems to be at first sight. Indeed, the commonly pro-
cedure used in the literature to estimate analytically the position of the KAM curves in the phase space is a connection with
the standard map [24]. Therefore this procedure assumes that, locally, the dynamics of the system is described by the stan-
dard mapping. Given the invariant KAM curve is the lowest one in the energy axis, one may argue that the phase space is
separated in two portions: (i) below of the first invariant KAM curve, where global chaos is observed and; (ii) above of
the first invariant KAM curve, where local chaos is observed. Therefore there is a transition from local (above the first invari-
(a) Plot of the histogram of frequency of orbits reaching the energy h for the parameter Nc ¼ 1000; (b) plot of np � Nc for xr ¼ 1; (c) plot of np �xr

100.



Fig. 12. (a) Plot of the survival probability for Nc ¼ 1000, where the slope of the exponential fit is equal to �; (b) ��� Nc for xr ¼ 1; (c) ���xr for
Nc ¼ 100.

Fig. 13. Magnification of the Fig. 10(c) showing details about the position of the first invariant spanning curve as function of xr; (b) Another magnification
represented by the red rectangle in the item (a), where the dotted lines represent regions where a specific joining of two fixed points and its vicinity. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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ant KAM curve) to global chaos (below the first invariant KAM curve), and in the standard mapping, the critical value of the
parameter which controls such transition is around Kc � 0:9716 . . .. However this procedure can only be made in a family of
mappings whose nonlinearity is the same as that of the standard mapping. In the present case this procedure is impossible.



Fig. 14. Phase space for xr equal to: (a) 12; (b) 12:016; (c) 12:02; (d) 12:02756; (e) 12:039468; (f) 12:039884.
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Therefore we recur to numerical simulation as an attempt to estimate the position of such curve. However, the variation of
the parameter xr in a small range may produce relatively large fluctuations in the position of the lowest invariant KAM
curve. To illustrate this, Fig. 13(a) shows a plot of the position of the first invariant KAM curve e	 (obtained numerically)
as a function of xr . We see that for 12 6 xr < 16 the maximum values of e	 fluctuates around 100 and 150.

Fig. 13(b) shows a magnification of Fig. 13(a) and a complicate behavior of e	 is visible in the sense it fluctuates quite a lot.
The variation of the parameter xr causes modifications in the phase space of the system leading the dynamics to experience
trapping in many sticky regions as shown in Fig. 14(a) for xr ¼ 12. For visual purposes, the phase space was limited to
0 6 / 6 p. As one sees, there are many chains of periodic islands and invariant KAM curves preventing the particle to diffuse
in energy. Let us now focus in a more microscopy region, indeed the chain of periodic islands located at e ffi 113. As we can
see from Fig. 14(a) there is a set of seven large visible islands on the top. If xr is changed to 12:016, we note that the first
island in the left hand side almost disappear, leading to an appearance of a dark region in the phase space, apparently
marked by a sticky region. On the other hand, in the right hand side, there is an apparent period duplication (appearing eight
visible islands) and deformation in the shape of the periodic regions as well as its vicinity. We have just highlighted two
islands inside the (blue) rectangle just to show that changing a little the parameter xr to 12:02 it causes a combination
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of these islands, as we can see in the Fig. 14(c). It happens for other islands too, and many deformations of the periodic
islands, apparent duplications and combinations forming new islands are observed. Now changing the parameter xr to
12:02756, as shown in Fig. 14(d), one may see structures similar to separatrix, indicated by the red arrows. The last plot
shows an enlargement for the region of / 2 ½0;1�. Changing yet more the parameter xr to 12:039468 (see the Fig. 14(e))
one sees that the first visible periodic island in the left corner is dislocated to the right and an approach to the other island
is observed. Increasing xr to 12:039884 a joining of the two islands is observed forming a new periodic island. Therefore
after increasing a little xr , the islands come back to the original form as shown in Fig. 14(a). The points where this joining
was observed are around xr equal to 12:03; 12:36 and 12:71. This behavior was also observed for other ranges of parameters
too. Indeed we observed it for xr equal to 15:05; 15:386 and 15:722 and around 20:066; 20:40 and 20:734.

3. Summary and conclusions

As a short summary, we described some dynamical properties for chaotic orbits along the phase space for the problem of
a classical particle confined inside a box of potential containing a time varying step potential. The equations describing the
dynamics were carefully constructed. We obtained that the histogram of frequency for the successive reflections is described
by a power law with exponent�3. This is the same exponent observed for the distribution of traversal time in the problem of
a particle moving in a time dependent barrier [21]. The exponent however is not universal given the successive reflections
for a beam of light confined in a corrugated waveguide is described with an exponent �3.76 (see Ref. [22]). Using three scal-
ing hypotheses, we obtained scaling exponents and used them to overlap different curves of deviation around the average
energy onto a single plot. Such approach was possible due to the existence of a set of invariant KAM curves, preventing the
particle to reach unbounded energy. Transport properties along the chaotic sea was studied by seeking the number of iter-
ations needed to reach an energy h. The histogram of particles reaching the energy h at a certain n has a peak at np that is
described by a power law. Sticky regions produce trapping and therefore long time dynamics around periodic regions leading
orbits to survive long before reach the energy h. The survival probability has an exponential decay for low h where periodic
regions are absent. However as h rises, a turn from exponential to power law is observed. The slow decay is related to stick-
iness of orbits trapped around the periodic regions. Similar behavior was observed for the problem of a double well where
particles were escaping from one well to the other one due to the effect of noise [15]. The power law fitting of the survival
probability was also observed for a double well potential due to orbits lying in metastable state. Therefore the survival prob-
ability decays exponentially fast in time for short time and change to slower decay for long time. The slower decay is ob-
served mainly due to trapping in sticky domains. Trapping regions were also observed near the invariant KAM curve as
the parameter xr is varied. They show to exhibit reorganization of the islands and appearance of seemingly separatrix
curves.

4. Supplemental data

As a complement of Fig. 13 we can see a supplemental data that include videos in which can be found with this article
online or at the following addresses: http://www.youtube.com/watch?v=pQLrxOszedw and http://www.youtube.com/
watch?v=aP3ssNRHAQw. We have considered xr 2 ½12;13� and xr 2 ½12:026;12:052� respectively.
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