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Driving trajectories in chaotic scattering
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In this work we introduce a general approach for targeting in chaotic scattering that can be used to find a
transfer trajectory between any two points located inside the scattering region. We show that this method can
be used in association with a control of chaos strategy to drive around and keep a particle inside the scattering
region. As an illustration of how powerful this approach is, we use it in a case of practical interest in celestial
mechanics in which it is desired to control the evolution of two satellites that evolve around a large central
body.
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[. INTRODUCTION trol of chaotic scattering is to bring the trajectories inside the
region where their method could be appli€dontrollable
The phenomenon of chaotic scattering has been identifiecegion”). This is because the chaotic set in a chaotic scatter-
in many fundamental physical situations, such as celestiahg is nonattractive, so there is just a very small probability
mechanic$1], molecular dynamicg2], fluid dynamicg3,4],  that a trajectory that starts from a random chosen initial con-
mesoscopic systenj§], chemical reactiongs,7], electrody- dition enters the “controllable” region. In Ref12], the au-
namics[8], and nuclear physid®]. The term scattering char- thor introduced a targeting method that uses small perturba-
acterizes a situation that may happen in open systems. Déons to drive trajectories from an unstable periodic orbit
pending on specific control parameters, the motion can bicated inside the chaotic scattering region to a target point
regular or chaotic in the scattering region. A scattering isoutside the scattering region. Here, we generalize this
usually described by the scattering function, which relates tgnethod so that it can be used to quickly transfer between any
the final state of a scattered particle, a function of its initialyyg points located inside the chaotic scattering. Furthermore,
state. In a chaotic scattering, the scattering function presentSe show that when the trajectory is about an unstable peri-
a cantor set of singularitiS.0]. This set of singularities is ¢ orbit, the formerly described control of chaos method
due to the existence ofa chagt!q nonattractive invariant set ig,, pe applied to keep the trajectory evolving on the unstable
the scattering region. Thus, initial conditions on this cantorperiodic orbit. Thus, the combination of chaos control with

set of singularities of the scattering f_unctlon imply in trajec- targeting gives us a powerful approach that can be used to
tories that enter the scattering region, stay wandering the. . S . .
irect a trajectory inside a chaotic scattering to produce

chaotic set and so never exit. Furthermore, in the neighbor- . .
elaborated trajectories.

hood of those initial conditions, the system presents ex- To d h ider the situati
tremely high sensitive dependence on small perturbations, '© emonstrate our approach, we consider the situation

which is the hallmark of chaos. that appears in Fig. 1, where t\/\{o light boqiks!ti.Z gnd M3
In this work we show that this sensitive dependence orflescribe initially coplanar and circular orbits, with slightly
small perturbations can be used not only to keep a particlgifferent radii, around a heavy central bolf; . In this sce-
that comes from the outside in the scattering region, but alspario, our goal is to use our control of chaos strategy to
to change its trajectory so that it describes an elaborategontrol the orbital evolution oM, andMs. If the two light
desired motion inside the scattering region. This capability idodies are far apart, their mutual attraction can be neglected,
usefull in practical situations, as are the cases of chemicaind the problem reduces in a fair approximation to a super-
reactions, particle accelerators, electromagnetic wave gemosition of two independent two-body problems. However, if
erators, among others, where the efficiency of the respectivihe distance between them becomes sulfficiently small, a situ-
processes could be enhanced if the system could be guidedation called as arencounter their mutual attraction is no
specific trajectories in its state space. In fact, in REf], the  longer negligible and cannot be ignored. This is known as
authors applied a method inspired on the Ott-Grebogi-YorkeHill's problem[13].
(OGY) method of control of chaos to stabilize trajectories  The Hill's problem is known as the simplest nonintegrable
that come from outside the scattering region on one of thease of theN-body problem. The equations are very simple,
unstable periodic orbits embedded in the chaotic set. Howand contain no parameter. However, many problems in ce-
ever, the authors stressed that the major problem about cofestial mechanics can be adequately approximated by Hill's
equations. Examples are the Sun-Earth-Moon prollEsh
which was the motivation of Hill's original work; the inter-
*Email address: elbert@lit.inpe.br action between particles in planetary rirjd€—164; the mo-
TEmail address: ibere@if.usp.br tion of coorbital satellite§17]; the accretion of particles by a
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to get the desired satellite control behavior. In Sec. VI we
present conclusions and general discussions.

D o, II. STABILIZING CHAOTIC TRAJECTORIES

One fundamental aspect of chaotic invariant sets is that
they are typically permeated by an infinite dense set of un-
stable periodic orbits. Control of chaos by stabilizing those
unstable periodic orbits was conceived by Ott, Grebogi, and
Yorke [20,21]. Their basic ideas regarding a chaotic attractor
is as follows. First one chooses an unstable periodic orbit
embedded in the chaotic set according to some performance
criterion. Second, one defines a small region around the de-
sired periodic orbit. As a chaotic trajectory is transitive in its
invariant set, starting from any initial condition, after some
time it will come to that small region about the chosen un-
stable periodic orbit. When this occurs, small judiciously
chosen parameter perturbations are applied to force and keep
the trajectory evolving on the unstable periodic orbit. In sub-
sequent works, Lai, Tel, and Grebod2,11] showed that
with small modifications the OGY method can be applied to
FIG. 1. Schematic representation of the problem. Two light bOdhyperboIic Hamiltonian systems, as follows.

ies describing initially coplanar and circular orbits, with slightly Let us consider the above discrete time dynamical system
different radii, around a heavy central body. In the initial situation ’

M5, the inner body, has a slightly larger angular velocity tivy, Xi1=F(Xi,p), (1)
which means that after some time they eventually interact gravita-
tionally with each other. whereX; e 82, pe R is an externally controllable parameter,

andF is a smooth function in both variables. The parameter
protoplane{18]; and the distribution of particles around the perturbation to be used to control the system is required to be

Earth[19]. small, i.e., it is required that
In the present paper we use the Hill's problem to model
the case wherdl, and M are artificial satellites or space- [p—pol <4, 2

crafts, and our goal is to stabilize the satellites in an orbit in

which they evolve around each other. The difference bet\Nee\r/1Vhere Po IS SOME nominal parameter vaIue.a.ﬁlds a small .
the radii of their initial circular orbits is called thienpact number defining the range of parameter variation. The goal is

parameter In the initial situation;M,, the inner body, has a to_program the parametqr in S.UCh a way that a typlcal_
slightly larger angular velocity thaM 3, which means that trajectory in the chaqtlc region 1s stap|]|zeq apout the de.sw-
after some time thev eventually do t03 ,an encounter. De enGa}ble unstable periodic orbit. The stabilization procedure just
ing on the impact pgrameter tr)llegresult of the encoﬁnté)pis starts to actuate when the chaqtic trgjectpry enters a small
only a slight deflection on their previous circular orbits, if the region around one of the penodm-o_rblf[ point, V\_/hose SIZE 1S
impact parameter is sufficiently largé) a “horseshoe” mo- proportional tod. Once the particle is inside this small re-
tion, in which the bodies “repel” each other azimuthally and gion, p is judiciously changed to keep the trajectory around

: RV . ._the unstable periodic orbit.
never come in close proximity, if the impact parameter is - . .
very small;(iii) a very evolved and complex motion charac- Let us assume thenstable periodic orbi(UPQ) of period

terized by “sensitive dependence” of the motion after the™ to be controlled is

encounter to small changes in the impact parameter and by Xo1(P) — Xz P)* **— Xom(P)— Xo(ms 1)(P) = Xox( P)-
singularities in the scattering function. This last situation is 3)

in fact a case of &haotic scattering20,12. Our strategy is

used in this region of the impact parameter where a chaotidhe linearized dynamics in the neighborhood of the penod-
scattering appears to exploit advantageously the characterigrbit is

tics of a chaotic motion to guide the movement of the artifi-
cial satellites. Xn+l_XO(n+1)(pn):M[Xn_XOn(pn)]y (4

This paper is organized as follows. In Sec. Il we review : L : : : )
the basic theory of the OGY method and present a formulat\—’\/h.e:e)'z/I S the_two +d|?en3|onalh.]acofb an rréatn)Z( atghe orbit
ion f t turbations that does not explicitly in-"C"t Xon: Pn=Pot (AP)ng, Where from Eq.(2) (Ap)n
SgR/eore%aerr?\g?ugg p?; uSec Il we present ourptarg()a/tingf 6. Observe that the parameter variation will result in the
method in a situation of a chaotic scattering. In Sec. IV we ollowing change in the periodic-orbit points:
derive the Hill's equations and we analyze the dynamical Xon(Pr) = Xon(Po) = (AP) nGn (5)
behavior of the Hill's equation and its correlation with a
chaotic scattering scenario. In Sec. V we apply our methodwheregn=aXOn(p)/ap|po.
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F(X,) F(Xy.1) trarily small radiuse is put at it. After that, the previously
discussed procedure is applied, but now iterating in the for-
ward direction. At the end of this procedure Xg the ellipse
becomes very thin, with its major axis along the unstable
direction.

Let ey ande,(,) be the stable and unstable directions at
Xon, and letfgy, and fy,,) be two vectors that satisfy
fugny B =Ts(n) &(m =1 aNd Ty ) =fs(n) By =0. TO
control the orbit, it is required that the next iteration of a
trajectory point after falling into one of the small neighbor-
hoods aroundX,, lies on the stable direction &g+ 1)

X(pg), i-e.,

Xpr1—X -f =0. 6
FIG. 2. Schematic illustration of the procedure used to find the [Xn+17Xon+1)(Po) ] fun) ©)

stable direction at a poirK,: A circle of arbitrarily small radius is  sypstituting Eqs(4) and (5) into Eq. (6), we obtain the fol-
put at the poiniX,, and is iterated backward times. The resulting lowing expression for the parameter perturbations:
ellipse has its major axis along the stable directioiXgf provided

thatN is Iarge enoth' (Ap) _{M[xn+l_xo(n+l)(po)]}'fu(n+l) (7)
n )
The Jacobian matriM of Eq. (4) can be expressed in L(MFn) = Gnsa]-Tun)
terms of its stable and unstable directions. Note that even iwhereM is evaluated aX,,(py). This parameter perturba-
the case in whiciM has complex-conjugate eigenvalues, thetion is applied at each time step of the trajectory, which is so
stable and unstable directions figk can be defined. To find kept stabilized around the unstable periodic orbit.
the stable direction at a poit,, we first iterate this point

forward N times under the map and get the trajector), IIl. TARGETING IN CHAOTIC SCATTERING
=F(Xo), Xo=F(X1)=F&(Xp),..., and Xy=F(Xy_1)
= F‘N|(Xo). Now, a circle of arbitrarily small radius is put The inherent exponential sensitivity of chaotic time evo-

at the pointXy . If this circle is iterated backward once, the lutions to perturbations is the hallmark of chaotic systems.
circle will become an ellipse at the poit¢y_, with the ~ This characteristic is responsible for the impossibility of
major axis a|0ng the stable direction of the pcmnil_ This making |0ng-term pI’ediCtiOhS of the System evolution based
ellipse is iterated backward, while at the same time its majoPn finite precision measurement. However, despite the com-
axis is kept of ordek via certain normalization method. This Plexities of chaotic behavior, this same main characteristic
procedure is repeated all the way back to the polgt ~ can be intelligently exploited to direct a system to some de-
where the ellipse becomes very thin, with its major axisSired state using a carefully chosen sequence of small pertur-
along the stable direction provided is large enough. This Pations to some system parameter. This approach was intro-
procedure is schematically shown in Fig. 2. duced by Shinbrot, Ott, Grebogi, and York3] and have
Similarly, as shown in Fig. 3, to find the unstable direc-been calledtargeting In the context of chaotic scattering,

tion at pointX, first this point is iterated backward under Ref.[12] proposed an approach applicable to the situation

the inverse mapN times to get a backward orbiX_;  Where itis desirable to target some region of phase space out
=FI71l(Xq) (j=1,...N). In the pointX_y a circle of aeri- of scattering region to a particular poiRtfrom an unstable

periodic orbitC, located inside the scattering region. Thus,
F(X,) F(X.,) by applyingsmall perturbing control, the goal was to direct
the motion of the particle so that it hits the poiRt The
author assumed that initially the unstable periodic orbit is
kept stabilized with the use of a control of chaos strategy. In
what follows, we introduce substantial changes in this
method to make it applicable to transfer between any two
points located inside the chaotic scattering region.

If our system is a continuous time systéfiow), we can
introduce a convenient surface of section transverse to the
flow so that the study of the continuous time system is re-
duced to the study of an associated discrete time system, the
Poincaremap. We will denote by this map that transforms
the point &), located in the surface of section, to the point

FIG. 3. Schematic illustration of the procedure used to find the(Sn+1), associated with the first return of the flow to the
unstable direction at a poit,: A circle of arbitrarily small radius ~ Surface of section, i.ef,:(sp) — (S 1)-

is put at the poinX_,, and is iterated forwartll times. The resulting Let us suppose th_at our goal is to target a pﬁ‘ig,\lfrc_)m a
ellipse has its major axis along the unstable directiorXgf pro- ~ point Qg located inside the scattering region. Starting from
vided thatN is large enough. Qg we find the first poinQ in which the trajectory crosses
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Unstabié__ :
Manifold

Unstaﬁé
Manifold

FIG. 4. Two trajectories that come close to each other. FIG. 5. Targeting method, solving far and 8 the following

) ) ~ equation:f™u(X;_, + des)=1""s(Y, n + Beg).
the surface of section. We repeat this procedure, this time ¢ °
starting from the poinP to find the pointP also located on  For a hyperbolic situation, associated to each point on the
the surface of section. Now, our aim is to find a “small” jnvariant set there are stable and unstable manifolds. We in-
perturbationds so that if those numbers are adequately ap+.oquce at the positiol, . , a small perturbatiofe,; where
. P . nS IB
plied to the original trajectory that passes thro@gtve have . i tor in the directi f th turbati
a perturbed trajectory that eventually hits a target pé&int €p 1S @ unit vector in the direction of the perturba '(Eee
Fig. 5, and iterate this perturbed poinf times backward in

which is also located on the surface of section. i This will tvpicall ¢ by traiectory that wil
Starting atQ we randomly choose a large number of (;mg.t IS Wi yp|.ca|y?ener?hean_e§1r ?/tra!ectory ? Wi h

nearby initial conditions. We choose an integer nuniband bg\é:?w?;\rgrgg:gﬁsalee{(p;%?ing ZV\?;;?;':gngf; tcr)g dailregac

retain those initial condition&rg,rg,....rj,...} that lead to a fion of the stable manifold at the points on the orbit

. . l J . .
set_of trajectoriesr ,...r "".} th"?‘t remain on the scatterl_ng [25,26]. (We assume that the direction of the small perturba-
region for at least XL crossing times the surface of section.

For L large enough, these initial conditions are located nealion 8€ is not precisely such that it has no component in the
the stable manifold of the chaotic invariant §24]. Further-  stable direction.We also introduce a small perturbatior,;
more, for each trajectory its middle point)()) and its ante- to the orbitX at the iteratior —n, wheree is a unit vector
cessor ()., ;) and succeeder{,,,,) points are located very in the direction of the perturbatiofsee Fig. §, and iterate
close to the chaotic invariant §et4]. Let us calll o the setof ~ this perturbed point forward in time,, iterates. This will
those points. Starting & we randomly choose a large num- typically generate a nearby trajectory that will deviate pro-
ber of nearby initial conditions. We set a numbéand re-  gressively from the original trajectory at each forward itera-
tain those initial conditiong§sy,sZ,...,s) ...} that lead to the  tion, expanding away fronX along the direction of the un-
set of trajectoriegs?, ... s',...} that remain in the scattering StaPle manifold at the points on the orki{25,2§. Consider
region for at leasiN crossing times the surface of section. that we can find values of the small perturbatiohand g
From these trajectories, we select the one that comes clos- that solve the equation

est to the setly. Let us say that this trajectory is" . - .
={sg,s,-...S%.---SN }, whereN=N denotes the number f(Xj—n,+ 0€5) =T "(Yin + BEp). ®

of times that this selected trajectory passes through the sur- i

face of section, andsf)) for d<N, is the point of this tra- This means that we have found a shadow trajectory that at

jectory in the surface of section that comes closest to the séime j —ny has a point that isf away fromX;_, and atns

| by say its point (7). If we take this selected trajectory +n, forward iterations in time is @ distance from the point
and obtain itstime inverse we have what we shall call the Yk+nsa of the trajectoryY. Thus the numbers, andng must
ref_eren(r:ne trajector.yThat is, a trajectory that passes near thesatisfy n<N,—k and n,<j. (Note that, sincee is not
point () of the trajectory™ and afteiN subsequent cross- necessarily aligned with the stable manifold¥at, , , for-
ings of the surface of section, it comes near the péint ) - . . s
(Recall that to get the points of the time inverse trajectory invard iterates ofY,. , +Be (if they exisy are expected to
the surface of section we replace eachy —t;, and reverse diverge from the trajectoryy). Note that Eq.(8) can be
the time sequence of the points. solved foré and 8 by the Newton-secant method.

The general situation of two orbits that come close to one This method can be straightforwardly applied to the pre-
another is depicted in Fig. 4, where an arbitrary surface o¥iously discussed situation. The trajectofyis associated to
section was defined. There we can see the trajectdrimsd  the trajectory that passes through the poi§t)( which is in
Y, which have the pointX; andY as the respective position the vicinity of Q, while the trajectoryy is associated to the
where the orbits come closest to each other. reference trajectory that passes through the paifjt (Note
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that starting withQ, two perturbations are necessary in order _
to obtain thesolution trajectory which is the trajectory that leGmZ(YZ "y + Gmy(Ys—Ya)
connect the neighborhood @ to the neighborhood oP. RS, Ris
Thus, the first perturbation is to put the trajectory in the point L )
r", while the other is thed gotten by using the previously and similar equations foX;, Y, X3, andY;, whereG is
discussed method. This last perturbation will yield an orbitthe gravitational constant, aitj; is the distance between the
that approaches the reference trajectory by following the dibodiesi andj, i.e.,
rection of the stable manifold at the points of the reference 5 >
trajectory, and thus comes close to the pdéint Rij= \/(Xi_xi) +Yi=Y)” (14)
As this approach is a generalization of the one that ap-
pears in Ref[12], it inherits the qualities of the original
approach. Thus, our approach works very well, is robust X;
enough to deal with nonideal effects, and can be used as a X{=
targeting procedure between any two points inside the cha-

otic scatte_rin_g region. In particul_ar, this is the situation thatg, 4t jn these new variables, the gravitational constant, the
we dea! with in the case of the Hill's p“’b'ef“- nge, our goalangular velocity, the total mass of the system, and the radius
is, starting from a given value ¢f to end up in a situation of ¢ iha mean orbit are all equal to 1. In Refe7—29 it is

capture, wherdl, andM; are kept evolving in relative mo-  gpoyn that when the satellites are moving in the neighbor-

tion of periodic orbit. In order to accomplish this, the targety, o4 of each other and the movement is described using
method is used to guide the trajectory to the neighborhood ofy o ic coordinates, i.e., in a coordinate system that rotates

the desired orbit, while the previously described control ofy it angular velocityw,, a sequence of transformation can

chaos method keeps the trajectory on the periodic orbit. Thge 5njied, resulting in the following equations for the rela-

details of this approach is presented in the Sec. V. tive coplanar motion of the satellites describedgimnd »
coordinates, which are callgdill's equations

& . Ui

Let us assume that the mass of either satellite is small é=u, n=v, U=2v+3é-——5, v=—2u——3.
compared to the mass of the planet, i.e., p P

: (13

We introduce dimensionless coordinates by

Yi

m;
= — 4 —_—
ap’

m=—, t=agt, (15

J— ./
ap’ !

IV. HILL'S EQUATIONS

(16)
my>m, and my>ms, (9 Hill's equations admit the integral
where m; is the mass of bodyM;. The ratio of the two ) s o
massesn, andm; can be arbitrary, but fixed. Thus, we de- =3¢+ ;_U L (17)
fine
which is known asJacobi integralby analogy with the re-
m=m;+m,+ms (100 strict problem.
We assume that the two satellites are on circular orbits
and before their encounter, with radéi, and a;, both of them
close toay. Thus, we can write
m,+ms
K=", (1D ay=ao(1+u'"hy),

(18
_ 1/:
Let us assume that the distance between the two satellites a3=ag(1+ "),

is small cpmpared to their dl_stance to thg planet. Thus! thGf“hese circular orbits appear in the system of coordinates that
two satellites can be approximately considered as a smglﬁ,e are using as follows:

body in orbit around the planet. We call this orbit as the

mean orbif27-29, and we assume it is a circular orbit with &=h, p=-3h(t—1), (19
radiusa,. The angular velocity ofm, andms on this mean
orbit is whereh=hs—h,. In this equationr is a trivial parameter
that can be eliminated by a change of the origin of time.
wo= \/Gmag3. (12 Furthermore, the Jacobi integiféq. (17)] can be written in

terms of theh as
Let X;,Y; be the coordinates of bodyin an inertial sys-

__ 3R2
tem. The equations of motion in this reference system are as I=3zh% (20
follows: Therefore, our problem depends on just the paramieter
which is called thempact parameterWe can say that the
( CMe(Xp=Xy)  GCmy(Xs—Xy) orbits which we arep conpsiderin f - ' t
1= - - : _ g form ane-parameter
Ri2 R13 family.
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2 2 2 2 FIG. 6. Trajectories describing
the relative motion of the two
=0 s 0 e 0 s 0

small bodies for different values
2 ) o ) of the impact parameteh. The
variables are dimensionless.
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After the encounter, when the satellites are sufficiently facomplex relative motion takes place; in the last phase, the
apart, their mutual attraction becomes negligible, and eactwo satellites move away from each other. Thus, this prob-
satellite describes a Keplerian orbit around the planet. Howlem is a typical case of a classicsdattering
ever, these orbits are no longer circular. In the system of For large values of the parametgrthe orbit of the light-
coordinates that we are using, the asymptotic form of thesst satellite is only slightly perturbed, as can be seen on Fig.
motion is the following: 6. As the parameter diminishes, the perturbation increases

£=h'+K cogt—o) and a loop appears. After that, the shape of the orbit changes
' rapid with the parameter. Continuing to decrease the value of
7=—2h'(t—¢)— 4sh’ 2In[— 2h’(t— 7)]— 2K’ sin(t— ¢) the.parameter, we find an.intervfal i'n which the shgpe of the
1) orbits chgnges W.|I.dI.y. Inside this interval, thgre is an ex-
tremely high sensitivity of the shape of the orbit to just small
with changes in the parameter. After this interval, as the parameter
s=sgn(7) 22) is reduce_d, the shape of the orbit Chang(_es continuously and
‘ slowly with the parameter. Then a new interval of rapidly

In this equationh’ is called the impact parameter, as before,changes of the shape of the orbit with the variation of the
while k' is thereduced eccentricityThis parameter is related Parameter appears, after which follows another interval of

to the actual eccentricities) ande} of M, andM; by wild variation. This succession of behaviors continues to
happen as the parameter is diminished, until the appearance
k'=pu 13\e)’+es’—2e,e;cosy’, (23)  of horseshoe orbits.
Figure 7 represents thecattering functionwhich is the
wherey’ is the angle between the semimajor axes. final impact parameten’ as a function of the initial impact

Let us now analyze the family’s behavior as the parameteparameteh for this problem. We observe intervals in which
changes. To understand the motion of the satellites, we caihe dependence df’ with h is poorly resolved. In fact, for
think about the special case where the mass of one of therthese intervals, the situation of poorly resolved dependency
saym, is much larger than the other one, i.e;>m;. For  of h’ to variations inh persists, no matter how we improve
this case, the origin of the relative coordinate system is orthe resolution of the scale. Thus, even high magnification of
M, and the curves just represent the motiorivbf. these unresolved intervals does not reveal a smooth curve.

The problem that we are considering is typically charac-This phenomenon is callecthaotic scattering
terized by having three well-defined phases. In the first Chaotic scattering is characterized by “sensitive depen-
phase, the satellites approach from each other; in the seconignce” of output variables that characterize the particle tra-
phase, the two satellites remain close to each other and jactory after the scattering to small changes in an input vari-
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Final Impact Parameter x Impact Parameter

FIG. 7. Scattering function for
the interaction of the satellites,
which is the final impact param-
eterh’ as a function of the initial
impact parameten. There are in-
tervals in which the dependence
of h’ with h is poorly resolved
even under improvement of the
resolution scale. The parameters
are dimensionless.
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hf
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1.6639 1.664 1.6641 1.6642 1.6643 1.6644 1.6645 1.6646 1.6647
h

able that characterizes the trajectory before scattdriog singular input variables is uncountable, and occurs on a can-
This phenomenon has received much attention because mator set, we call the situationhaotic scatteringand we say
fundamental physical situations are of this tyf#¥,1,30— that there is sensitive dependence of the output to small
32]. We say that the scattering functigie., the output as a changes in the input.

function of the inpukis singular at a particular value of the The dynamics of scattering in chaotic situation can be
input variable if any interval, containing that input value, explained by the existence of a saddle chaotic invariant set
produces output variable values in a nonzero range that do¢24], formed by the intersection of its stable and unstable
not approach zero as the size of the input interval approachesanifolds, where the stable and unstable manifolds each
zero. Thus two inputs that aggbitrarily closeto a singular  consist of a cantor set of roughly parallel surfaces. When a
value can produce very different outputs. When the set oparticle enters a scattering region close to the stable mani-

Goal periodic orbit

1 ~05 0 0.5 1 15 FIG. 8. The desired unstable periodic orbit to
& be used for stabilizing the relative motion of the
Poincare Section — Goal periodic orbit two small bodiesM, and Mj. The variables are
10 ' ' ' ' ' ' ' dimensionless.
*
5 - -
s of * * 4
-5k -
*
_10 1 1 1 1 1 1 1
0 0.1 02 0.3 0.4 05 06 07 0.8
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Goal periodic orbit and a nearby trajectory

FIG. 9. The desired unstable
periodic orbit and a trajectory
found in the neighborhood of the
impact parameteth, that come
very close to the unstable periodic
orbit. In the Poincaresection, the
unstable periodic orbit is repre-
sented by*, while the nearby tra-

20 ; .
! ! ! g" ! ! f f ! jectory is represented b®. The
10k e e e & ........ . .......... .......... e . _ numbers identify the order in
: : : : : ; 5 ; ; ; which the trajectory crosses the
OF -4 L SRR ok é‘dg@d ..... i Poincafe section. The variables
N L L L é ________ S o S o S ] are dimensionless.
d 5
5 | R R RER R R RS -
SB0f T P, SRS -
& !
_40 1 1 1 1 1 1 1 1 1
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
€

fold, it stays near the saddle chaotic set for some time, antom this situation can lead to wild variations of the output

then escapes following a path close to the unstable manifold10,24,32—3%

The closer it initially is to the stable manifold, the more time  Embedded in this saddle chaotic invariant set is a numer-
it spends in the scattering region. If the initial condition of able and infinite set of unstable periodic orbits. These orbits
the particle is precisely on the stable manifold, the particleare exploited in Sec. V to keep the satellites in orbit of one
stays in the scattering region forever, and small deviationgnother by using chaos control strategy.

solution trajectory

FIG. 10. The solution trajec-
tory that results from the use of
the targeting method. The pertur-
bation to the nearby trajectory is
applied in the first point in which
the trajectory crosses the Poincare
section, as indicated in the figure.
Due to the perturbation, the trajec-
tory is directed to follow the un-
stable periodic orbit. Points in the
Poincaresection that belong to the
unstable periodic orbit are repre-
sented by*. Variables and the pa-
rameter are dimensionless.
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solution trajectory

FIG. 11. Without control, the trajectory that
results from the application of our targeting
method follows for while the unstable periodic
orbit and moves away from it by following the
unstable manifold of the unstable periodic orbit.
It means that one satellite stays in orbit around
the other for some time. After that, they move
away from each other. Variables are dimension-
less.

-1 -0.5 0 0.5 1 15

V. CONTROLLING A SATELLITE ENCOUNTER we identify in the Poincarsection an unstable periodic orbit
that is nearby the original orbit fdn, and imply an orbital

In this section we apply the _pre\_/lously dls_cussed |_dea otion for the satellites that fulfill the mission specifications.
about control of chaos and targeting in a chaotic scattering t9he points of this orbit are used as the targeting for our

typical scenario where this phenomenon happens. We use thggeting strategy. Thus, the first step is to identify a set of
Hill's equation as a model of a satellite encounter. The dynstable periodic orbits and from this set select one that will
namical behavior of this problem was discussed in Sec. IVpe ysed to stabilize the motion of the satellites. Hereafter we
We start by introducing a Poincasection »=0, mapping  call this unstable periodic orbit as tharked orbit We are
the (£,u) plane to itself, whenever the trajectory traversesassuming that for the giveim, the Hill's problem presents a
the Poincaresection withv <0. Thus, the Poincareeturn  chaotic scattering behavior, otherwise our methods do not
map for fixedI” defines a two-dimensional map. work.

To apply the discussed targeting and control of chaos Periodic orbits are found for values of the impact param-
methods, starting from a given value bf, which in this eter for which the chaotic scattering is present using
problem performs the role d@ for the above target method, Schmelcher-Diakonos methd87], in association with the

UPO and Stable Direction Zoom on the Stable Direction
10
&
® 0.01 4
5
%
0
> 0 ® ® B @® g
*
-0.01
-5 %
& -0.02 * .
¥ FIG. 12. Using chaos control strategy, the tra-
1% 02 04 06 08 1 0.1305 0.1306 0.1307 0.1308 jectory keeps following the unstable direct orbit,
& & which means that one satellite stays in orbit
Controlled trajectory Controlled trajectory in the Poincare Section around the other. In the figure, we show the re-
1 10 sults from the application of the chaos controls
% strategy. Variables are dimensionless.
05 5
= 0 ER ] * *
-05 -5
t3
-1 -10
-1 -05 0 05 1 0 02 04 06 08 1
13 3
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Global Solution

0.8
0.6

0.4

FIG. 13. The final trajectory that results from

i the application of both the targeting and the chaos
control strategy. The part of the trajectory that
4 evolves under the action of the control strategy
appears in dotted line. Variables are dimension-
4 less.

Newton-Raphson methodNR). The first method is applied tory come closest to the parked orbit in its sixth crossing of
to each point of a set of starting points defined by a uniformthe Poincaresection. This point of closest approac, (u.)
grid of initial conditions over the state space. For each points then used to determine by using E§) the perturbation
of this set, the method converges to a solution. For distinctiu; to be applied to §;,u.) so that the perturbed trajectory
starting points the method may converge to the same solicomes to the neighborhood of the parked orbit. In Fig. 10 we
tion, which is particularly true if the number of the points of show the problem solution for this specifig,. Note that
the grid is larger than the number of unstable periodic orbitsising our targeting method we can end up in a neighborhood
embedded in the chaotic invariant set. Furthermore, this proef the parked orbit by using just two perturbations.
cess of scanning the state space by using the points of the As the trajectory is in the neighborhood of the parked
grid must be repeated for each value of period of periodiorbit, it follows it for a while and escapes from it by follow-
orbits that we are interested in finding out. From the appli-ing the unstable manifold of the parked orbit. It means that
cation of this method, we get the solution points of the de-one satellite stays in orbit around the other for some time
sired periodic orbits and also points of quasiperiodic orbitsafter which they move away from each other. This situation
All these points were then used as the starting points for thean be seen in Fig. 11.
Newton-Raphson method. This method not only allows a The satellites can be kept in the parked orbit by using our
refinement of the points that belong to periodic orbits, butchaos control strategy. The result of applying our stabiliza-
also discharges eventual points that belong to quasiperiodiion strategy appears in Fig. 12. In that figure the stable
orbits. direction found by using our method is presented as well as

From the set of unstable periodic orbits, we chose the ontéhe controlled trajectory. The global solution, that results
that best fits our purpose concerning the spacecraft missiofrom the use of both strategies of targeting and control ap-
To show how the methods of targeting and control of chaopears in Fig. 13.
can be used in association, we selected the periodic orbit that
appears in Fig. 8. We call this orbit as the parked orbit, as
stated before.

After the determination of the parked orbit, the next step
is to find a nearby trajectory fror® that come close to the This work presents two main contributions. First, we gen-
parked orbit. So, introducing small random perturbations tceralize a previously proposed method for targeting in chaotic
ho, we find the perturbationih, to hy that implies in the scattering so that it can now be used to find a transfer trajec-
orbit of the set that come closest to the parked orbit. Thigory between any two points located inside the scattering
trajectory, which appears in Fig. 9, plays the role of the refregion. Second, we show for the first time that control of
erence trajectory described in the method. In this figure, thehaos and targeting methods can be combined to generate a
parked orbit is represented in the Poincaeetion by aster- powerful instrument to drive orbits around a chaotic invari-
isk, while the reference trajectory is represented by circleant set even if this set is a nonattractive one. To illustrate
with numbers that represent the order in which the trajectoryhow this can be applied, we use a case of practical interest in
crosses the Poincasection. Note that the reference trajec- celestial mechanics in which it is desired to control the evo-

VI. CONCLUSION

026215-10
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lution of two satellites that evolve around a large central
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