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Driving trajectories in chaotic scattering
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In this work we introduce a general approach for targeting in chaotic scattering that can be used to find a
transfer trajectory between any two points located inside the scattering region. We show that this method can
be used in association with a control of chaos strategy to drive around and keep a particle inside the scattering
region. As an illustration of how powerful this approach is, we use it in a case of practical interest in celestial
mechanics in which it is desired to control the evolution of two satellites that evolve around a large central
body.
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I. INTRODUCTION

The phenomenon of chaotic scattering has been ident
in many fundamental physical situations, such as celes
mechanics@1#, molecular dynamics@2#, fluid dynamics@3,4#,
mesoscopic systems@5#, chemical reactions@6,7#, electrody-
namics@8#, and nuclear physics@9#. The term scattering char
acterizes a situation that may happen in open systems.
pending on specific control parameters, the motion can
regular or chaotic in the scattering region. A scattering
usually described by the scattering function, which relate
the final state of a scattered particle, a function of its init
state. In a chaotic scattering, the scattering function pres
a cantor set of singularities@10#. This set of singularities is
due to the existence of a chaotic nonattractive invariant se
the scattering region. Thus, initial conditions on this can
set of singularities of the scattering function imply in traje
tories that enter the scattering region, stay wandering
chaotic set and so never exit. Furthermore, in the neigh
hood of those initial conditions, the system presents
tremely high sensitive dependence on small perturbatio
which is the hallmark of chaos.

In this work we show that this sensitive dependence
small perturbations can be used not only to keep a par
that comes from the outside in the scattering region, but a
to change its trajectory so that it describes an elabora
desired motion inside the scattering region. This capabilit
usefull in practical situations, as are the cases of chem
reactions, particle accelerators, electromagnetic wave
erators, among others, where the efficiency of the respec
processes could be enhanced if the system could be guid
specific trajectories in its state space. In fact, in Ref.@11#, the
authors applied a method inspired on the Ott-Grebogi-Yo
~OGY! method of control of chaos to stabilize trajectori
that come from outside the scattering region on one of
unstable periodic orbits embedded in the chaotic set. H
ever, the authors stressed that the major problem about
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trol of chaotic scattering is to bring the trajectories inside
region where their method could be applied~‘‘controllable
region’’!. This is because the chaotic set in a chaotic scat
ing is nonattractive, so there is just a very small probabi
that a trajectory that starts from a random chosen initial c
dition enters the ‘‘controllable’’ region. In Ref.@12#, the au-
thor introduced a targeting method that uses small pertu
tions to drive trajectories from an unstable periodic or
located inside the chaotic scattering region to a target p
outside the scattering region. Here, we generalize
method so that it can be used to quickly transfer between
two points located inside the chaotic scattering. Furtherm
we show that when the trajectory is about an unstable p
odic orbit, the formerly described control of chaos meth
can be applied to keep the trajectory evolving on the unsta
periodic orbit. Thus, the combination of chaos control w
targeting gives us a powerful approach that can be use
direct a trajectory inside a chaotic scattering to produ
elaborated trajectories.

To demonstrate our approach, we consider the situa
that appears in Fig. 1, where two light bodiesM2 and M3

describe initially coplanar and circular orbits, with slight
different radii, around a heavy central bodyM1 . In this sce-
nario, our goal is to use our control of chaos strategy
control the orbital evolution ofM2 andM3 . If the two light
bodies are far apart, their mutual attraction can be neglec
and the problem reduces in a fair approximation to a sup
position of two independent two-body problems. However
the distance between them becomes sufficiently small, a s
ation called as anencounter, their mutual attraction is no
longer negligible and cannot be ignored. This is known
Hill ’s problem@13#.

The Hill’s problem is known as the simplest nonintegrab
case of theN-body problem. The equations are very simp
and contain no parameter. However, many problems in
lestial mechanics can be adequately approximated by H
equations. Examples are the Sun-Earth-Moon problem@13#,
which was the motivation of Hill’s original work; the inter
action between particles in planetary rings@14–16#; the mo-
tion of coorbital satellites@17#; the accretion of particles by a
©2002 The American Physical Society15-1
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ELBERT E. N. MACAU AND IBERÊ L. CALDAS PHYSICAL REVIEW E 65 026215
protoplanet@18#; and the distribution of particles around th
Earth @19#.

In the present paper we use the Hill’s problem to mo
the case whereM2 and M3 are artificial satellites or space
crafts, and our goal is to stabilize the satellites in an orbi
which they evolve around each other. The difference betw
the radii of their initial circular orbits is called theimpact
parameter. In the initial situation;M2 , the inner body, has a
slightly larger angular velocity thanM3 , which means that
after some time they eventually go to an encounter. Depe
ing on the impact parameter, the result of the encounter i~i!
only a slight deflection on their previous circular orbits, if th
impact parameter is sufficiently large;~ii ! a ‘‘horseshoe’’ mo-
tion, in which the bodies ‘‘repel’’ each other azimuthally an
never come in close proximity, if the impact parameter
very small;~iii ! a very evolved and complex motion chara
terized by ‘‘sensitive dependence’’ of the motion after t
encounter to small changes in the impact parameter an
singularities in the scattering function. This last situation
in fact a case of achaotic scattering@20,12#. Our strategy is
used in this region of the impact parameter where a cha
scattering appears to exploit advantageously the charact
tics of a chaotic motion to guide the movement of the art
cial satellites.

This paper is organized as follows. In Sec. II we revie
the basic theory of the OGY method and present a form
tion for parameter perturbations that does not explicitly
volve eigenvalues. In Sec. III we present our target
method in a situation of a chaotic scattering. In Sec. IV
derive the Hill’s equations and we analyze the dynami
behavior of the Hill’s equation and its correlation with
chaotic scattering scenario. In Sec. V we apply our meth

FIG. 1. Schematic representation of the problem. Two light b
ies describing initially coplanar and circular orbits, with slight
different radii, around a heavy central body. In the initial situati
M2 , the inner body, has a slightly larger angular velocity thanM3 ,
which means that after some time they eventually interact grav
tionally with each other.
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to get the desired satellite control behavior. In Sec. VI
present conclusions and general discussions.

II. STABILIZING CHAOTIC TRAJECTORIES

One fundamental aspect of chaotic invariant sets is
they are typically permeated by an infinite dense set of
stable periodic orbits. Control of chaos by stabilizing tho
unstable periodic orbits was conceived by Ott, Grebogi, a
Yorke @20,21#. Their basic ideas regarding a chaotic attrac
is as follows. First one chooses an unstable periodic o
embedded in the chaotic set according to some performa
criterion. Second, one defines a small region around the
sired periodic orbit. As a chaotic trajectory is transitive in
invariant set, starting from any initial condition, after som
time it will come to that small region about the chosen u
stable periodic orbit. When this occurs, small judicious
chosen parameter perturbations are applied to force and
the trajectory evolving on the unstable periodic orbit. In su
sequent works, Lai, Tel, and Grebogi@22,11# showed that
with small modifications the OGY method can be applied
hyperbolic Hamiltonian systems, as follows.

Let us consider the above discrete time dynamical syst

X i 115F~X i ,p!, ~1!

whereX iPR2, pPR is an externally controllable paramete
andF is a smooth function in both variables. The parame
perturbation to be used to control the system is required to
small, i.e., it is required that

up2p0u,d, ~2!

wherep0 is some nominal parameter value andd is a small
number defining the range of parameter variation. The goa
to program the parameterp in such a way that a typica
trajectory in the chaotic region is stabilized about the de
able unstable periodic orbit. The stabilization procedure j
starts to actuate when the chaotic trajectory enters a s
region around one of the periodic-orbit point, whose size
proportional tod. Once the particle is inside this small re
gion, p is judiciously changed to keep the trajectory arou
the unstable periodic orbit.

Let us assume theunstable periodic orbit~UPO! of period
m to be controlled is

X01~p!→X02~p!¯→X0m~p!→X0~m11!~p!5X01~p!.
~3!

The linearized dynamics in the neighborhood of the periodm
orbit is

Xn112X0~n11!~pn!5M @Xn2X0n~pn!#, ~4!

whereM is the two-dimensional Jacobian matrix at the or
point X0n , pn5p01(Dp)ngn where from Eq.~2! (Dp)n
,d. Observe that the parameter variation will result in t
following change in the periodic-orbit points:

X0n~pn!2X0n~p0!'~Dp!ngn , ~5!

wheregn5]X0n(p)/]pup0
.

-

a-
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DRIVING TRAJECTORIES IN CHAOTIC SCATTERING PHYSICAL REVIEW E65 026215
The Jacobian matrixM of Eq. ~4! can be expressed i
terms of its stable and unstable directions. Note that eve
the case in whichM has complex-conjugate eigenvalues, t
stable and unstable directions forM can be defined. To find
the stable direction at a pointX0 , we first iterate this point
forward N times under the mapF and get the trajectoryX1
5F(X0), X25F(X1)5Fu2u(X0),..., and XN5F(XN21)
5FuNu(X0). Now, a circle of arbitrarily small radiuse is put
at the pointXN . If this circle is iterated backward once, th
circle will become an ellipse at the pointXN21 with the
major axis along the stable direction of the pointXN21 . This
ellipse is iterated backward, while at the same time its ma
axis is kept of ordere via certain normalization method. Thi
procedure is repeated all the way back to the pointX0 ,
where the ellipse becomes very thin, with its major a
along the stable direction providedN is large enough. This
procedure is schematically shown in Fig. 2.

Similarly, as shown in Fig. 3, to find the unstable dire
tion at pointX0 , first this point is iterated backward unde
the inverse mapN times to get a backward orbitX2 j
5Fu2 j u(X0) ( j 51,...,N). In the pointX2N a circle of arbi-

FIG. 2. Schematic illustration of the procedure used to find
stable direction at a pointX0 : A circle of arbitrarily small radius is
put at the pointXn and is iterated backwardN times. The resulting
ellipse has its major axis along the stable direction ofX0 , provided
that N is large enough.

FIG. 3. Schematic illustration of the procedure used to find
unstable direction at a pointX0 : A circle of arbitrarily small radius
is put at the pointX2n and is iterated forwardN times. The resulting
ellipse has its major axis along the unstable direction ofX0 , pro-
vided thatN is large enough.
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trarily small radiuse is put at it. After that, the previously
discussed procedure is applied, but now iterating in the
ward direction. At the end of this procedure, inX0 the ellipse
becomes very thin, with its major axis along the unsta
direction.

Let es(n) andeu(n) be the stable and unstable directions
X0n , and let fs(n) and fu(n) be two vectors that satisfy
fu(n)•eu(n)5fs(n)•es(n)51 and fu(n)•es(n)5fs(n)•eu(n)50. To
control the orbit, it is required that the next iteration of
trajectory point after falling into one of the small neighbo
hoods aroundX0n lies on the stable direction atX0(n11)
3(p0), i.e.,

@Xn112X0~n11!~p0!#•fu~n11!50. ~6!

Substituting Eqs.~4! and ~5! into Eq. ~6!, we obtain the fol-
lowing expression for the parameter perturbations:

~Dp!n5
$M @Xn112X0~n11!~p0!#%•fu~n11!

@~Mgn!2gn11#•fu~n11!
, ~7!

whereM is evaluated atX0n(p0). This parameter perturba
tion is applied at each time step of the trajectory, which is
kept stabilized around the unstable periodic orbit.

III. TARGETING IN CHAOTIC SCATTERING

The inherent exponential sensitivity of chaotic time ev
lutions to perturbations is the hallmark of chaotic system
This characteristic is responsible for the impossibility
making long-term predictions of the system evolution bas
on finite precision measurement. However, despite the c
plexities of chaotic behavior, this same main characteri
can be intelligently exploited to direct a system to some
sired state using a carefully chosen sequence of small pe
bations to some system parameter. This approach was in
duced by Shinbrot, Ott, Grebogi, and Yorke@23# and have
been calledtargeting. In the context of chaotic scattering
Ref. @12# proposed an approach applicable to the situat
where it is desirable to target some region of phase space
of scattering region to a particular pointP from an unstable
periodic orbitCu located inside the scattering region. Thu
by applyingsmall perturbing control, the goal was to direc
the motion of the particle so that it hits the pointP. The
author assumed that initially the unstable periodic orbit
kept stabilized with the use of a control of chaos strategy
what follows, we introduce substantial changes in t
method to make it applicable to transfer between any t
points located inside the chaotic scattering region.

If our system is a continuous time system~flow!, we can
introduce a convenient surface of section transverse to
flow so that the study of the continuous time system is
duced to the study of an associated discrete time system
Poincare´ map. We will denote byf this map that transforms
the point (sn), located in the surface of section, to the po
(sn11), associated with the first return of the flow to th
surface of section, i.e.,f :(sn)→(sn11).

Let us suppose that our goal is to target a pointPg from a
point Qg located inside the scattering region. Starting fro
Qg , we find the first pointQ in which the trajectory crosse

e

e

5-3
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ELBERT E. N. MACAU AND IBERÊ L. CALDAS PHYSICAL REVIEW E 65 026215
the surface of section. We repeat this procedure, this t
starting from the pointPg to find the pointP also located on
the surface of section. Now, our aim is to find a ‘‘smal
perturbationds so that if those numbers are adequately
plied to the original trajectory that passes throughQ we have
a perturbed trajectory that eventually hits a target pointP,
which is also located on the surface of section.

Starting atQ we randomly choose a large number
nearby initial conditions. We choose an integer numberL and
retain those initial conditions$r 0

1,r 0
2,...,r 0

j ,...% that lead to a
set of trajectories$r 1,...,r j ,...% that remain on the scatterin
region for at least 23L crossing times the surface of sectio
For L large enough, these initial conditions are located n
the stable manifold of the chaotic invariant set@24#. Further-
more, for each trajectory its middle point (r md

j ) and its ante-
cessor (r md21

j ) and succeeder (r md11
j ) points are located very

close to the chaotic invariant set@24#. Let us callI Q the set of
those points. Starting atP we randomly choose a large num
ber of nearby initial conditions. We set a numberN and re-
tain those initial conditions$s0

1,s0
2,...,s0

j ,...% that lead to the
set of trajectories$s1,...,sj ,...% that remain in the scatterin
region for at leastN crossing times the surface of sectio
From these trajectoriessj , we select the one that comes clo
est to the setI Q . Let us say that this trajectory issn

5$s0
n ,s1

n ,...,sm
n ,...sNc

n %, whereNc>N denotes the numbe

of times that this selected trajectory passes through the
face of section, and (sd

n) for d<Nc is the point of this tra-
jectory in the surface of section that comes closest to the
I Q by say its point (r e

m). If we take this selected trajector
and obtain itstime inverse, we have what we shall call th
reference trajectory. That is, a trajectory that passes near
point (r c

m) of the trajectoryr m and afterNc subsequent cross
ings of the surface of section, it comes near the pointP.
~Recall that to get the points of the time inverse trajectory
the surface of section we replace eacht i by 2t i , and reverse
the time sequence of the points.!

The general situation of two orbits that come close to o
another is depicted in Fig. 4, where an arbitrary surface
section was defined. There we can see the trajectoriesX and
Y, which have the pointsXj andYk as the respective positio
where the orbits come closest to each other.

FIG. 4. Two trajectories that come close to each other.
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For a hyperbolic situation, associated to each point on
invariant set there are stable and unstable manifolds. We
troduce at the positionYk1ns

a small perturbationḃeb where

eb is a unit vector in the direction of the perturbation~see
Fig. 5!, and iterate this perturbed pointns times backward in
time. This will typically generate a nearby trajectory that w
deviate progressively from the original trajectory at ea
backward iteration, expanding away fromY along the direc-
tion of the stable manifold at the points on the orbitY
@25,26#. ~We assume that the direction of the small perturb
tion b̂eb is not precisely such that it has no component in
stable direction.! We also introduce a small perturbationd̂ed
to the orbitX at the iterationj 2nu whereed is a unit vector
in the direction of the perturbation~see Fig. 5!, and iterate
this perturbed point forward in timenu iterates. This will
typically generate a nearby trajectory that will deviate p
gressively from the original trajectory at each forward ite
tion, expanding away fromX along the direction of the un
stable manifold at the points on the orbitX @25,26#. Consider
that we can find values of the small perturbationsd̂ and b̂
that solve the equation

f nu~Xj 2nu
1 d̂ed!5 f 2ns~Yk1ns

1b̂eb!. ~8!

This means that we have found a shadow trajectory tha
time j 2nu has a point that isd̂ away fromXj 2nu

and atns

1nu forward iterations in time is ab̂ distance from the point
Yk1ns

, of the trajectoryY. Thus the numbersnu andns must

satisfy ns<Nc2k and nu, j . ~Note that, sinceeb is not
necessarily aligned with the stable manifold atYk1ns

, for-

ward iterates ofYk1ns
1b̂eb ~if they exist! are expected to

diverge from the trajectoryY!. Note that Eq.~8! can be
solved ford andb by the Newton-secant method.

This method can be straightforwardly applied to the p
viously discussed situation. The trajectoryX is associated to
the trajectory that passes through the point (r 0

m), which is in
the vicinity of Q, while the trajectoryY is associated to the
reference trajectory that passes through the point (sd

n). Note

FIG. 5. Targeting method, solving fora and b the following
equation:f nu(Xj 2nu

1ded)5 f 2ns(Yk1ns
1beb).
5-4
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DRIVING TRAJECTORIES IN CHAOTIC SCATTERING PHYSICAL REVIEW E65 026215
that starting withQ, two perturbations are necessary in ord
to obtain thesolution trajectory, which is the trajectory tha
connect the neighborhood ofQ to the neighborhood ofP.
Thus, the first perturbation is to put the trajectory in the po
r 0

m , while the other is thed̂ gotten by using the previousl
discussed method. This last perturbation will yield an or
that approaches the reference trajectory by following the
rection of the stable manifold at the points of the referen
trajectory, and thus comes close to the pointP.

As this approach is a generalization of the one that
pears in Ref.@12#, it inherits the qualities of the origina
approach. Thus, our approach works very well, is rob
enough to deal with nonideal effects, and can be used
targeting procedure between any two points inside the c
otic scattering region. In particular, this is the situation th
we deal with in the case of the Hill’s problem. Here, our go
is, starting from a given value ofh, to end up in a situation o
capture, whereM2 andM3 are kept evolving in relative mo
tion of periodic orbit. In order to accomplish this, the targ
method is used to guide the trajectory to the neighborhoo
the desired orbit, while the previously described control
chaos method keeps the trajectory on the periodic orbit.
details of this approach is presented in the Sec. IV.

IV. HILL’S EQUATIONS

Let us assume that the mass of either satellite is sm
compared to the mass of the planet, i.e.,

m1@m2 and m1@m3 , ~9!

where mi is the mass of bodyMi . The ratio of the two
massesm2 andm3 can be arbitrary, but fixed. Thus, we d
fine

m5m11m21m3 ~10!

and

m5
m21m3

m1
. ~11!

Let us assume that the distance between the two sate
is small compared to their distance to the planet. Thus,
two satellites can be approximately considered as a si
body in orbit around the planet. We call this orbit as t
mean orbit@27–29#, and we assume it is a circular orbit wit
radiusa0 . The angular velocity ofm2 andm3 on this mean
orbit is

v05AGma0
23. ~12!

Let Xi ,Yi be the coordinates of bodyi in an inertial sys-
tem. The equations of motion in this reference system ar
follows:

Ẍ15
Gm2~X22X1!

R12
3 1

Gm3~X32X1!

R13
3 ,
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Ÿ15
Gm2

~Y22Y1!

R12
3

1
Gm3~Y32Y1!

R13
1

, ~13!

and similar equations forẌ2 , Ÿ2 , Ẍ3 , and Ÿ3 , whereG is
the gravitational constant, andRi j is the distance between th
bodiesi and j, i.e.,

Ri j 5A~Xi2Xj !
21~Yi2Yj !

2. ~14!

We introduce dimensionless coordinates by

Xi85
Xi

a0
, Yi85

Yi

a0
, mi85

mi

m
, t85v0t, ~15!

so that in these new variables, the gravitational constant,
angular velocity, the total mass of the system, and the ra
of the mean orbit are all equal to 1. In Refs.@27–29# it is
shown that when the satellites are moving in the neighb
hood of each other and the movement is described u
synodic coordinates, i.e., in a coordinate system that rot
with angular velocityv0 , a sequence of transformation ca
be applied, resulting in the following equations for the re
tive coplanar motion of the satellites described inj and h
coordinates, which are calledHill ’s equations,

j̇5u, ḣ5v, u̇52v13j2
j

r3 , v̇522u2
h

r3.

~16!

Hill’s equations admit the integral

G53j21
2

r
2u22v2, ~17!

which is known asJacobi integralby analogy with the re-
strict problem.

We assume that the two satellites are on circular or
before their encounter, with radiia2 and a3 , both of them
close toa0 . Thus, we can write

a25a0~11m1/3h2!,
~18!

a35a0~11m1/3h3!.

These circular orbits appear in the system of coordinates
we are using as follows:

j5h, h52 3
2 h~ t2t!, ~19!

whereh5h32h2 . In this equationt is a trivial parameter
that can be eliminated by a change of the origin of tim
Furthermore, the Jacobi integral@Eq. ~17!# can be written in
terms of theh as

G5 3
4 h2. ~20!

Therefore, our problem depends on just the parameteh,
which is called theimpact parameter. We can say that the
orbits which we are considering form aone-parameter
family.
5-5
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FIG. 6. Trajectories describing
the relative motion of the two
small bodies for different values
of the impact parameterh. The
variables are dimensionless.
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After the encounter, when the satellites are sufficiently
apart, their mutual attraction becomes negligible, and e
satellite describes a Keplerian orbit around the planet. H
ever, these orbits are no longer circular. In the system
coordinates that we are using, the asymptotic form of
motion is the following:

j5h81k8 cos~ t2w!,

h52 3
2 h8~ t2w!2 4

3 sh822 ln@2 3
2 h8~ t2t!#22k8 sin~ t2w!

~21!

with

s5sgn~h!. ~22!

In this equation,h8 is called the impact parameter, as befo
while k8 is thereduced eccentricity. This parameter is relate
to the actual eccentricitiese28 ande38 of M2 andM3 by

k85m21/3Ae28
21e38

222e28e38 cosg8, ~23!

whereg8 is the angle between the semimajor axes.
Let us now analyze the family’s behavior as the parame

changes. To understand the motion of the satellites, we
think about the special case where the mass of one of th
saym2 is much larger than the other one, i.e.,m2@m3 . For
this case, the origin of the relative coordinate system is
M2 and the curves just represent the motion ofM3 .

The problem that we are considering is typically char
terized by having three well-defined phases. In the fi
phase, the satellites approach from each other; in the se
phase, the two satellites remain close to each other an
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complex relative motion takes place; in the last phase,
two satellites move away from each other. Thus, this pr
lem is a typical case of a classicalscattering.

For large values of the parameterh, the orbit of the light-
est satellite is only slightly perturbed, as can be seen on
6. As the parameter diminishes, the perturbation increa
and a loop appears. After that, the shape of the orbit chan
rapid with the parameter. Continuing to decrease the valu
the parameter, we find an interval in which the shape of
orbits changes wildly. Inside this interval, there is an e
tremely high sensitivity of the shape of the orbit to just sm
changes in the parameter. After this interval, as the param
is reduced, the shape of the orbit changes continuously
slowly with the parameter. Then a new interval of rapid
changes of the shape of the orbit with the variation of
parameter appears, after which follows another interval
wild variation. This succession of behaviors continues
happen as the parameter is diminished, until the appear
of horseshoe orbits.

Figure 7 represents thescattering function, which is the
final impact parameterh8 as a function of the initial impac
parameterh for this problem. We observe intervals in whic
the dependence ofh8 with h is poorly resolved. In fact, for
these intervals, the situation of poorly resolved depende
of h8 to variations inh persists, no matter how we improv
the resolution of the scale. Thus, even high magnification
these unresolved intervals does not reveal a smooth cu
This phenomenon is calledchaotic scattering.

Chaotic scattering is characterized by ‘‘sensitive dep
dence’’ of output variables that characterize the particle
jectory after the scattering to small changes in an input v
5-6
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FIG. 7. Scattering function for
the interaction of the satellites
which is the final impact param
eterh8 as a function of the initial
impact parameterh. There are in-
tervals in which the dependenc
of h8 with h is poorly resolved
even under improvement of th
resolution scale. The paramete
are dimensionless.
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ch
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ach
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able that characterizes the trajectory before scattering@10#.
This phenomenon has received much attention because m
fundamental physical situations are of this type@27,1,30–
32#. We say that the scattering function~i.e., the output as a
function of the input! is singular at a particular value of the
input variable if any interval, containing that input valu
produces output variable values in a nonzero range that
not approach zero as the size of the input interval approa
zero. Thus two inputs that arearbitrarily close to a singular
value can produce very different outputs. When the se
02621
ny

es
es

f

singular input variables is uncountable, and occurs on a c
tor set, we call the situationchaotic scattering, and we say
that there is sensitive dependence of the output to sm
changes in the input.

The dynamics of scattering in chaotic situation can
explained by the existence of a saddle chaotic invariant
@24#, formed by the intersection of its stable and unsta
manifolds, where the stable and unstable manifolds e
consist of a cantor set of roughly parallel surfaces. Whe
particle enters a scattering region close to the stable m
to
e

FIG. 8. The desired unstable periodic orbit
be used for stabilizing the relative motion of th
two small bodiesM2 andM3 . The variables are
dimensionless.
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FIG. 9. The desired unstabl
periodic orbit and a trajectory
found in the neighborhood of the
impact parameterh0 that come
very close to the unstable periodi
orbit. In the Poincare´ section, the
unstable periodic orbit is repre
sented by* , while the nearby tra-
jectory is represented bys. The
numbers identify the order in
which the trajectory crosses th
Poincare´ section. The variables
are dimensionless.
an
o
e

of
cl
on

ut

er-
bits
ne
fold, it stays near the saddle chaotic set for some time,
then escapes following a path close to the unstable manif
The closer it initially is to the stable manifold, the more tim
it spends in the scattering region. If the initial condition
the particle is precisely on the stable manifold, the parti
stays in the scattering region forever, and small deviati
02621
d
ld.

e
s

from this situation can lead to wild variations of the outp
@10,24,32–36#.

Embedded in this saddle chaotic invariant set is a num
able and infinite set of unstable periodic orbits. These or
are exploited in Sec. V to keep the satellites in orbit of o
another by using chaos control strategy.
f
-

s

re
.
-

-

FIG. 10. The solution trajec-
tory that results from the use o
the targeting method. The pertur
bation to the nearby trajectory i
applied in the first point in which
the trajectory crosses the Poinca´
section, as indicated in the figure
Due to the perturbation, the trajec
tory is directed to follow the un-
stable periodic orbit. Points in the
Poincare´ section that belong to the
unstable periodic orbit are repre
sented by* . Variables and the pa-
rameter are dimensionless.
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FIG. 11. Without control, the trajectory tha
results from the application of our targetin
method follows for while the unstable periodi
orbit and moves away from it by following the
unstable manifold of the unstable periodic orb
It means that one satellite stays in orbit arou
the other for some time. After that, they mov
away from each other. Variables are dimensio
less.
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V. CONTROLLING A SATELLITE ENCOUNTER

In this section we apply the previously discussed id
about control of chaos and targeting in a chaotic scatterin
typical scenario where this phenomenon happens. We us
Hill’s equation as a model of a satellite encounter. The
namical behavior of this problem was discussed in Sec.
We start by introducing a Poincare´ sectionh50, mapping
the (j,u) plane to itself, whenever the trajectory travers
the Poincare´ section withv,0. Thus, the Poincare´ return
map for fixedG defines a two-dimensional map.

To apply the discussed targeting and control of ch
methods, starting from a given value ofh0 , which in this
problem performs the role ofQ for the above target method
02621
s
to
the
-
.

s

s

we identify in the Poincare´ section an unstable periodic orb
that is nearby the original orbit forh0 and imply an orbital
motion for the satellites that fulfill the mission specification
The points of this orbit are used as the targeting for o
targeting strategy. Thus, the first step is to identify a set
unstable periodic orbits and from this set select one that
be used to stabilize the motion of the satellites. Hereafter
call this unstable periodic orbit as theparked orbit. We are
assuming that for the givenh0 the Hill’s problem presents a
chaotic scattering behavior, otherwise our methods do
work.

Periodic orbits are found for values of the impact para
eter for which the chaotic scattering is present us
Schmelcher-Diakonos method@37#, in association with the
a-
it,
it
e-
ls
FIG. 12. Using chaos control strategy, the tr
jectory keeps following the unstable direct orb
which means that one satellite stays in orb
around the other. In the figure, we show the r
sults from the application of the chaos contro
strategy. Variables are dimensionless.
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FIG. 13. The final trajectory that results from
the application of both the targeting and the cha
control strategy. The part of the trajectory th
evolves under the action of the control strate
appears in dotted line. Variables are dimensio
less.
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Newton-Raphson method~NR!. The first method is applied
to each point of a set of starting points defined by a unifo
grid of initial conditions over the state space. For each po
of this set, the method converges to a solution. For dist
starting points the method may converge to the same s
tion, which is particularly true if the number of the points
the grid is larger than the number of unstable periodic or
embedded in the chaotic invariant set. Furthermore, this
cess of scanning the state space by using the points o
grid must be repeated for each value of period of perio
orbits that we are interested in finding out. From the ap
cation of this method, we get the solution points of the d
sired periodic orbits and also points of quasiperiodic orb
All these points were then used as the starting points for
Newton-Raphson method. This method not only allows
refinement of the points that belong to periodic orbits, b
also discharges eventual points that belong to quasiperi
orbits.

From the set of unstable periodic orbits, we chose the
that best fits our purpose concerning the spacecraft miss
To show how the methods of targeting and control of ch
can be used in association, we selected the periodic orbit
appears in Fig. 8. We call this orbit as the parked orbit,
stated before.

After the determination of the parked orbit, the next st
is to find a nearby trajectory fromQ that come close to the
parked orbit. So, introducing small random perturbations
h0 , we find the perturbationdhr to h0 that implies in the
orbit of the set that come closest to the parked orbit. T
trajectory, which appears in Fig. 9, plays the role of the r
erence trajectory described in the method. In this figure,
parked orbit is represented in the Poincare´ section by aster-
isk, while the reference trajectory is represented by circ
with numbers that represent the order in which the traject
crosses the Poincare´ section. Note that the reference traje
02621
t
ct
u-

s
o-
he
c
i-
-
.
e

a
t
ic

e
n.
s
at
s

p

o

is
-
e

s
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tory come closest to the parked orbit in its sixth crossing
the Poincare´ section. This point of closest approach (jc ,uc)
is then used to determine by using Eq.~8! the perturbation
duc to be applied to (jc ,uc) so that the perturbed trajector
comes to the neighborhood of the parked orbit. In Fig. 10
show the problem solution for this specifich0 . Note that
using our targeting method we can end up in a neighborh
of the parked orbit by using just two perturbations.

As the trajectory is in the neighborhood of the park
orbit, it follows it for a while and escapes from it by follow
ing the unstable manifold of the parked orbit. It means t
one satellite stays in orbit around the other for some ti
after which they move away from each other. This situat
can be seen in Fig. 11.

The satellites can be kept in the parked orbit by using
chaos control strategy. The result of applying our stabili
tion strategy appears in Fig. 12. In that figure the sta
direction found by using our method is presented as wel
the controlled trajectory. The global solution, that resu
from the use of both strategies of targeting and control
pears in Fig. 13.

VI. CONCLUSION

This work presents two main contributions. First, we ge
eralize a previously proposed method for targeting in cha
scattering so that it can now be used to find a transfer tra
tory between any two points located inside the scatter
region. Second, we show for the first time that control
chaos and targeting methods can be combined to gener
powerful instrument to drive orbits around a chaotic inva
ant set even if this set is a nonattractive one. To illustr
how this can be applied, we use a case of practical intere
celestial mechanics in which it is desired to control the e
5-10
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lution of two satellites that evolve around a large cent
body. Of course, as our approach is general, it can be use
any situation where chaotic scattering happens. Thus, it
be applied to many fundamental physical situations of c
otic scattering in molecular dynamics, fluid dynamics, me
scopic systems, chemical reactions, electrodynamics,
nuclear physics.
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