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ABSTRACT

In tokamaks, internal transport barriers, produced by modifications of the plasma current profile, reduce particle transport and
improve plasma confinement. The triggering of the internal transport barriers and their dependence on the plasma profiles is a
key nonlinear dynamics problem which is still under investigation. We consider the onset of shearless invariant curves inside the
plasma which create internal transport barriers. A non-integrable drift-kinetic model is used to describe the particle transport
driven by drift waves and to investigate the shearless barrier onset in tokamaks. We show that for some currently observed
plasma profiles, shearless particle transport barriers can be triggered by properly modifying the electric field profile and the
influence of non-resonant modes in the barrier onset. In particular, we show that a broken barrier can be restored by enhancing
non-resonant modes.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5071437

I. INTRODUCTION
The plasma confinement in tokamaks is limited by particle

transport induced by electrostatic turbulence.1 For some dis-
charges, internal transport barriers (ITBs) reduce this transport
and improve the plasma confinement.2 Experiments show that
such barriers appear by modifications of the current profile
using external heating and current drive effects.3 In fact, besides
the recent progress to understand this dependence,1 the trig-
gering of internal transport barriers and their dependence with
the plasma profiles still remain a central question to be better
understood.3–5

Much research has been done on the nature of the trans-
port barrier in high confinement mode discharges, in a number
of tokamaks worldwide, and the influence of radial electric fields
on the particle transport in magnetically confined fusion plas-
mas is by now well established.6 Specifically, measurements of
the radial electric field indicate that the negative shear region
of the Er profile plays a key role in turbulence reduction
observed in the H-mode, paving the way towards an improved
understanding of the pedestal structure.6 So, high-accuracy
characterization of the edge radial electric field can be used to

validate transport theory and identify the onset of transport
barriers.6,7 In this context, the E!B shear stabilization effect
has been considered to be the origin of transport barriers iden-
tified in tokamaks.8

On the other hand, the onset of shearless invariant curves
inside the plasma could be a factor responsible for the formation
of some internal transport barriers.9,10 In fact, these curves act
as dikes preventing chaotic particle transport across them and
so are identified as a kind of shearless transport barrier. The
essentials of a system with shearless transport barriers are
exhibited by a simple symplectic two-dimensional mapping
called the standard non-twist map.11 As shown in Ref. 12 for this
map, even after the invariant surfaces have been broken, the
remnant islands may present a large stickiness that reduces the
transport.

Concerning the context of particle transport in tokamaks,
the onset of these shearless barriers has been proposed to
explain the reduction of transport in tokamaks13 and helimaks.14

In fact, in Ref. 13, for large aspect ratio tokamaks, a non-
integrable drift model has been proposed to interpret the high
particle transport at the plasma edge as being induced by the
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electrostatic turbulence, as caused by the E !B chaotic radial
drift motion of particles. Furthermore, this model has been
applied to identify particle barriers in tokamak experiments.10,15

The model introduced in Ref. 13 is applied to show that, for
some currently observed plasma profiles, shearless particle
transport barriers can be triggered by alterations on the plasma
profiles. These barriers can appear due to modes present in the
turbulence, and the resonant conditions are determined by the
combination of the safety factor, an electric radial field compo-
nent, and the plasma toroidal velocity profiles. These profiles
determine the magnetic and radial electric fields and plasma
toroidal velocity shears, respectively, which are the relevant
control parameters to specify the resonant condition. We show
that enhancing non-resonant wave amplitude may restore
shearless barriers, while the resonant modes increase the parti-
cle chaotic transport. We also present examples for which the
chaotic particle transport is reduced by the barrier onset due to
slight modification of the plasma parameters or even the
increase in the turbulence level.

In Sec. II, we introduce the drift wave transport model used
in this article. In Sec. III, we present the equilibrium profiles and
plasma parameters assumed in this article and how the trans-
port barriers are formed. In Secs. IV and V, we analyze numeri-
cally the influence of the electric field profile and non-resonant
modes on the barrier formation.

II. DRIFT WAVE TRANSPORT MODEL
The model is based on the equations of motion which

describe particle trajectories following the magnetic field lines
and the electric drift.13 The particle trajectories are described by
the guiding-center equation of motion

dx
dt
¼ vk

B
B
þ E! B

B2 ; (1)

giving the system of equations

dr
dt
¼ $ 1

rB
@~/
@h

;

dh
dt
¼

vk
r
Bh

B
þ 1
rB
@~/
@r
$ Er

rB
;

du
dt
¼

vk
R
;

(2)

where x ¼ ðr; h; uÞ is written in circular toroidal coordinates in
the long-aspect ratio limit coordinates, with r the radial position
and h and u the poloidal and toroidal angles, R is the major
plasma radius, vk is the toroidal velocity of the guiding centers,
and Er (r) is the radial electric field profile in equilibrium.

We consider an electric field composed of a radial mean
part and a fluctuating part. Many experiments have shown the
simultaneous excitation of a large spectrum of frequencies
nx0; n ¼ 1; 2; ::N, so the radial electric field of the fluctuating
part appears as a wave spectrum given by13

~/ðr; tÞ ¼
X

L;M;n
/LMn cos ðMh$ Lu $ nx0tþ anÞ; (3)

where ~/ is the fluctuating electrostatic potential such that
~E ¼ $r~/. The spatial electrostatic mode numbers L and M

(toroidal and poloidal, respectively) are assumed to be constant,
and an are constant phases that do not affect the resonant con-
ditions introduced later on.

The magnetic configuration is described by the safety fac-
tor q(r), considering that B ' Bu ( Bh, which corresponds to a
layer of a large aspect ratio tokamak as in TCABR tokamak
(a=R ’ 0:3), where a is the plasma radius. Therefore, the safety
factor is calculated as qðrÞ ¼ rBu

RBh
.

The differential equations (2) were normalized by taking a,
B0, and E0 as the characteristic length scale, the toroidal mag-
netic field, and the mean radial electric field at the plasma edge.
To represent the results in Poincar!e sections, we define a nor-
malized action variable I ) ðr=aÞ2 and an angle variable
w ) Mh$ Lu , reducing the system of Eqs. (2) to the canonical
pair (I, w ). Thus, for the normalized variables, the equations of
motion are written as

dI
dt
¼ 2M

X

n
/n sin ðw $ nx0tþ anÞ; (4)

dw
dt
¼

vkðIÞ
R

1
qðIÞ

M$ LqðIÞ½ + $ Mffiffi
I
p ErðIÞ: (5)

Without the fluctuating potential, /n ¼ 0, I is a constant of
motion and the system of Eqs. (4) and (5) is integrable. The per-
turbation term consists of a sum of resonant drift waves, so, for
a given wave spectrum, the system is quasi-integrable and its
numerical solutions can be analyzed in phase space (I, w ). These
solutions give the particle trajectories in phase space typical of
quasi-integrable systems: regular, Kolmogorov–Arnold–Moser
theorem (KAM) invariants, islands, and chaotic trajectories.16

The main resonances can be identified by the islands in phase
space. We can analytically predict the position of primary reso-
nances in phase space by examining Eq. (4), namely, the reso-
nance location gives the action I where the wave modes are
resonant. The resonance locations are determined by the action
profiles of vkðIÞ, q(I), and Er(I) and by the wave numbersM and L.

The islands in the Poincar!e maps can be explained by tak-
ing the resonance conditions, which state to the time invari-
ance of the action variable in Eq. (5), viz., d

dt ðw $ nx0tÞ ¼ 0.
Then, the resonance condition is obtained when ðdw=dtÞ=x0
assumes the values of the time mode n in Eq. (5), which deter-
mines the resonant action In: n ¼ 1

x0

dw
dt . Taking

dw
dt ¼ nx0 and

inserting into Eq. (5) yield the value of I in which the frequency
nx0 is resonant. So

nx0 ¼
vkðrÞ
R

1
qðIÞ

M$ LqðIÞ½ + $ Mffiffi
I
p ErðIÞ: (6)

In Secs. III–V, particle trajectories are obtained by the
Bulirsch-Stoer numerical scheme,17 and their intersections
in Poincar!e sections are shown in (I, w ) planes. We obtain a
Poincar!e map by integrating Eqs. (4) and (5) for various initial
conditions. The intersections of the integrated trajectories
are selected at the toroidal section corresponding to
instants tj ¼ j 2p=x0 ðj ¼ 0; 1; 2;…Þ. In Poincar!e maps, the
(nominal) minor plasma radius lies at I¼ 1.0, but we choose I
up to 1.4 in order to investigate the particle transport to the
chamber wall.
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III. SHEARLESS TRANSPORT BARRIERS
In general, a shearless transport barrier in a two-

dimensional dynamical system is an invariant curve inside a set
of invariant closed curves characterized by a non-monotonical
canonical frequency profile. The shearless barrier corresponds
to a quasi-periodic trajectory with a local extremum frequency.18

Numerical studies show that the main feature of the shearless
barrier compared with other KAM tori is that such barriers are
more robust under time-periodic perturbations.11,19 This kind of
barrier appears in the model considered in this work and has a
dependence on the plasma profiles. Shearless barriers have
been well described in the canonical Hamiltonian systems,11,20,21

adopted to present this barrier in the chaotic particle transport
in tokamaks.

In our model, for null perturbing amplitude waves, /n ¼ 0,
the system is integrable; each trajectory is periodic or quasi-
periodic and stays in an invariant line with the initial action I0
being constant. In this case, for each iterate in the Poincar!e
map, the associated helical angle w increases by a constant
X0¼Dw , defined as the rotation number, which characterizes
the invariant line.

In general, for non-vanishing /n, we have a mixed system
with chaotic trajectories and regular trajectories in invariant
lines. In that sense, the rotation number profile can be an indica-
tor of the behavior of the trajectories in any region of the phase
space. For the non-integrable case, we can still define a rotation
number for the remaining invariant lines, considering an initial
condition w0, as the limit X ¼ limi!1ðw i $ w0Þ=i, where w i refers
to the i-th section.

To determine the rotation number profile of the remaining
invariant lines, we calculate the invariant rotation number, i.e.,
the limit X, for initial conditions with a fixed angle variable w0

and a sequence of action variables I. If this profile shows an
extremum, i.e., dX=dIffi0, the point ðI; w0Þ is a point in a shear-
less invariant. In this case, a shearless invariant curve appears
in the phase space keeping the chaotic trajectories separated
in two unconnected domains. The indicated shearless invariant
curve acts as a barrier separating the particle orbits in the
phase space and reducing the particle transport; thus, this
shearless curve acts as an internal transport barrier. Even if
this barrier is broken by perturbing waves, we expect from

other maps analyses that the chaotic orbits may present a large
stickiness around the remaining islands, which reduces the
transport.19

The existence and the location of shearless barriers depend
on the q(I), vkðIÞ, and ErðIÞ profiles, which are displayed in Figs.
1(a)–1(c), respectively. These profiles are chosen similar to those
observed in the small tokamak TCABR,7,22 but our results can be
applied to any tokamak described in a large aspect ratio approxi-
mation. To show how the shear profile modifications create
transport barriers, numerical simulations are presented for
parameters and profiles taken from the tokamak TCABR. Thus,
this paper presents a conceptual investigation rather than
detailed comparisons with specific experiments performed in
any tokamak.

The TCABR’s safety factor is described by qðrÞ ¼ 1:0þ 3:0
ðr=aÞ2, where a stands for the plasma radius.23 We choose to
describe the parallel velocity profile as vkðrÞ ¼ $1:43þ 2:82
tanhð20:3r=a$ 16:42Þ, which is a fit chosen from experimental
data points, as displayed in Fig. 1(b). The equilibrium radial field
Er was chosen to be non-monotonic according to ErðrÞ ¼ 3a
ðr=aÞ2 þ 2bðr=aÞ þ c, with a ¼ $0.563, b ¼ 1.250, and c ¼ $1.304,
and we select from the spectrum analysis an frequency around
10kHz,which gives us x0¼ 2.673.The perturbing electric poten-
tial amplitudes /n are normalized by aE0.

The result for the profiles described in Fig. 1 and spatial
wave numbers M¼ 16 and L¼ 4, chosen as typical numbers in
the tokamak wave spectrum at the plasma edge,13 into Eq. (6), is
the resonance profile represented in Fig. 2. Each point of this
curve with an integer ordinate identifies a mode nwhich is reso-
nant, i.e., which generates islands in the Poincar!e section. Not
only can we get the mode number but also the number of cen-
ters for each mode and the radial position (a

ffiffi
I
p

) of the centers.
As seen in Fig. 2, we see that the mode n¼ 3 has two islands with
centers at I¼ (0.27, 1.05), while n¼ 4 has one center at I¼0.21. In
this way, our study was directed to the interaction of a doublet
of the same-frequency resonance modes (n¼ 3), a single reso-
nancemode (n¼ 4), and a non-resonant mode (n¼ 2).

To have a clear image on how the chosen modes are super-
imposed and whether each of them possesses a shearless bar-
rier, the first approach is to see their aspect individually on a
Poincar!e section and determine the rotation number profile. To
see the aspect of the perturbing period-two resonant mode

FIG. 1. Plasma profiles from tokamak TCABR used in this work. From left to right, we show a typical profile for safety factor q (r),23 vk with experimental data points
7 fitted by a

hyperbolic tangent function, and the radial electric field profile in equilibrium.24
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n¼3 and its barrier position, we display the numerical solution
in Fig. 3(a), with the shearless barrier highlighted by a red line
(color on-line). Due to the chosen equilibrium profiles, the reso-
nantmode creates islands in two different ranges in phase space
determined by the resonance conditions, as presented in Fig. 2.
The rotation number profile X(I) was calculated with the initial
angle at w0¼$p, as shown in Fig. 3(b), and the barrier position is
indicated by a red dot (color on-line), the local minimum.

It is known that no islands are present if a mode is non-
resonant. From a set of invariant lines with the initial action I0
constant, it is important here to see how “wavy” these invariant
lines become in the presence of single frequency, if there is a
shearless barrier, and where its position on phase space is. The
invariant lines of the mode n¼ 2 are depicted on the Poincar!e
section followed by its rotation number in Fig. 4. As before, we
detected a local extremum in the rotation number, Fig. 4(b),
characterizing a shearless barrier at I¼0.43 for w0¼$p.

A second shearless region around I¼0.275 is also identified
corresponding to an internal barrier that does not affect the
transport at the plasma edge restrained by the other external
barrier at I¼0.43. On the other hand, the sharp increase in X

near I¼0.2 is a boundary effect due to the R$1 dependence on X
as it can be identified in the analytical expression [Eq. (5)].

Having presented the configuration on the Poincar!e por-
trait of a resonant mode of period two and a non-resonant
mode and the presence of a shearless barrier on each of them,
the next step is to verify the outcome from the non-linear inter-
actions between three modes on chaos and on transport barrier
formation.

IV. NON-RESONANT MODE AMPLITUDE
This section discusses the role of the non-resonant mode

on chaotic mappings obtained from Eqs. (4) and (5) integrated
with three modes. With only one resonant mode of period two,
we have two islands separated by invariant curves with a shear-
less barrier, like n¼ 3 displayed in Fig. 3. Increasing the ampli-
tudes in this kind of system with only one resonant mode
generates no visible chaotic region. For chaos to occur, there
must be an overlap between two islands of different modes, as
in the case of n¼3 and n¼ 4 where the centers are near, and
this effect can be seen in Fig. 5(a).

The role of the non-resonant perturbation n¼ 2 is illus-
trated in Figs. 5(b) and 5(c). Figure 5(b) displays a Poincar!e sec-
tion with a combination of three modes, n¼ (2, 3, and 4), with
amplitudes given by /n ¼ ð3:6; 1:2;0:12Þ ! 10$3, amplitudes that
correspond to those obtained in spectral analysis on a typical
tokamak discharge.22,25 The chaos on the Poincar!e section
results mainly from the overlapping of the modes n¼ 3 and
n¼ 4. So, the non-resonant mode n¼ 2 contributes to spreading
the chaos over a larger region beyond the overlapping region,
which means that the shearless barrier is broken.

Increasing the non-resonant mode amplitude to /2¼ 18
! 10$3, the result is a Poincar!e map with the chaotic region split
by a shearless barrier, as seen in Fig. 5(c). Making the non-
resonant mode a dominant mode, its contribution is to establish
the transport barrier and reduce the chaotic area. We want to
point out that we can recover the shearless barrier setting /2

-4.0! 10$3; the large value of /2 was chosen to make clear the
structure brought up by the non-resonant mode.

Therefore, from our results, the most important feature
about the non-resonant mode is that, depending on its ampli-
tude, this mode can contribute to broadening the chaotic area
or to the onset of the transport barrier. The higher amplitude
perturbation introducing order can be interpreted as a

FIG. 2. Characteristic curve for resonant modes calculated from Eq. (6) using pro-
files from Fig. 1. For integer n , the intersection of the curve with the horizontal lines
gives the position of the island center, which characterizes it as a resonant mode.
We see that the mode n ¼ 3 has two I values, satisfying the resonance condition,
the resonant mode n ¼ 4 appears for only one I value, while n ¼ 2 is not a resonant
mode.

FIG. 3. (a) Poincar!e map for a single res-
onant mode n ¼ 3 with /3 ¼ 1.0! 10$3

(normalized by aE0). The shearless barrier
is shown as a red line. In (b), we calculate
the rotation number, for which the local
minimum stands for the shearless barrier
position, which is at I¼ 0.49.
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consequence of non-local perturbation introduced by the non-
resonant mode n¼ 2, which alters the global phase space con-
figuration and induces a bifurcationwith a shearless curve.

A similar effect has been reported to explain the reversed
field pinch stability induced by a non-resonant perturbation in
the magnetic field. Namely, in the RFX experiment, a non-
resonant perturbation reduced chaos by inducing a bifurcation
which modified the phase space configuration, from a multi-
helicity to a single helicity state.26,27 Another similarity is found
in stellarators, as in the Wendelstein 7-X, for which a carefully
tailored topology of nested magnetic surfaces needed for good
plasma confinement is realized even with magnetic field errors
caused by the placement and shapes of the planar coils.28

V. INFLUENCE OF THE ELECTRIC FIELD PROFILE
Since the discovery of the L-H transition in ASDEX,29 many

theoretical and experimental studies have confirmed the impor-
tance of the radial electric field for the formation of internal
transport barriers (ITBs) associated with the E!B velocity shear
in magnetic confinement devices4,8 (see also references therein).
Depending on the equilibrium profiles, small changes on the
radial electric field profile may contribute to the transport bar-
rier onset. However, based on the particle guiding-center model
proposed in Ref. 13, we conjecture that transport barriers may
be generated not only due to electric field alterations but also
rather whenever a local shearless condition appears, depending
on the q; vk profiles.

To illustrate our conjecture, we choose two Er(r) profiles
presented in Fig. 6(a) (a different profile from that used in
Secs. III–V), with corresponding resonance profiles shown in
Fig. 6(b), according to its corresponding dashed pattern. This
small change in the radial electric field is achieved by setting
an electrode in which an electric potential difference is
applied, as it has been done in TCABR.22,25 The most important
alteration is that one profile has three resonant modes (n¼ 2,
3, and 4), represented by the solid blue line, and the other has
only two resonant modes (n¼ 3 and 4), represented by the
solid blue line dashed green line.

In Fig. 7, we see how the two resonance conditions modify
the Poincar!e section. Figure 7(a) is obtained for the three reso-
nant mode profile, while Fig. 7(b) is obtained for the two mode
profile. In Fig. 7(b), we can identify a barrier that is created once
n¼ 2 is not anymore a resonant mode. The small change in E(r)
is sufficient to suppress the resonance condition of the n¼ 2
mode, opening the possibility of a shearless bifurcation seen in
Fig. 7(b). In this example, the shearless barrier is destroyed if the
three modes are resonant, but it is present if n¼ 2 becomes
non-resonant due to the electric field profile modification.
Moreover, this small modification on the Er(r) profile can occur
during a plasma discharge and produce such a bifurcation with
the barrier onset.

In general, the electrostatic turbulence consists of broad-
band spectra with a mixing of resonant and non-resonant
modes.We show here that some of the 3 base modes may affect

FIG. 4. Poincar!e portrait for a non-
resonant mode n ¼ 2 with /2¼ 3.6
! 10$3 (the perturbing potential /2 is nor-
malized by aE0). The rotation number is
depicted in panel (b), which has its mini-
mum at I¼ 0.43. The important aspect is
to show that, if the mode is not resonant,
the contribution of this mode is for barrier
formation, which decreases the chaos
when more resonant modes act on the
system.

FIG. 5. Poincar!e sections with three modes n ¼ (2, 3, and 4). In all panels, /3 ¼ 1.0! 10$3 and /4 ¼ 0.12! 10$3. On the left panel (a), /2 ¼ 0, where the chaotic region
is delimited by the islands overlapping at I ’ 0.25. For /2 ¼ 3.6! 10$3, the middle panel (b) exhibits chaos at 0.2< I< 1.0. Raising the value of the electric potential for the
non-resonant mode n ¼ 2 to /2 ¼ 18! 10$3, the shearless barrier splits the chaotic area [on the right panel (c)].
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the existence of barriers once they become sensitive to small
changes in the electric field profile.

VI. CONCLUSIONS
In our investigation, we apply a model, described by a two-

dimensional symplectic drift map proposed to numerically inte-
grate orbits on the long transport time scales, avoiding long
integration times of the differential equations typically found for
the exact guiding-center orbits in tokamaks. For typical tokamak
equilibrium profiles and spectral potential, we determine the
wave resonance conditions. As expected, the chaotic region and
the particle transport in phase space depend on the resonant
wave amplitudes and the equilibrium shear determined by the
magnetic and electric field and velocity profiles. Within this
model, we show numerical examples of the shearless barrier
onset that may occur during the tokamak discharges.

First, we show how increasing the non-resonant wave
amplitude can create a shearless transport barrier. This occurs
because increasing the non-resonant wave amplitude modifies
the phase space and induces a bifurcation with a shearless
curve.

After that, we investigate the triggering of shearless particle
transport barriers in tokamaks as a consequence of modifica-
tions on the plasma equilibrium profiles compatible with those
commonly observed in tokamaks. Our results indicate that this
barrier triggering could be commonly observed in tokamaks.

We conjecture that the examples of shearless barrier onset
could be observed in some tokamak discharges during which
the wave amplitudes and the equilibrium shear are spontane-
ously slightly modified.

ACKNOWLEDGMENTS

The authors acknowledge the financial support from the
Brazilian Federal Agencies CNPq, under Grant Nos. 457030/
2014–3 and 446905/2014–3, the PNPD CAPES Program, and
the S~ao Paulo Research Foundation (FAPESP, Brazil), under
Grant Nos. 2011/19296–1 and 2015/16471–8. Y.E. enjoyed the
hospitality of the plasma physics and oscillations control
group of the University of S~ao Paulo and support from CAPES-
COFECUB grant Ph 908/18. I.L.C. acknowledges the
hospitality during his stay at Aix-Marseille Universit!e. We
thank Professor D. Escande for his suggestions.

REFERENCES
1M. Cavedon, T. P€utterich, E. Viezzer, G. Birkenmeier, T. Happel, F. M.
Laggner, P. Manz, F. Ryter, U. Stroth, and T. A. U. Team, Nucl. Fusion 57(1),
014002 (2017).

2W. Horton, Turbulent Transport in Magnetized Plasmas, 2nd ed. (WORLD
SCIENTIFIC, 2018).

3R. C.Wolf, Plasma Phys. Controlled Fusion 45(1), R1 (2003).
4J. Connor, T. Fukuda, X. Garbet, C. Gormezano, V. Mukhovatov, M.
Wakatani, I. D. Group, I. T. G. on Transport, and I. B. Physics, Nucl. Fusion
44, R1 (2004).

5X. Garbet, P. Mantica, C. Angioni, E. Asp, Y. Baranov, C. Bourdelle, R.
Budny, F. Crisanti, G. Cordey, L. Garzotti et al., Plasma Phys. Controlled
Fusion 46(12B), B557 (2004).

6E. Viezzer, T. P€utterich, G. Conway, R. Dux, T. Happel, J. Fuchs, R.
McDermott, F. Ryter, B. Sieglin, W. Suttrop et al., Nucl. Fusion 53(5),
053005 (2013).

7J. Severo, I. Nascimento, Y. Kuznetsov, R. Galv~ao, Z. Guimar~aes-Filho, F.
Borges, O. Usuriaga, J. Elizondo, W. de S!a, E. Sanada et al., Nucl. Fusion
49(11), 115026 (2009).

FIG. 7. Poincar!e sections for the two elec-
tric field profiles presented in Fig. 6(a)
with electric potentials /n ¼ (5.9, 1.2, and
0.12) ! 10$3 for modes n ¼ (2, 3, and
4), respectively. In panel (a), the three
modes are resonant, while in (b), only
n ¼ 2 is a not resonant mode.

FIG. 6. (a) Two possible profiles for E(r).
(b) Resonance conditions for profiles
shown in (a). One profile has three reso-
nant modes (n ¼ 2, 3, and 4), represented
by the solid blue line, and the other has
only two resonant modes (n ¼ 3 and 4),
represented by the dashed green line.

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 26, 022302 (2019); doi: 10.1063/1.5071437 26, 022302-6

Published under license by AIP Publishing

https://doi.org/10.1088/0029-5515/57/1/014002
https://doi.org/10.1088/0741-3335/45/1/201
https://doi.org/10.1088/0029-5515/44/4/R01
https://doi.org/10.1088/0741-3335/46/12B/045
https://doi.org/10.1088/0741-3335/46/12B/045
https://doi.org/10.1088/0029-5515/53/5/053005
https://doi.org/10.1088/0029-5515/49/11/115026
https://scitation.org/journal/php


8K. H. Burrell, Phys. Plasmas 4(5), 1499 (1997).
9D. Constantinescu and R. Constantinescu, Phys. Scr. T118(4), 244 (2005).

10I. L. Caldas, R. L. Viana, C. V. Abud, J. C. D. Fonseca, Z. O. Guimar~aes-Filho,
T. Kroetz, F. A. Marcus, A. B. Schelin, J. D. Szezech, Jr., D. L. Toufen et al.,
Plasma Phys. Controlled Fusion 54(12), 124035 (2012).

11D. del Castillo-Negrete, J. Greene, and P. Morrison, Phys. D 91(1), 1 (1996).
12J. D. Szezech, I. L. Caldas, S. R. Lopes, R. L. Viana, and P. J. Morrison, Chaos
19(4), 043108 (2009).

13W. Horton, H.-B. Park, J.-M. Kwon, D. Strozzi, P. J. Morrison, and D.-I.
Choi, Phys. Plasmas 5(11), 3910 (1998).

14R. Ferro and I. Caldas, Phys. Lett. A 382(15), 1014 (2018).
15F. A. Marcus, I. L. Caldas, Z. O. Guimar~aes-Filho, P. J. Morrison, W. Horton,
Y. K. Kuznetsov, and I. C. Nascimento, Phys. Plasmas 15(11), 112304 (2008).

16D. Escande, Phys. Rep. 121, 165 (1985).
17W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical
Recipes: The Art of Scientific Computing, 3 ed. (Cambridge University
Press, New York, NY, USA, 2007).

18M. Farazmand, D. Blazevski, and G. Haller, Phys. D 278–279, 44 (2014).
19J. D. Szezech, Jr., I. L. Caldas, S. R. Lopes, P. J. Morrison, and R. L. Viana,
Phys. Rev. E 86(3), 036206 (2012).

20D. Del-Castillo-Negrete, Phys. Plasmas 7(5), 1702 (2000).

21P. J. Morrison, Phys. Plasmas 7(6), 2279 (2000).
22I. Nascimento, Y. Kuznetsov, J. Severo, A. Fonseca, A. Elfimov, V. Bellintani,
M. Machida, M. Heller, R. Galv~ao, E. Sanada et al., Nucl. Fusion 45(8), 796
(2005).

23T. Fernandes, “Instabilidades MHD no tokamak TCABR,” Ph.D. thesis (IF-
USP, 2016).

24K. Rosalem, M. Roberto, and I. Caldas, Nucl. Fusion 54(6), 064001 (2014).
25I. Nascimento, Y. Kuznetsov, Z. Guimar~aes-Filho, I. El Chamaa-Neto, O.
Usuriaga, A. Fonseca, R. Galv~ao, I. Caldas, J. Severo, I. Semenov et al., Nucl.
Fusion 47(11), 1570 (2007).

26D. F. Escande, R. Paccagnella, S. Cappello, C. Marchetto, and F. D’Angelo,
Phys. Rev. Lett. 85, 3169 (2000).

27R. Lorenzini, E. Martines, P. Piovesan, D. Terranova, P. Zanca, M. Zuin, A.
Alfier, D. Bonfiglio, F. Bonomo, A. Canton et al., Nat. Phys. 5(8), 570
(2009).

28T. S. Pedersen, M. Otte, S. Lazerson, P. Helander, S. Bozhenkov, C.
Biedermann, T. Klinger, R. C. Wolf, H.-S. Bosch, and T. W.-X. Team, Nat.
Commun. 7, 13493 (2016).

29F. Wagner, G. Becker, K. Behringer, D. Campbell, A. Eberhagen, W.
Engelhardt, G. Fussmann, O. Gehre, J. Gernhardt, G. V. Gierke et al., Phys.
Rev. Lett. 49(19), 1408 (1982).

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 26, 022302 (2019); doi: 10.1063/1.5071437 26, 022302-7

Published under license by AIP Publishing

https://doi.org/10.1063/1.872367
https://doi.org/10.1238/Physica.Topical.118a00244
https://doi.org/10.1088/0741-3335/54/12/124035
https://doi.org/10.1016/0167-2789(95)00257-X
https://doi.org/10.1063/1.3247349
https://doi.org/10.1063/1.873110
https://doi.org/10.1016/j.physleta.2018.02.019
https://doi.org/10.1063/1.3009532
https://doi.org/10.1016/0370-1573(85)90019-5
https://doi.org/10.1016/j.physd.2014.03.008
https://doi.org/10.1103/PhysRevE.86.036206
https://doi.org/10.1063/1.873988
https://doi.org/10.1063/1.874062
https://doi.org/10.1088/0029-5515/45/8/005
https://doi.org/10.1088/0029-5515/54/6/064001
https://doi.org/10.1088/0029-5515/47/11/019
https://doi.org/10.1088/0029-5515/47/11/019
https://doi.org/10.1103/PhysRevLett.85.3169
https://doi.org/10.1038/nphys1308
https://doi.org/10.1038/ncomms13493
https://doi.org/10.1038/ncomms13493
https://doi.org/10.1103/PhysRevLett.49.1408
https://doi.org/10.1103/PhysRevLett.49.1408
https://scitation.org/journal/php

