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a b s t r a c t

A Hamiltonian system perturbed by two waves with particular wave numbers can present
robust tori, which are barriers created by the vanishing of the perturbed Hamiltonian at
some defined positions. When robust tori exist, any trajectory in phase space passing close
to them is blocked by emergent invariant curves that prevent the chaotic transport. Our
results indicate that the considered particular solution for the two waves Hamiltonian
model shows plenty of robust tori blocking radial transport.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The effect of transport barriers inHamiltonian systems is a subject of global interest in different branches of physics [1–3].
Horton introduced one type of Hamiltonianmodel with twowaves, relevant for particle transport in plasma physics [4]. The
Hamiltonian describes drift waves, originated by particles drift proportional to E⃗ ∧ B⃗ in non-uniform plasmas, propagating
in a magnetic toroidal field and an electric radial field. The model has been explored to describe the onset of stochasticity
for test particles driven by these drift waves in tokamaks. The model has been applied in many works to investigate the
influence of the equilibrium electric and magnetic fields on the radial transport and to analyze experimental results [5–7].

We observed that this model could present infinite robust tori (RT) which correspond to dynamical barriers that may
appear in Hamiltonian systems [8–11]. In this work, we start with a Hamiltonian with only one wave in order to emphasize
the abundance of RT, and then with the addition of another wave, these RT could be broken giving rise to anomalous radial
transport. Our goal in thiswork is to present a particular solution for thiswaveHamiltonianmodel that prevents the breaking
of the RT, even if we add as many waves as we want in the perturbation. This is an important fact since the creation of
barriers in Hamiltonian systems has been considered an important subject in several areas of physics especially in plasma
confinement in tokamaks [2,7,12,13].

In this paper we are going to consider a Hamiltonian H consisting of an integrable term H0 plus a perturbation H1 in the
form, H(q, p, t) = H0(q) + εH1(q, p, t), where ε is the perturbation parameter, q is the position of the particle and p is its
associated momentum. In Section 2 we present the model and in Section 3 we conclude by presenting and discussing the
results.

2. Two waves Hamiltonian model

In the presentmodel, we identify the phase space (q, p) as being the physical space (x, y), where x and y are the radial and
poloidal coordinates, respectively, (usually used for a large aspect ratio tokamak) that describe the particle position inside
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Fig. 1. Phase space for the Hamiltonian with only one wave A2 = 0 and α = 0.76.

the plasma [1]. Thus, the Hamiltonian in the canonical variables x and y is

H(x′, y′, t) = H0(x′) +

−
n

An sin(kxnx′) cos(kyny′
− ωnt) (1)

where An stands for the wave amplitudes, kxn, kyn are the wave numbers and ωn is the wave frequency.
In order to create a dimensionless form for the Hamiltonian above, we perform a canonical transformation mediated by

the generating function, F(x, y′, t) = x(y′
− u1.t), where y =

∂F(x,y′,t)
∂x = y′

− u1t, x′
=

∂F(x,y′,t)
∂y′ = x and ∂F(x,y′,t)

∂t = −x u1.

Hence, the new dimensionless Hamiltonian model with two waves is given by H(x, y, t) = H(x′, y′, t) +
∂F(x,y′,t)

∂t and reads
as

H(x, y, t) = H0(x) − u1x + A1 sin(kx1x) cos(ky1 y) + A2 sin(kx2x) cos(ky2 (y − ut)) (2)
where u = (ω2/ky2) − (ω1/ky1) is the difference of phase velocities between the two waves, u1 = (ω1/ky1) is the phase
velocity of the first wave, A1 and A2 are the amplitudes of the first and the secondwave, respectively, (kx1, ky1) are thewave
numbers for the first wave and (kx2, ky2) are the wave numbers for the second wave. The Hamiltonian of Eq. (2) represents
a particle under the action of a transversal wave propagating in the y-direction and oscillating in the x-direction.

We also consider the approach of the Ref. [1] for the unperturbed Hamiltonian, we take it as a monotonic function
H0(x) = α x. This profile for H0 creates only twist regions [2] in the phase space. This kind of H0 has been used to simulate
the motion of a test particle in a plasma medium with an applied constant electric field whose variation along the axis x is
Er = dH0(x)/dx, and plays the role of the radial component of the electric field. The use of a linear unperturbed Hamiltonian
does not play any decisive role in the appearance of RT in the perturbed system. Even though the RT that will appear are, in
fact, present in the unperturbed system, the mechanism which makes them emerge is independent of the form of H0, and
this is the goal of this paper.

Initially, we take only one wave (A2 = 0) in the Hamiltonian of Eq. (2) and we obtain
H(x, y, t) = (α − u1)x + A1 sin(kx1x) cos(ky1 y) (3)

whose equations of motion are
•

x = A1ky1 sin(kx1x) sin(ky1 y)
•

y = (α − u1) + A1kx1 cos(kx1x) cos(ky1 y).
(4)

We note that when sin(kx1x) = 0 the perturbation in Eq. (3) is null even for A1 ≠ 0, which is the necessary condition to
have RT. From Eq. (4) we also observe that the motion in the x-direction vanishes, and we have x = constant for any time
leading to infinite RT in the positions x =

nπ
kx1

, for all integers n. However, in the y-direction the dynamics is not constant, as
shown in Fig. 1. It is important to note that Kleva and Drake [14] have already defined a condition where the particles have
been trapped by a single surface. Since the focus of their analysis was on the stochastic transport, no detail was developed
on the relation between the wave numbers and the radial transport.

It is worthwhile to point out that if cos(ky1 y) = 0, the perturbed Hamiltonian vanishes but the motion in the direction
x and y continues to exist. The RT will appear when the perturbed Hamiltonian vanishes as well as at least one equation of
motion [6].

3. Results and conclusions

In Fig. 1 we show the phase space for one wave Eq. (3) and we can observe that there are islands that look like cells
flattened by straight lines. These lines are the barriers RT. As we are interested in analyzing the transport along the x-
direction, interpreted as the radial transport [6,7], then the creation of robust barriers in some positions x = constant will
interfere significantly in the dynamical transport.
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Fig. 2. Poincaré maps for the Hamiltonian with two waves Eq. (5): (a) for kx1 ≠ m.kx2 , without RT; (b) for kx2 = m.kx1 with RT.

As theHamiltonian fromEq. (3) presents only onewave, the system is globally integrable. However,whenwe add another
wave the integrability will be broken and chaos will be observed around the hyperbolic fixed points. For instance, when
H0(x) = α x, Eq. (2) becomes

H(x, y, t) = (α − u1)x + A1 sin(kx1x) cos(ky1y) + A2 sin(kx2x) cos(ky2(y − ut)) (5)

andwe can observe that when sin(kx1x) = 0 = sin(kx2x) the perturbation vanishes. Looking at the new equations of motion
•

x = A1ky1 sin(kx1x) sin(ky1y) + A2ky2 sin(kx2x) sin(ky2(y − ut))
•

y = (α − u1) + A1kx1 cos(kx1x) cos(ky1y) + A2kx2 cos(kx2x) cos(ky2(y − ut))
(6)

we note that the motion in the x-direction can disappear if the wave numbers obey the condition kx2 = m.kx1. If m is an
integer number, RT will appear as in the integrable case, but if m is a non-integer number, only fewer RT will survive. The
condition sin(kx1x) = sin(kx2x) = 0 should be satisfied to have robust tori. This means that, x =

n1π
kx1

=
n2π
kx2

or simply

x =
n1
n2

=
kx1
kx2

. Hence, when n1 and n2 are integers, the ratio (n1/n2) will be an integer or rational, but the last equation can
be still satisfied in both cases which allows us to be able to block the radial transport.

In Fig. 2, the initial conditions were given in the ranges x ∈ [0.78, 0.94] and y ∈ [0.0, 2π ], and we present the following
two different situations for the waves model of Eq. (5), the known case kx2 ≠ m.kx1 [1–4] and also the case kx2 = m.kx1.
The addition of the second wave breaks the integrability of the system and chaos may fill the phase space. The particles can
move along the radial and poloidal coordinates making a chaotic web, as is shown in Fig. 2(a). We observe that there are not
barriers for the radial transport developed by the particles. On the other hand, in Fig. 2(b) we show the Poincaré map for the
particular case presented in this paper kx2 = m.kx1 where m is an integer. RT, the straight lines, are again intact even after
the addition of the second wave and there are no trajectories escaping along the phase space. As expected, RT blocked the
radial diffusion.

The onset of chaos in the phase space takes place when we add a second wave and we investigate the dynamical
transport rate by calculating the radial local diffusion coefficient from the orbits [15]. We consider the following equation
for evaluating the diffusion [2],

D =
1

2tN

N−
i=1

[xi(t) − xi(0)]2 (7)

where N = 1000 is the total number of initial conditions distributed uniformly through the grid with x : [0.50; 1.25] and
y : [0; 2π ], and t = 150 is, in fact, the number of iterations for each initial condition. For each value of the wave number kx2
we estimate the radial diffusion coefficient D.

In Fig. 3(a) we show the dependence of the radial diffusion coefficient on the wave number kx2. We used in the numerical
simulations the following parameters: kx1 = 20; ky1 = 3. As we can see, the lowest values of the diffusion occur for
kx2 = m.kx1 = 20 when m = 1 and for kx2 = m.kx1 = 40 when m = 2. The radial diffusion coefficient goes to zero
when kx2 = m.kx1 for all integer values ofm and it is not zero but small for kx2 = m.kx1 for non-integerm.

The behavior of the radial diffusion coefficient is explained in Fig. 3(b), which shows the percentage of intact remaining
RT after the addition of the second wave, considering an initial amount of 40 RT in the phase space. For the wave numbers
kx2 = 20 and kx2 = 40 all RT still exist, because thewavenumbers satisfy the particular solutionwepresent here, kx2 = m.kx1
with m an integer. However, we can observe that a portion of RT also exists when m is a non-integer. The existence of RT
affects directly the particles diffusion in the radial direction. For the particular solution introduced here, the radial diffusion
coefficient is zero because all RT are preserved. However, for some intermediary values of kx2 some percentages of RT still
remain intact, decreasing the radial transport.
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Fig. 3. Comparisons between (a) radial diffusion coefficient and (b) percentage of remaining RT.

We point out that the particular two waves solution presented in this paper can be extended to many waves and the
non perturbed Hamiltonian H0 does not influence the formation of RT along the x-direction. The relation is rewritten as:
kx(n+1) = mn.kxn with n an integer ε [1, (N − 1)], where (N − 1) is the number of waves. The coefficients mn have to obey
the following condition:

∏N−1
n=1 mn = integer number. The multiplication of the coefficientsmn has to be an integer because

all radial wave numbers kxn have to be a multiple of the first radial wave number kx1, to keep intact all RT in phase space.
Previous studies [2,3] have shown the importance of decreasing the radial transport induced by drift waves to improve

the plasma confinement in tokamaks. It is also reported that similar Hamiltonians to the one presented in this paper have
been used to study transport, but only few works were dedicated to control chaos in these systems [5,16]. Even though
there is still not an effective way to control the wave numbers of the drift waves in tokamaks nor to measure the radial
wave number kxn, our contribution shows a direction to block the radial transport with the particular solution presented
here for the twowave Hamiltonianmodel. If the control of the radial wave number is possible, then all RT will remain intact
in the system blocking the radial diffusion. We emphasize that we are not proposing to suppress the modes, but to keep all
of them to control the radial wave numbers. All waves of the system should have wave numbers that are multiples of the
wave number of the first wave to block the radial diffusion.
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