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a b s t r a c t

Wepresent a non-linear symplecticmap that describes the alterations of themagnetic field
lines inside the tokamak plasma due to the presence of a robust torus (RT) at the plasma
edge. This RT prevents themagnetic field lines from reaching the tokamakwall and reduces,
in its vicinity, the islands and invariant curve destruction due to resonant perturbations.
The map describes the equilibrium magnetic field lines perturbed by resonances created
by ergodic magnetic limiters (EMLs). We present the results obtained for twist and non-
twist mappings derived for monotonic and non-monotonic plasma current density radial
profiles, respectively. Our results indicate that the RT implementation would decrease the
field line transport at the tokamak plasma edge.

© 2010 Elsevier B.V.

1. Introduction

Toroidal plasmas are confined in tokamaks by the superposition of two basicmagnetic fields: a toroidal field produced by
coils mounted around the tokamak vessel, and a poloidal field generated by the plasma column itself [1]. The superposition
of these fields results in helical magnetic field lines. These field lines lie on nested toroidal surfaces, calledmagnetic surfaces,
on which the pressure gradient that causes the plasma expansion is counterbalanced by the Lorentz force, in an equilibrium
configuration [1]. In this static axisymmetric configuration we can parameterize the field lines by using an azimuthal angle.
This parameter plays the role of canonical time, so that magnetic field line equations can be viewed as canonical equations.
One of the advantages of this approach is the possibility of describing field lines by means of Hamiltonian maps, reducing
the number of degrees of freedom for the system [2]. In this framework, equilibrium configurations are integrable systems,
whereas symmetry-breaking magnetic field perturbations spoil their integrability. This may lead to a chaotic behavior that
in a Lagrangian sense means that two initially nearby field lines diverge exponentially after many turns around the toroidal
chamber. Since charged plasma particles follow the magnetic field lines, the anomalous particle transport and the plasma
confinement quality depends on the magnetic field configuration [3].

Plasmas are confined in tokamaks within magnetic surfaces partially destroyed at plasma edge by resonant
perturbations [4]. Under those circumstances, the plasma confinement is improved by the onset of internal transport barriers
(ITB) that reduce the field line transport along the destroyed magnetic surfaces [5,6]. Such barriers are created by natural
magnetic perturbations, electrical currents in external coils and wave or beam injection [7,8]. Although the origin of these
barriers is still an open question, there are evidences that some of them are related to dynamical invariants (toroidal
magnetic surfaces) predicted by almost integrable Hamiltonian theory, as used in this work to describe the perturbed
magnetic field [9]. These barriers are expected to be relevant to accomplish the controlled fusion in tokamaks, especially in
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ITER (International Thermonuclear Experimental Reactor), the tokamak currently in construction in Cadarache, France, under
an international collaboration, whose main objective is to verify the availability of a fusion reactor [10].

In this work, we investigate the alterations of the tokamak magnetic field lines, as those observed around an ITB, by
introducing a strong barrier called robust torus (RT), an invariant torus in a specified radial position of the phase space located
at the plasma edge related to an ITB [11–13]. This RT is introduced in such way so as to remain intact when perturbations
are added to the Hamiltonian, in contrast with the KAM torus that, depending on their winding number, may persist only for
some sufficiently small perturbations.We compare the alterations caused by the RT in two kinds ofmagnetic configurations,
a twist and also a non-twist equilibrium magnetic field perturbed by resonances [3], which partially destroy the magnetic
surfaces at the plasma edge.

The resulting Hamiltonianwill have a term representing the equilibriummagnetic surfaces and another one representing
a resonant perturbation. There is a pre-factor in the perturbative term, which will add a RT at the plasma edge near the
resonances. The non-perturbed Hamiltonian is an integrable system described by an analytical solution of the non-linear
Grad–Shafranov equation. The equilibriumanalytical solution used in ourwork describes plasma confined in a tokamakwith
nested toroidal magnetic surfaces with a center displaced to the external part due to the toroidal geometry [14,15], thus,
the intersections of the flux surfaces with a toroidal plane exhibits invariant circles shifted toward the exterior equatorial
region [16,17]. On the other hand, the perturbations are generatedby electrical currents in a set of coils, poloidally distributed
in toroidal sections of the tokamak [18], which creates a region of chaotic magnetic field lines at the plasma edge. In the
plasma physics literature this device is known as ergodic magnetic limiter (EML) [19]. The chaotic field lines result from
interactions among magnetic islands, with progressive destruction of perturbed flux surfaces as the perturbation strength
increases according to different scenarios in twist magnetic configurations, where the Kolmogorov–Arnold–Moser (KAM)
theory is valid [4,20], and also in non-twist configurations [21,22]. This difference occurs around the magnetic shearless
surface, since that at the plasma region far from the shearless surface the KAM theory can be applied [23].

We use the Hamiltonian considered in this work to study the local barrier transport in the plasma region most affected
by the resonant perturbation. Instead of obtaining numerically the Poincaré maps, we can resort to the impulsive nature
of the considered perturbation and introduce a local analytical approximation of the exact mapping [24]. The basic idea is
to consider an expansion of the canonical equations in the vicinity of the main islands generated by the perturbation. The
control parameters of the used maps are related to quantities that can be measured in tokamak experiments, as the current
density profiles and the perturbing helical currents [25].

This article is organized as follows: In Section 2 we introduce the Hamiltonian approach with a robust torus (RT) to
describe the magnetic field perturbed by resonances, in Section 3 we introduce the symplectic maps we use to show how a
RT modifies the field line configuration, and in Section 4 we summarize our main conclusions.

2. Hamiltonian approach

We can write the magnetic field line equation, B × dl = 0, in the form of Hamilton equations. As plasmas in tokamaks
are independent of the toroidal angle, ϕ, the role of time is played by this ignorable coordinate. The remaining coordinates
give the canonical position and momentum variables. The advantage of this procedure is to use the method of Hamiltonian
dynamics to analyzemagnetic field line topologywhen a staticmagnetic perturbation is applied on a given equilibrium field.
Since the equilibrium field is axisymmetric we can put the equations in terms of the Hamiltonian description for the field
line flow with ϕ = t as a time-like variable, then the field line equation in a Hamiltonian form can be casted as: dJ/dt =

−∂H/∂ϑ and dϑ/dt = ∂H/∂ J where the action–angle variables (J, ϑ) are related to the spatial coordinates (rt , θt) by

J(rt) =
1
4

[
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21/2
]
and ϑ(rt , θt) = 2 arctan


1

Ω(rt )


sin θt

1+cos θt


, where Ω(rt) =


1 − 2 rt

R

(1/2) 
1 + 2 rt

R

−(1/2)

and R is the magnetic axis radius [26]. One can find more details about the relation of the introduced action–angle variables
with magnetic field line coordinates in Ref. [19].

The addition of the resonant perturbing magnetic field produced by currents in external coils can be regarded as a
Hamiltonian perturbation: H(J, ϑ, t) = H0(J) + H1(J, ϑ, t) with |H1/H0| ≪ 1.

The Poincaré section is taken at a fixed value of this toroidal angle ϕ. So, H0 is given in terms of the canonical action J
and ϑ the poloidal angle canonically associated to J [19]. On the other hand the perturbing Hamiltonian will be a function
of J, ϑ and t , and it will be represented by means of a Fourier series of delta-kicks [15,19]. Each value of J labels a toroidal
magnetic surface with a displaced center due to the toroidal geometry. Another Hamiltonian method has been numerically
applied to create barriers to magnetic field line diffusion in tokamaks by a small dynamical modification of the magnetic
perturbation [27]. This alternative method of control was also tested on a beam of electrons produced by a long traveling
wave tube that mimics beam plasma interactions [28]. For both the static and the time dependent system, their Poincaré
sections present similar transport barriers created by small modification of the perturbations.

In our approach, we wish to investigate the effect that a RT, close to the tokamak wall, causes when placed near the main
resonances created by the EML. To do that we consider the Hamiltonian expressed in terms of action and angle variables. As
we know the analytical expression of J , we expand H0 around a magnetic surface with action J0 and frequency Ω0 = n/m
where Ω0 is equal to the inverse of the safety factor q and n and m are integers. In the perturbation, we keep only the two
main resonances from the Fourier expansion. The interaction between these two neighbor modes reproduce quite well the



C.G.L. Martins et al. / Physica A 390 (2011) 957–962 959

transition to chaos observed in the system. Then, the Hamiltonian, with the dominant resonant modes with poloidal wave
numbersm and (m + 1), is given as,

H(1J, ϑ, t) = H0(1J) + P(1J)[β cos(mϑ) + η cos((m + 1)ϑ + nt)]
+∞−

k=−∞

δ


t −

2π
Nr

k


(1)

where 1J = J − J0 and Nr = 4 is the quantity of EML rings equally spaced around the tokamak.
The use of delta-kicks tomodel the t-dependence of the perturbation ismotivated by the type ofmagnetic field generated

by the ergodic magnetic limiter, which acts in determined positions along the torus curvature. Moreover, the current ring
width l is supposed to be small compared to the torus mean circumference 2πR, where R is the major axis radius.

We consider in this work two equilibrium configurations distinguished by two different frequency profiles of Ω0 ≡

dH0/d1J given by:

H0(1J) =
1
2
1J2 (2)

for the twist case, and

H0(1J) =
1
2
1J2 −

α

3
1J3 (3)

for the non-twist case.
The parameter α = W/M , where M ≡

d2H0
dJ2


J=J0

and W ≡
1
2

d3H0
dJ3


J=J0

. The parameters β and η are the perturbations’

strength and they are related with the electric current applied in the EML rings.
The function P(1J) in Eq. (1) is a polynomial and it allows us to introduce RT. We choose P(1J) = 1 to obtain the known

Hamiltonian without RT and we also choose P(1J) = (1J − a) in order to introduce one RT at the position 1J = a. We
emphasize that, for a generic polynomial function, it is possible to have a number of RT equal to the number of real roots of
this polynomial. Thus, this procedure enables us to construct a Hamiltonian to study the alterations of the topology of the
magnetic field lines at the plasma edge due to the presence of an infinity barrier, a RT, near the tokamak wall.

3. Conservative map and Poincaré section

As the time dependence of the Hamilton equations is in the form of periodic delta-kicks we can define discretized
variables and write a 2D map. Initially, the non-twist map without the RT is,

1Jk+1 = 1Jk + βm sin(mϑk+1) + η(m + 1) sin[(m + 1)ϑk+1 + ntk+1]

ϑk+1 = ϑk +
2π
Nr

(1Jk − α1J2k ) mod(2π)

tk+1 = tk +
2π
Nrm

.

(4)

On the other hand, for the purpose of this paper, the non-twist map with two resonant modes and one RT is given as,

1Jk+1 = 1Jk + (1Jk+1 − a){βm sin(mϑk) + η(m + 1) sin[(m + 1)ϑk + ntk+1]}

ϑk+1 = ϑk +
2π
Nr

(1Jk+1 − α1J2k+1) + β cos(mϑk) + η cos[(m + 1)ϑk + ntk+1] mod(2π)

tk+1 = tk +
2π
Nrm

.

(5)

We emphasize that the indices of the discretized variables are adjusted in a consistent way [29] in order to keep the
Jacobean equal to one and to have an area-preserving map. In Eq. (5) one could exchange the indices (k + 1) and (k) of the
variables 1J and ϑ in order to keep a similarity with Eq. (4), however this would not alter the dynamics. Our choice for the
actual form avoided a transcendental equation, which would appear by changing the indices.

For the numerical implementations of the maps presented in Eqs. (4) and (5) we have chosen m = 3 and n = 1 in-
troducing the resonant modes (1:3) and (1:4). The constant α that appears in the equilibrium Hamiltonian is adjusted
for both maps, for the twist field α = 0 and for the non-twist field α = 160.15 whose value is very close of the one used
experimentally in the TCABR.

In Fig. 1(a) we present the twist case and we see the dominant island chain (1:3) and the main secondary resonance
(1:4) embedded in chaotic magnetic field lines and several other minor resonances. In this configuration, the magnetic field
lines can escape toward the tokamak wall along the chaotic sea around the broken (1:3) island chain. On the other hand, in
Fig. 1(b) we can see the stabilizing alterations introduced in the magnetic field line configuration by the RT whose position,
1J = a = 3, is indicated in red color. Note that the chaotic sea near the RT, around the (1:3) island, is suppressed in Fig. 1(b)
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a b

Fig. 1. Poincaré sections for the resonant modes (1:3) and (1:4) with α = 0 for: (a) Twist map of Eq. (4) without RT with β = −5.0 × 10−4 and
η = 2.3 × 10−4; (b) Twist map of Eq. (5) with RT (in red) with β = −7.0 × 10−3 and η = 3.2 × 10−3 . (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

a b

Fig. 2. Poincaré sections for two resonant modes (1:3) and (1:4) for: (a) Non-twist map of Eq. (4), without RT with β = −1.5× 10−4 and η = 6.9× 10−5;
(b) Non-twist map of Eq. (5), with RT (in red) with β = −5.0 × 10−3 and η = 2.3 × 10−3 . (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

and the neighborhood around 1J = 3 is more stable than the one of Fig. 1(a). The explanation for that is the following, for
1J = a the perturbed Hamiltonian of Eq. (1) is algebraically null independently of β and η values. We can also see that the
first equation of the map, given in Eq. (5), becomes 1Jk+1 = 1Jk, defining then the RT, hence by an exigency of continuity,
the perturbations are gradually weaker in the linear vicinity of the RT than far from it.

We emphasize that the presence of the RT introduces a local effect, which is seen through the regularization of the
dynamics in its neighborhood, and in regions far from the RT the chaotic sea continues to exist. As we can see in Fig. 1(b)
the RT traps all magnetic field lines inside the plasma edge avoiding shocks with tokamak wall unlike that of the case of
Fig. 1(a).

For the non-twist equilibrium, there are isochronous resonances [30] in the phase space. In Fig. 2(a), the two isochronous
resonances (1:3) have already reconnected and they are dimerized and separated by a lot of invariant meandering
curves [19]. Such invariant curves encircle both sets of surviving islands (1:3) and they exist only in non-twist maps (to
be more precise, inside the shearless region). This region traps the magnetic field lines for a long time and hampers the
radial diffusion, and the previously termed internal transport barrier (ITB) takes place due to a strong stickiness effect.

In Fig. 2(b) the RT is indicated in red color at the position 1J = 3 = a. The alterations introduced in the magnetic
configuration are noticeable. We still have the two (1:3) and (1:4) island chains, but now an interesting topological
rearrangement has occurred, the chaotic sea that was close to the upper island chain (1:4), in Fig. 2(a), has been suppressed
by the presence of the RT. The magnetic surfaces near the RT remain as invariant curves while on the other side of the ITB,
there is a significant destruction of themagnetic surfaces around the low resonance (1:4). The rigidity of the RT and the local
stabilization in its neighborhood are the main results that we address in this work.
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a b

Fig. 3. Poincaré sections for the map of Eq. (5) with the modes (1:3) and (1:4), β = −5.0 × 10−3, η = 2.3 × 10−3 and a robust torus (in red) located at:
(a) 1J = 1 and (b) 1J = 3.7. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

It worthwhile to emphasize that different Hamiltonians (maps) govern the non-twist and the twist cases and so we do
not keep the same parameters for both systems. For the non-twist case, we fixed the meandering curve, which appears in
Fig. 2(a) without RT, as our reference. From there, we produced the plot of Fig. 2(b). For the twist case, the strategy was
different since the meandering curve does not exist. We started with the plot of Fig. 1(a), without RT, which shows chaos
in the neighborhood of both resonances (1:3) and (1:4) but still with some regular structures. Next, in the case with RT, we
choose the parameters in order to have a similar chaotic sea around the resonance (1:4). The introduction of the RT causes
the resulting difference around the resonance (1:3).

Another evidence of the effect of the position of the RT, determined by the parameter a, is shown in Fig. 3. In Fig. 3(a) we
choose the position of the RT,1J = 1 = a, closer to the dimerized island chains (1:3), and in Fig. 3(b)we choose, the position
of the RT, 1J = 3.7 = a, upper than the island chain (1:4) with the same parameters of Fig. 2(b). In Fig. 3(a) the islands
of the resonance (1:4) are partially destroyed in such way that the magnetic field lines can leave the plasma and reach the
tokamak wall. In Fig. 3(b) the islands of the resonance (1:4) are also partially destroyed but the magnetic field lines cannot
reach the tokamak wall due to the presence of the RT and also due to the stabilized curves in its vicinity. Comparing these
configurations with the one shown in Fig. 2(b) we see that the position of the RT at 1J = 3 also keeps the magnetic field
lines trapped in an inner region on the tokamak, near the resonance (1:4).

4. Conclusion

We presented in this paper a symplectic map that describes some alterations of the magnetic field lines inside the
tokamak due to the presence of a robust torus at the plasma edge. The map describes the toroidal equilibrium magnetic
field lines perturbed by resonances created by ergodic magnetic limiters. Theoretically, the robust torus has proved to be
an efficient transport barrier that prevented the magnetic field lines from reaching the tokamak wall, avoiding plasma–wall
interactions. The instabilities in its vicinity as well as the destruction of the equilibrium invariant curves have also reduced,
which would be destroyed due to the resonant or natural perturbations.

A possible experimental implementation of a RT in tokamaks requires an active control inside the tokamak by another
set of EML rings. Because a RT corresponds to a 3D surface along the toroidal direction, which remains intact in the middle
of many broken magnetic surfaces, we suggest a way to create a robust magnetic surface that mimics a RT.

For instance,wemay consider a set of EML rings in order to create a resonance (n:m) at the peripheral region of the plasma
from the application of a positive magnetic field. Next we consider another set of EML rings in order to create the same
resonance (n:m) at the same position of the first one, but from the application of a negativemagnetic field. The superposition
of the two identical resonant perturbations, but with opposite magnetic field, may create an invariant magnetic surface,
similar to the RT.

Themodel we are using considers only the effect of a set of four EMLs, which perturbs the equilibriummagnetic surfaces.
However, it is well known that many other perturbations create instabilities and anomalous transport of chaotic particles
inside the plasma column, hence the action of a second EML set, with opposite magnetic field, could eliminate the effects of
themain resonantmode.We emphasize that this is a local effect, which is valid for any perturbation. From the experimental
point of view it is usual to have a reasonable control of themainmode of the perturbation (in this case themode 1:3)whereas
the control of the secondarymodes in general is a difficult, or even an impossible job. Hence, our conjecture to apply a second
perturbation, from another set of EMLs with inverse magnetic field, infers that a robust barrier will appear locally where
there was a main perturbation mode. This strategy can simulate some existing barriers already observed in experiments, or
propose the creation of a new barrier in the tokamak camera.
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