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We analyze a Hamiltonian model with five wire loops that delineates magnetic surfaces of

tokamaks with poloidal divertor. Non-axisymmetric magnetic perturbations are added by external

coils, similar to the correction coils that have been installed or designed in present tokamaks. To

show the influence of magnetic perturbations on the field line escape, we integrate numerically the

field line differential equations and obtain the footprints and deposition patterns on the divertor

plate. Moreover, we show that the homoclinic tangle describes the deposition patterns in the divertor

plate, agreeing with results observed in sophisticated simulation codes. Additionally, we show that

while chaotic lines escape to the divertor plates, some of them are trapped, for many toroidal turns, in

complex structures around magnetic islands, embedded in the chaotic region, giving rise to stickiness

evidences characteristic of chaotic Hamiltonian systems. Finally, we introduce a random collisional

term to the field line mapping to investigate stickiness alterations due to particle collisions. Within

this model, we conclude that, even reduced by collisions, the observed trapping still influences

the field line transport. The results obtained for our numerical estimations indicate that the reported

trapping may affect the transport in present tokamaks. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4892395]

I. INTRODUCTION

In conventional tokamaks the plasma column is separated

from the wall by a physical limiter made of a material that

resists the impact and the temperature of plasma particles.1

An alternative separation of the plasma column and the cham-

ber’s wall can be achieved installing poloidal divertors.

Divertors are essential components in modern tokamaks,

such as ITER,2 and they consist of conductors arranged

externally, that carry electric currents in the same direction

of the plasma current, in the toroidal direction of the toka-

mak. A X point (or hyperbolic fixed point) will appear at the

positions where the poloidal magnetic field is null, due to the

overlap of the magnetic fields of the conductors with the

magnetic field of the plasma. From the X point arises a sepa-

ratrix with two manifolds, one stable and another unstable.

Outside the separatrix the surfaces intersect the collector

plates, which play a role similar to the physical limiter in

conventional tokamaks.3,4

Numerical equilibria reconstructions to simulate plasmas

in the presence of poloidal divertors are well known in the lit-

erature.5 However, the computation to integrate magnetic field

lines, for such magnetic configuration, is time-consuming.6–8

On the other hand, simple models can delineate quite well dy-

namical properties of open and closed fields lines near the sep-

aratrix. In particular, a simple way to delineate the MHD

equilibrium magnetic field in tokamaks is to consider the mag-

netic configuration created by a set of coils or wires.9,10

Wires carrying electric current generate concentric

circles of magnetic field lines around themselves. If another

wire is positioned parallel to the first one, magnetic field

lines are no longer circular, although they are still closed

curves around each wire. For such magnetic configuration,

there will be a point where the magnetic field is zero. In

this position arise two manifolds of the separatrix, forming

a X point. A large number of wires distort the magnetic

fields, creating more than one X point and their respective

separatrixes.

Non-axisymmetric magnetic perturbations destroy the

magnetic separatrix creating homoclinic tangles, leading to

the formation of a layer of chaotic field lines.5,11 Due to the

flexibility of models based on magnetic fields produced

by wires, one can consider different effects by adequately

specifying the perturbations. Thus, perturbed wire models

have been used to analyze a range of dynamical properties in

double-null (two X-points) and single-null (one X-point)

diverted tokamaks, such as, the width of the scrape-off layer,12

chaotic layer formation,13–15 and particle drift orbits.16

A model described by five parallel infinite wires was an-

alyzed in Ref. 9, to simulate the magnetic surfaces of

diverted tokamaks, in the presence of magnetic perturbations

created by error fields due to asymmetries on the external

coils.13,17 Moreover, a Hamiltonian with three loop wires

was analyzed in Ref. 10, to describe two mapping methods

and to study the stochastic field lines in poloidal divertor

tokamak plasmas affected by external non-axisymmetric

magnetic perturbations.

Following Ref. 10, in the present work we analyze a

Hamiltonian model with five loop wires that enables the
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choice of magnetic axis position, triangularity, and elonga-

tion. The versatility of the model allows us to delineate equi-

librium magnetic surfaces that reproduce ITER like

magnetic topology, including a similar safety factor profile.

Here, we add to equilibrium perturbations created by pairs of

loop coils carrying opposite flowing currents, introduced in

Ref. 10. Those perturbations are similar to the ones related

to the correction coils (C-coils) installed at the DIII-D

tokamak5 and those that will be installed at ITER.18

Thus, using the mentioned Hamiltonian description we

solve numerically the perturbed magnetic field line differen-

tial equations and show the influence of magnetic perturba-

tions on the deposition patterns at the divertor plate. To do

that, we calculate the numbers of toroidal turns, called con-

nection lengths, performed by the perturbed magnetic field

lines until reaching the divertor plates and their non uniform

distribution, the deposition patterns, on the divertor

plates.5,6,11 Moreover, we show that the homoclinic tangle

describes the deposition patterns in the divertor plate, agree-

ing with results observed in sophisticated simulation

codes.19,20 Additionally, we show that even so the chaotic

lines escape to the divertor plates, some of them are trapped,

for many toroidal turns, in complex structures around mag-

netic islands, embedded in the chaotic region, giving rise to

the so called stickiness effect characteristic of Hamiltonian

systems.21 So, our results indicate that the deposition on the

plates depends on the sticky structure of the analyzed mag-

netic configuration. Finally, we introduce a random colli-

sional term to the field line mapping to reproduce stickiness

alterations due to particle collisions. Within this model, we

conclude that, even reduced by collisions, stickiness still

influences the field line transport.

In Sec. II, we introduce the equilibrium magnetic surfa-

ces of our five loop wires model. In Sec. III, we present the

resonant perturbation caused by external loop coils.

Numerical results on homoclinic tangle formation and exam-

ples of escape pattern typical of those computed for toka-

maks are presented in Sec. IV. Stickiness effect

investigations are in Sec. V, and its alterations due to particle

collisions in Sec. VI; finally, in Sec. VII we present the

conclusions.

II. EQUILIBRIUM MODEL

To describe the equilibrium magnetic field lines, we

choose a coordinate system appropriated to the tokamak

symmetry, shown in Figure 1.

We will consider in this work a simple model that

consists of five wire loops carrying electric currents, with

the same relative position proposed in Ref. 9, as shown in

Table I.

As introduced in the Appendix, for a tokamak with large

aspect ratio, ðR0=a� 1Þ, the unperturbed Hamiltonian, can

be approximated to

H0 z; pZð Þ ¼
�1

R0

X5

j¼1

l0Ij

4pB0

�
ln

�
64

���
R

R0

� Rj

R0

�2

þ
�

Z

R0

� Zj

R0

�2��1��
� 4

�
: (1)

The wire 1 represents the plasma current. The role of the

wires 2 and 3 is to create the lower and upper X points,

respectively. These two X points are located in distinct sepa-

ratrices: the active separatrix (internal) and the inactive sepa-

ratrix (external). The outer separatrix is called inactive

because the plasma does not reach this position; on the other

hand, it plays an important role in the shape of the surfaces.

The negative currents in wires 4 and 5 compress the left and

right sides of the magnetic surfaces, then one can model the

desired elongation of the plasma column.

Figure 2(a) shows the positions of the intersections of

the five loops with the R-Z plane and the surfaces generated

by them. Figure 2(b) shows the surfaces related to the plasma

column and two X points: the upper X point of the external

separatrix (inactive), and the lower X point of the internal

separatrix (active), that defines the boundary of the plasma.

Each magnetic surface has a well-defined characteristic

known as rotation number, which is the average of the poloi-

dal angle performed by a field line after a full toroidal turn.

In this model, the poloidal angle is the angular displacement

in the plane R-Z made by a field line. For tokamaks, the

inverse of the rotational number is the safety factor, and it is

used to characterize the topology of the lines.

In order to obtain the safety factor profile of the mag-

netic surfaces, we integrate the unperturbed magnetic field

lines equations (see Appendix A) for many initial conditions

located on a horizontal line, indicated in Figure 2(b). We

consider that a field line completes m toroidal turns if

u ¼ 2mpR0. Thus, on rational surfaces with safety factor

q¼m/n, the periodic field lines perform m toroidal turns and

n poloidal turns.

Figure 3 shows the safety factor profile calculated from

our model, for initial conditions located at the auxiliary line

of Figure 2(b). In this figure, it is possible to identify the

positions of two surfaces with infinite safety factor. These

surfaces correspond to the two separatrixes shown in Figure

2(b). In a magnetic system, hyperbolic points correspond to

the positions with null poloidal magnetic field and, conse-

quently, the values of the safety factor goes to infinity.

FIG. 1. Geometry of a toroidal system.

TABLE I. Wires positions and currents values.

n Rn (m) Zn (m) In (MA)

1 (plasma) 6.41 0.513 15.00

2 3.72 �7.580 15.90

3 3.20 8.600 16.28

4 2.45 0.513 �5.69

5 10.00 0.513 �4.60
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Profiles similar to that shown in Figure 3 are expected for

present tokamaks.22

III. PERTURBED MODEL BY EXTERNAL COILS

Many tokamaks have non-axisymmetric perturbation

coils designed specifically to create chaotic layers in the

peripheral region of the plasma column.23–25 Despite this,

few theoretical or experimental data may be found to under-

stand the effects of these chaotic layers in plasmas with

elongation and triangularity in the presence of poloidal

divertors.

In this work, we consider a non-axisymmetric perturba-

tion generated by N ¼ 10 pairs of loop coils carrying oppo-

site currents, 6Ic, positioned at ðRcþ; ZcþÞ ¼ ð10:2; 3Þ and

ðRc�; Zc�Þ ¼ ð10:2;�3Þ. The perturbation created by these

coils is similar to the correction coils (C-coils) installed

at the DIII-D tokamak,5 and those that will be installed

at ITER.18 An illustration of this design can be seen in

Figure 4, which shows the transversal cross section of the

tokamak equilibrium, and ten pairs of coils arranged around

the chamber.

For a large aspect ratio tokamak, the perturbing

Hamiltonian, H1ðz; pZ;uÞ, related to the scheme shown in

Figure 4, can be approximated by10

eH1 z; pZ;uð Þ ¼
l0Ic uð Þ
4pB0R0

ln
R� Rcþ

R0

� �2

þ Z � Zcþ
R0

� �2
 ! 

�ln
R� Rc�

R0

� �2

þ Z � Zc�
R0

� �2
 !!

; (2)

where the current in the coils, IcðuÞ, is periodically changing

along the toroidal angle, u, and can be represented by the

discontinuity function, IcðuÞ ¼ ð�1ÞkIc, for ðp=NÞk < u <
ðp=NÞðk þ 1Þ and k ¼ 0; :::; ð2N � 1Þ. This function can be

expanded in Fourier series10

Ic uð Þ ¼
4Ic

p

X1
p¼0

sin 2pþ 1ð ÞNu½ �
2pþ 1

: (3)

We will consider only the first term, p ¼ 0, of the

function (3), since this term gives the main effect of

the perturbation. The contribution of higher order toroi-

dal modes, ð2pþ 1ÞN, decreases exponentially while

increasing p.10 Therefore, the perturbing Hamiltonian is

reduced to

FIG. 2. (a) Magnetic surfaces. The red

dots represent the intersection of the

five loops with the plane R-Z. (b)

Zoom in (a) showing the plasma

column, and the upper and lower X

points, forming the outer separatrix

(inactive) and the inner separatrix

(active), respectively. The auxiliary

line indicates the initial conditions to

calculate the safety factor of Figure 3.

FIG. 3. Safety factor profile for initial conditions located at the auxiliary

line from figure 2(b). The rectangle indicates the region amplified. The two

points where the safety factor values go to infinity represent the two separa-

trixes formed by the lower and upper X points.

FIG. 4. Transversal cross section of the tokamak ITER with the addition of

N ¼ 10 pairs of perturbation coils located on the equatorial plane of the cham-

ber, carrying opposing currents, 6Ic, at positions ðRcþ; ZcþÞ ¼ ð10:2; 3Þ and

ðRc�; Zc�Þ ¼ ð10:2;�3Þ.
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eH1 z;pZ;uð Þ ¼ e
l0Ip

p2B0R0

ln
R�Rcþ

R0

� �2

þ Z�Zcþ
R0

� �2
 ! 

�ln
R�Rc�

R0

� �2

þ Z�Zc�
R0

� �2
 !!

sin Nu½ �;

(4)

where the perturbation parameter is e ¼ ðIc=IpÞ.10

The total Hamiltonian in canonical coordinates of posi-

tion and momentum is given by

Hðz; pZ;uÞ ¼ H0ðz; pZÞ þ eH1ðz; pZ;uÞ: (5)

The set of equations

dz

du
¼ @H

@pZ
;

dpZ

du
¼ � @H

@z
(6)

was numerically integrated with perturbation parameter

e ffi 0:0047 that corresponds to Ic ¼ 70kA. The value used

for the current in the coils was deducted from Ref. 5, which

shows the range of the current amplitude applied in the cor-

rection coils (C-coil) installed at the DIII-D tokamak, which

is, approximately, 0.266%–0.533% of the plasma current.

By the same consideration, we define a limit range for the

current in our perturbation coils as that expected for ITER

tokamak, which is therefore, Ic ¼ 40 kA to Ic ¼ 80 kA.

Figures 5(a) and 5(b) show a chaotic layer around the

lower hyperbolic point. The magnetic field lines are no lon-

ger closed, and, eventually, reach the divertor plates located

horizontally at Z ¼ �3:7 m (represented by the black seg-

ment in Figure 5(b)), following the manifolds that leave the

X point. One can notice, in Figure 5(b), magnetic islands

immersed in the chaotic layer, which play an important role

in the field lines escape.26

IV. HOMOCLINIC TANGLE AND ESCAPE PATTERNS

Since the topology of the manifolds is highly unstable

and can be destroyed by arbitrary perturbations,11,27 it is

essential to study the behavior of the field lines near the sep-

aratrix and particularly around the X point, to understand

the way in which particles are transported through the

separatrix.28,29

Accordingly, we consider our model to calculate the escape

of the field lines to the divertor plates, placed horizontally at

Z ¼ �3:7 m (black segment in Figure 5(b)). As the particles

follow the field lines, the structure of escape obtained must

be closely related to measurable profiles of particle deposi-

tion on the divertor plates.5 To analyze the escape of the field

lines in question, we calculated the connection length, which

is the number of toroidal turns performed by a field line until

it reaches the plate. The field line is integrated forward and

backward in u, for initial conditions in a box with 4:88 �
R0 � 5:02 and �3:50 � Z0 � �3:35. Then, a color map is

constructed where the color indicates the number of toroidal

turns that the field line needs to reach the plate, and the axes,

ðR; ZÞ, represent the initial position of the field lines.

The manifolds of Figure 6(a) were approximated by

numerically integrating initial conditions in a small grid con-

structed around the hyperbolic fixed point (R� 4.9506 m,

Z��3.4428 m). Figure 6(a) shows the stable (blue) and

unstable (red) manifolds of the lower hyperbolic fixed point

(in black) for system perturbed by N ¼ 10 pairs of loop coils

with Ic ¼ 70 kA. Each individual manifold does not intersect

itself, but the two manifolds intersect each other an infinite

FIG. 5. (a) Magnetic surfaces per-

turbed by N ¼ 10 pairs of loop coils

with Ic ¼ 70 kA. (b) Zoom in (a) show-

ing some islands immersed in the cha-

otic region. The solid lined segment

represents the divertor plate. The black

X shows the position of the hyperbolic

fixed point.

FIG. 6. Numerical calculations for sys-

tem perturbed by N ¼ 10 pairs of loop

coils with Ic ¼ 70 kA. (a) Homoclinic

tangle formed by the unstable (red)

and stable (blue) manifolds from

the lower X point (in black). (b)

Connection lengths of the homoclinic

tangle in the region near the X point

(in black).
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number of times, forming a complex pattern known as homo-

clinic tangle.5,11 Figure 6(b) shows the connection lengths of

the case shown in 6(a), where the region in white color repre-

sents the initial position of field lines that take less than one

toroidal turn to escape to the divertor plates. It is noticed in

Figure 6(b), a structure similar to the homoclinic tangle of

stable and unstable manifolds shown in Figure 6(a). This

type of structure has been observed through the use of com-

puter codes that simulate escape patterns in Ref. 19.

One can calculate the magnetic footprint which is the

set of points that reaches the divertor plates. The magnetic

field line is integrated backwards in u, for initial conditions

located at the divertor plate (black segment in Figure 5(b)),

in a box with 5:065 � R0 � 5:080 and 0 � u0 � 2p. Then a

color map is constructed where the color indicates the con-

nection length of the field line, and the axes, ðu;RÞ, repre-

sent the initial position of the field lines.

The magnetic footprints of Figure 7(a) and the zoom in

the rectangle in Figure 7(b) show structures created by mag-

netic field lines at the divertor plate (black segment in Figure

5(b)). Each color represents the connection length, namely,

the number of toroidal turns required for the field line to

reach the divertor plate. The manifolds of the separatrix act

as boundaries for the magnetic footprints, determining their

position and shape. Outside the boundaries of the separatrix

one can find, in white, magnetic field lines that take less than

one toroidal turn to escape to the divertor plate. We note that

there are ten lobes related to the number of pairs of loops

coils used in our model (see Eq. (4)). Since the structure of

the homoclinic tangle is self-similar, we expect magnetic

footprints to have a fractal nature.30 Similar results were

observed in sophisticated simulation codes.20,28

V. STICKINESS EFFECT

Chaotic field lines escape to the divertor plates, but

some of them may be trapped for many toroidal turns (i.e.,

long connection lengths) in complex structures at the border

of magnetic islands, giving rise to the so-called stickiness

effect characteristic of Hamiltonian systems.21 Since the dis-

tribution of the connection lengths directly interfere on the

particle transport, determining the deposition patterns on the

divertor plates,5 it is essential to analyze the topology of

sticky structures.

Figure 8 shows the connection lengths of field lines near

the X point, located at the reference line, in green, of Figure

9(a), varying according to the amplitude of the current in the

perturbation coils. One can notice in Figure 8(a) horizontal

structures with long connection lengths (red stripes) located

between regions with short connection lengths. Some of

these horizontal structures (red stripes) remain intact while

the current in the coils is increased. Figure 8(b) shows a

zoom in the black rectangle of Figure 8(a), in order to clarify

some details of the horizontal structure (red stripe) located at

�3:080 � Z � �3:062. The red stripes in Figure 8 indicate

the presence of magnetic field lines, in the diverted zone,

with long connection lengths, equal or higher than 410 toroi-

dal turns. However, the distribution of connection length val-

ues inside this red zone should be complex and determined

by the reminiscent small island chains (broken and unbro-

ken) shown in Figure 5(b). These long connection lengths

reported are further discussed later on.

Figure 9(a) shows the magnetic surfaces perturbed by

N ¼ 10 pairs of loop coils with Ic ¼ 70 kA. The reference

line in green was used to calculate the connection lengths

FIG. 7. (a) Magnetic footprints for the

system perturbed by N ¼ 10 pairs of

loop coils with Ic ¼ 70 kA, showing

places at the divertor plate where mag-

netic field lines began their trajectories,

and their correspondent connection

lengths. (b) Zoom at the rectangle

shown in (a), emphasizing details of

the structure formed by the homoclinic

tangle.

FIG. 8. (a) Color map of the connec-

tion lengths as a function of Ic and

ZðmÞ, showing the existence of hori-

zontal structures (red stripes) that

remain intact for long ranges of current

in the coils. The colors indicate the

values of field line connection lengths;

the red color represent points with long

connection lengths (equal or higher

than 410 toroidal turns). (b) Zoom at

the black rectangle of (a), emphasizing

details of a horizontal structure (red

stripe) at �3:080 � Z � �3:062.
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distribution shown in Figure 8. Figure 9(b) shows a zoom of

the red square of (a), constructed with the same height and

position of the red stripe shown in Figure 8(b), i.e.,

�3:080 � Z � �3:062. In Figure 9(b), one can identify

islands formed by field lines located on regular surfaces, and

also a concentration of pixels (iterations) on the chaotic

layers surrounding the island, that interfere in the field line

escape.

It is worthwhile to mention that the main red stripe in the

connection length, shown in Figure 8(b), represents the trap-

ping region where the sticky island from Figure 9(b) is

located, and it has, approximately, 2 cm, which, then, is larger

than the typical ion Larmor radius order of millimeters.

Figure 10(a) shows a zoom at the border of the island of

Figure 9(b). Figure 10(b) shows the rotation number for the

field line with initial condition represented by the red dot in

(a), located at the chaotic layer surrounding the island. One

can notice a convergence in the rotation number for the ini-

tial 1500 toroidal turns, indicating that the field line is

trapped in a resonance with rotation number x ¼ 51=250.

After that, the field line escapes entering in the chaotic sea,

and its rotation number for the next toroidal turns diverges.

Figures 10(c) and 10(d) show the Poincar�e map of the com-

mented field line for (c) 1500 toroidal turns and (d) 5000 to-

roidal turns, and the trapping effect become clearer. For the

1500 initial toroidal turns, the field line is trapped at the reso-

nance with x ¼ 51=250 and, after that, the field line escapes

and, eventually, hits the divertor plate.

Figures 10(b)–10(d) show stickiness evidence that could

be explained by the presence of cantori surrounding reso-

nance islands. The cantori gaps are usually very small, thus a

chaotic orbit inside them takes a long time before escaping

to the outer chaotic sea, and a stickiness phenomenon

appears.21 One can find many stick regions in the analyzed

area of Figure 8(a), although the stickiness effect analyzed in

this model is a very subtle feature as the small bands in the

connection length distribution, in Figure 8(a), shows. These

fine structures are highly dependent on the actual perturbed

magnetic field, and might be reduced in a coil set with multi-

ple toroidal modes.

FIG. 9. (a) Magnetic surfaces perturbed

by N ¼ 10 pairs of loop coils with

Ic ¼ 70 kA. The reference line in green

was used to calculate the connection

lengths distribution shown in Figure 8.

(b) Zoom at the red rectangle shown in

(a), emphasizing details of the island

that causes the red stripe shown in

Figure 8(b) at�3:080 � Z � �3:062.

FIG. 10. (a) Zoom at the border of the

island of Figure 9(b). (b) Rotation

number of the initial condition repre-

sented by the red dot in (a). (c) Initial

condition at the red dot in (a) iterated

for 1500 toroidal turns. (d) Initial con-

dition at the red dot in (a) iterated for

5000 toroidal turns.
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VI. STICKINESS EFFECT IN A COLLISIONAL
SCENARIO

Particle transport inside the plasma is not only deter-

mined by the magnetic field lines, but also by collisions. So,

to estimate the stickiness effect of Sec. V, in a collisional

scenario, we have to modify the field line equations to simu-

late how collisions divert particle center guide from the field

line trajectories. It has been verified, recently, in a simple nu-

merical model, that the manifolds of the X points still govern

the particle dynamics when collisions are included.31 To

check that we add the effect of an additional noise in the sys-

tem that simulates collisional diffusion of particles inside the

plasma column. The effect of such noise is represented by

adding a vector of random orientation to the magnetic field

lines equation, at every complete toroidal turn,32 thus, equa-

tions for the magnetic field lines become

dz

du
¼ @H

@pZ
þ q sin htð Þ;

dpZ

du
¼ � @H

@z
þ q cos htð Þ; (7)

where q is the collisional amplitude, 0 � ht � 2p is a ran-

dom phase, ðz; pZÞ are the canonical coordinates of position

and momentum, respectively, and the toroidal angle, u, the

canonical time. We choose the collisional amplitude, q, by

analyzing the mean free path expected for a tokamak like

ITER.9

It is well known that the divergence-free nature of the

magnetic field in a tokamak, r � ~B ¼ 0, leads to modeling

the magnetic field lines trough a Hamiltonian formalism,

since, in this approach, the plasma particles are frozen in

magnetic field lines that lie in nested magnetic surfaces.

However, in our model, the collisional noise from Eq. (7)

divert particle center guide from the field line trajectories;

consequently, the orbit does not lie anymore in a unique

magnetic surface, instead, it jumps to another magnetic sur-

face at every complete toroidal turn, not satisfying the

divergence-free of the magnetic field. Besides that, during

each toroidal turn the divergence-free of the magnetic field is

still satisfied.

Figure 11(a) shows the sticky island from Figure 9(b)

but in a collisional regime with collisional amplitude

q ¼ 1	 10�3. One can notice the destruction of the internal

structures that used to form the island, including the struc-

tures that used to form the border of the island. Figure 11(b)

shows the rotation number for the field line with initial

condition represented by the red dot in 10(a), and the sticki-

ness effect did not vanish with the addition of the collisional

noise. Although, instead of being trapped for 1500 toroidal

turns, the field line was trapped for 500 toroidal turns. It sug-

gests that collisions, depending on their amplitude, do not

extinct stickiness structures, but decrease their time scale of

trapping. Moreover, with the inclusion of collisions as the

stickiness is reduced to the number of 500 toroidal turns (see

Figures 10(b) and 11(b)), a roughly estimative can be made

by multiplying 500 toroidal turns for the length of the toroi-

dal chamber, with is, approximately, 38.9 m (2pR0). Then,

the field line will perform, at least, 19468 m, more than the

estimated mean free path length at ITER, until reaching the

outer chaotic layer, and, eventually, the divertor plate.

Figure 12(a) shows the connection lengths of field lines

near the X point, located at the reference line, in green, of

Figure 9(a), in a range of �3:40 � Z � �3:00, for Ic ¼ 60 kA,

revealing two intermingled domains: laminar zones with short

field line connection lengths (corresponding to the low toroidal

peaks), and zones with long connection lengths, equal or longer

than 410 toroidal turns (corresponding to high toroidal peaks/

plateaus). According to Refs. 9 and 19, resonant magnetic

perturbations destroy the magnetic surfaces near the hyperbolic

points and lead to chaotic field lines diffusion, identified by

field lines with long connection lengths. Complementary, inter-

vals of short connection lengths are due to the field lines

which do not mix with the chaotic interior, but connect on short

distances to the divertor targets.19 Here, we conjecture that,

in Figure 12(a), the short connection lengths reveal laminar

regions, while some of the long connection lengths, identified

by the plateaus, maybe caused by stickiness inside the diverted

region.

In order to clarify the low peaks and plateaus from

Figure 12(a), and understand their dependence on the coils

current, we generate Figure 12(b), where we calculate, for a

large number of initial conditions located at the green refer-

ence line of Figure 9(a), in the interval �3:40 � Z � �3:00,

the escape time statistics (ETS)35

q sð Þ ¼ Nescape

Ntotal
; (8)

where Nescape is the number of initial field lines that reach the

divertor plates with toroidal turns n 
 s and Ntotal is the total

number of initial field lines that actually reach the divertor

plates. As a matter of fact, Eq. (8) represents a cumulative

FIG. 11. (a) Sticky island from Figure

9(b) in a collisional regime with

q ¼ 1	 10�3. (b) Rotation number of

the initial condition represented by the

red dot in Figure 10(a) in a collisional

regime.
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distribution function that decreases from two toroidal

turns, qð2Þ ¼ 1, to s ¼ 410 toroidal turns. We displayed the

results as a logarithmical base two plot and we showed the

ETS for three different currents in the coils. The vertical dot-

ted line indicates the integration limit of the considered to-

roidal turns, s ¼ 410, and the horizontal dotted line indicates

q ¼ 1.

For s � 128 toroidal turns, the ETS related to Ic ¼ 40 kA,

Ic ¼ 60 kA, and Ic ¼ 80 kA, have a quasi-linear decay

(smoothly curved). It can be confirmed through the layers

formed by the connection length distribution, in Figure 8(a),

for toroidal turns between 1 (dark blue) and 128 (light green).

Then, initially, we conclude that the chaotic layers of these

three cases, for s � 128, are quite similar. Furthermore, for

long toroidal turns, s > 256, the decay, for the three cases, is

drastic, indicating the presence of some kind of trapping in the

diverted zone.

Next, to understand one of the origins of the drastic

decay of Figure 12(b), we show in Figure 12(c) the rotation

number for a field line with initial condition located at the

reference line, in green, of Figure 9(a), at Z ¼ �3:13627246,

located at the chaotic layer surrounding a sticky island chain,

forming the plateau inside the red rectangle in Figure 12(a).

One can notice a convergence in the rotation number for the

initial 3000 toroidal turns, indicating that the field line is

trapped in a resonance with rotation number x ¼ 24=125.

After that, the field line escapes entering in the chaotic sea,

and its rotation number for the next toroidal turns diverges.

Figure 12(c) evidences a stickiness effect remaining island

chain, which contributes to the formation of the plateaus of

Figure 12(a), and the drastic decay of Figure 12(b). This

trapping is similar to the stickiness around island chains

identified in the tokamak plasma edges perturbed by resonant

external coils26 and in other symplectic maps.33–35 In fact,

according to Refs. 33 and 34, the intensity of the stickiness

around the reminiscent small magnetic islands depends on

the structure of their homoclinic tangle.

Figure 12(d) shows the rotation number for the same

case of Figure 12(c), but in a collisional regime with colli-

sional amplitude q ¼ 1	 10�3, and the observed trapping

did not vanish with the addition of the collisional noise.

Although, instead of being trapped for 3000 toroidal turns,

the field line was trapped for 500 toroidal turns. Once again,

it suggests that collisions, depending on their amplitude, do

not extinct trapping structures, but decrease their time scale.

More sticky island chains can be found in Figure 12(a)

influencing the drastic decay of Figure 12(b), and the effect

of all sticky islands in the diverted region increases the num-

ber of toroidal turns of magnetic field lines until them reach

the divertor plates. But, once again, the presence of sticky

islands emphasized here is very subtle and might be reduced

in a scenario with a coil set with multiple toroidal modes.

VII. CONCLUSIONS

The Hamiltonian model presented in this work is capa-

ble of reproducing magnetic surfaces expected in tokamak

equilibria with divertor. An external perturbation, analogous

to the perturbation of the C-coils installed at the tokamak

DIII-D and those that will be installed at ITER, was added to

study qualitatively the dynamical characteristics of the mag-

netic field lines in a chaotic divertor layer. By tracing the

manifolds, we showed the influence of the homoclinic tangle

on the deposition patterns of field lines in the divertor plates,

agreeing qualitatively with results obtained with sophisti-

cated computer codes. The evidences of stickiness effect,

around magnetic island chains embedded in the diverted

region were analyzed, indicating that this effect survives for

FIG. 12. (a) Connection lengths as a

function of ZðmÞ, for Ic ¼ 60 kA. Red

rectangle indicates the stickiness

region analyzed in (c). (b) Escape time

statistic, qðsÞ, as a function of the to-

roidal turns, for a large number of ini-

tial conditions located at the reference

line, in green, of Figure 9(a), in a range

of �3:40 � Z � �3:00, displayed as a

logarithmical base two plot. The verti-

cal dotted line indicates the integration

limit of the considered toroidal turns,

s ¼ 410, and the horizontal dotted line

indicates q ¼ 1. (c) Rotation number

for one initial condition at the border

of a sticky island, forming the plateau

inside the red rectangle in (a), at

Z ¼ �3:13627246. (d) Rotation num-

ber for the same initial condition at (c),

but in a collisional regime with ampli-

tude q ¼ 1	 10�3.
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long ranges of current in the perturbation coils, trapping

magnetic field lines for many toroidal turns. A random noise

was added to the field line equation to simulate collisions

between the plasma particles, and the stickiness evidences

did not vanish under the presence of such collisions.

However, the time scale of the trapping decreased when

compared to the case without collisions. The reported results

indicate that the trapping caused by remaining magnetic

islands may affect the transport in present tokamaks.
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APPENDIX: UNPERTURBED HAMILTONIAN EQUATION

In this appendix, we present the unperturbed Hamiltonian

equation, in ðR; Z;uÞ coordinates (see Figure 1), introduced in

Ref. 10, and used in the present article. Accordingly, the mag-

netic field line equations are

1

R

dZ

du

� �
¼ Bz

Bu
;

1

R

dR

du

� �
¼ BR

Bu
: (A1)

The magnetic field ~B can be expressed by the vector poten-

tial ~AðR; Z;uÞ ¼ ðAR;AZ;AuÞ, so that ~B ¼ r	 ~A. Therefore,

the component of the magnetic field can be written as

BR ¼
1

R

@AZ

@u

� �
� @Au

@Z

� �
;

Bu ¼ �
@AZ

@R
;

BZ ¼
1

R

@RAu

@R

� �
:

(A2)

We introduce canonical variables ðz; pZÞ associated with

the geometric coordinates ðR; ZÞ and the magnetic field,

according to10

z ¼ Z

R0

; pZ ¼
1

B0R0

ðR
R0

BudR: (A3)

The toroidal magnetic field is expressed by BuðRÞ
¼ B0R0=R, then Z ¼ R0z and R ¼ R0epz, and the equations

for the field lines can be transformed to Hamiltonian form

dz

du
¼ @H

@pZ
;

dpZ

du
¼ � @H

@z
: (A4)

The variables ðz; pZÞ are the canonical coordinates of

position and momentum, respectively, and the toroidal angle,

u, the canonical time.

The vector potential for each current loop is given by10

Au R; Zð Þ ¼
X5

j¼1

l0Ij

pkj

ffiffiffiffiffi
R0

R

r
1�

k2
j

2

� �
K kjð Þ � E kjð Þ

� �
; (A5)

where KðkjÞ and EðkjÞ are the complete elliptic integrals

with module

k2
j ¼

4R0R

Rþ R0ð Þ2 þ Z � Zjð Þ2
; j ¼ 1; :::; 5: (A6)

For a tokamak with large aspect ratio, ðR0=a� 1Þ, the

unperturbed Hamiltonian, H0ðz;pZÞ¼�ðRAuðR;ZÞÞ=ðB0R2
0Þ,

can be approximated to

H0 z; pZð Þ ¼
�1

R0

X5

j¼1

l0Ij

4pB0

�
ln

�
64

���
R

R0

� Rj

R0

�2

þ
�

Z

R0

� Zj

R0

�2��1��
� 4

�
: (A7)

1W. M. Stacey, Jr., Fusion Plasma Analysis (John Wiley & Sons, New

York, 1981).
2ITER Physics Expert Group on Divertor, Nucl. Fusion 39, 2391 (1999).
3F. Wagner, G. Becker, K. Behringer, D. Campbell, A. Eberhagen, W.

Engelhardt, G. Fussmann, O. Gehre, J. Gernhardt, G. V. Gierke, G. Haas,

M. Huang, F. Karger, M. Keilhacker, O. Kl€uber, M. Kornherr, K. Lackner,

G. Lisitano, G. G. Lister, H. M. Mayer, D. Meisel, E. R. M€uller, H.

Murmann, H. Niedermeyer, W. Poschenrieder, H. Rapp, H. R€ohr, F.

Schneider, G. Siller, E. Speth, A. St€abler, K. H. Steuer, G. Venus, O.

Vollmer, and Z. Y€u, Phys. Rev. Lett. 49(19), 1408 (1982).
4M. Kikuchi, K. Lackner, and M. Tran, Fusion Physics (IAEA, Vienna,

2012).
5T. E. Evans, R. A. Moyer, and P. Monat, Phys. Plasmas 9, 4957 (2002).
6A. Wingen, T. E. Evans, and K. H. Spatschek, Nucl. Fusion 49, 055027

(2009).
7T. A. Casper, W. H. Meyer, L. D. Pearlstein, and A. Portone, Fusion Eng.

Des. 83, 552 (2008).
8M. Brix, N. C. Hawkes, A. Boboc, V. Drozdov, S. E. Sharapov, and JET-

EFDA Contributors, Rev. Sci. Instrum. 79, 10F325 (2008).
9T. Kroetz, C. G. L. Martins, M. Roberto, and I. L. Caldas, J. Plasma Phys.

79(05), 751 (2013).
10S. S. Abdullaev, K. H. Finken, M. Jakubowski, and M. Lehnen, Nucl.

Fusion 46, S113 (2006).
11E. C. da Silva, I. L. Caldas, R. L. Viana, and M. A. F. Sanjuan, Phys.

Plasmas 9(12), 4917 (2002).
12A. H. Boozer and A. B. Rechester, Phys. Fluids 21, 682 (1978).
13N. Pomphrey and A. Reiman, Phys. Fluids B 4, 938 (1992).
14H. Ali, A. Punjabi, A. Boozer, and T. E. Evans, Phys. Plasmas 11, 1908

(2004).
15H. Ali, A. Punjabi, and A. Boozer, J. Plasma Phys 75, 303 (2008).
16U. Daybelge and C. Yarim, J. Nucl. Mater. 266–269, 809 (1999).
17A. Reiman, Phys. Plasmas 3, 906 (1996).
18A. Foussat, P. Libeyre, N. Mitchell, Y. Gribov, C. T. J. Jong, D. Bessette,

R. Gallix, P. Bauer, and A. Sahu, IEEE Trans. Appl. Supercond. 20(3),

402 (2010).
19O. Schmitz et al., Plasma Phys. Controlled Fusion 50, 124029 (2008).
20A. Wingen, T. E. Evans, and K. H. Spatschek, Phys. Plasmas 16, 042504

(2009).
21G. Contopoulos and M. Harsoula, Int. J. Bifurcation Chaos 20, 2005

(2010).
22G. Janeschitz, The Status of ITER: The ITER Design Review, paper pre-

sented at APS–DPP Town Meeting on ITER Design Review, Orlando, FL,

2007.
23K. H. Finken, S. S. Abdullaev, T. Eich, D. W. Faulconer, M. Kobayashi,

R. Koch, G. Mank, and A. Rogister, Nucl. Fusion 41, 503 (2001).
24Ph. Ghendrih, A. Grosman, and H. Capes, Plasma Phys. Controlled Fusion

38, 1653 (1996).

082506-9 Martins, Roberto, and Caldas Phys. Plasmas 21, 082506 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

143.107.134.77 On: Wed, 06 Aug 2014 19:45:11

http://dx.doi.org/10.1088/0029-5515/39/12/304
http://dx.doi.org/10.1103/PhysRevLett.49.1408
http://dx.doi.org/10.1063/1.1521125
http://dx.doi.org/10.1088/0029-5515/49/5/055027
http://dx.doi.org/10.1016/j.fusengdes.2007.09.009
http://dx.doi.org/10.1016/j.fusengdes.2007.09.009
http://dx.doi.org/10.1063/1.2964180
http://dx.doi.org/10.1017/S0022377813000391
http://dx.doi.org/10.1088/0029-5515/46/4/S02
http://dx.doi.org/10.1088/0029-5515/46/4/S02
http://dx.doi.org/10.1063/1.1518681
http://dx.doi.org/10.1063/1.1518681
http://dx.doi.org/10.1063/1.862277
http://dx.doi.org/10.1063/1.860110
http://dx.doi.org/10.1063/1.1691455
http://dx.doi.org/10.1017/S0022377808007526
http://dx.doi.org/10.1016/S0022-3115(98)00605-9
http://dx.doi.org/10.1063/1.871795
http://dx.doi.org/10.1109/TASC.2010.2041911
http://dx.doi.org/10.1088/0741-3335/50/12/124029
http://dx.doi.org/10.1063/1.3099053
http://dx.doi.org/10.1142/S0218127410026915
http://dx.doi.org/10.1088/0029-5515/41/5/303
http://dx.doi.org/10.1088/0741-3335/38/10/002


25M. Z. Tokar, Phys. Plasmas 6, 2808 (1999).
26T. Kroetz, M. Roberto, E. C. da Silva, I. L. Caldas, and R. L. Viana, Phys.

Plasmas 15, 092310 (2008).
27R. K. W. Roeder, B. I. Rapoport, and T. E. Evans, Phys. Plasmas 10, 3796

(2003).
28M. W. Jakubowski, T. E. Evans, M. E. Fenstermacher, M. Groth, C. J.

Lasnier, A. W. Leonard, O. Schmitz, J. G. Watkins, T. Eich, W.

Fundamenski, R. A. Moyer, R. C. Wolf, L. B. Baylor, J. A. Boedo, K.

H. Burrell, H. Frerichs, J. S. de Grassie, P. Gohil, I. Joseph, S. Mordijck,

M. Lehnen, C. C. Petty, R. I. Pinsker, D. Reiter, T. L. Rhodes, U.

Samm, M. J. Schaffer, P. B. Snyder, H. Stoschus, T. Osborne, B.

Unterberg, E. Unterberg, and W. P. West, Nucl. Fusion 49(9), 095013

(2009).

29M. W. Jakubowski, S. S. Abdullaev, K. H. Finken, M. Lehnen, and the

TEXTOR Team, J. Nucl. Mater. 176, 337–339 (2005).
30R. L. Viana, E. C. Da Silva, T. Kroetz, I. L. Caldas, M. Roberto, and M.

A. F. Sanju�an, Philos. Trans. R. Soc. A 369, 371 (2011).
31A. B. Schelin, I. L. Caldas, R. L. Viana, and M. S. Benkadda, Phys. Lett.

A 376, 24 (2011).
32P. Beaufume, M. A. Dubois, and M. S. Benkadda, Phys. Lett. A 147, 87

(1990).
33J. D. Szezech, I. L. Caldas, R. L. Viana, and P. J. Morrison, Chaos 19,

043108 (2009).
34J. D. Szezech, I. L. Caldas, S. R. Lopes, P. J. Morrison, and R. L. Viana,

Phys. Rev. E 86, 036206 (2012).
35C. Vieira Abud and I. L. Caldas, Nucl. Fusion 54(6), 064010 (2014).

082506-10 Martins, Roberto, and Caldas Phys. Plasmas 21, 082506 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

143.107.134.77 On: Wed, 06 Aug 2014 19:45:11

http://dx.doi.org/10.1063/1.873238
http://dx.doi.org/10.1063/1.2988335
http://dx.doi.org/10.1063/1.2988335
http://dx.doi.org/10.1063/1.1592515
http://dx.doi.org/10.1088/0029-5515/49/9/095013
http://dx.doi.org/10.1016/j.jnucmat.2004.10.127
http://dx.doi.org/10.1098/rsta.2010.0253
http://dx.doi.org/10.1016/j.physleta.2011.10.025
http://dx.doi.org/10.1016/j.physleta.2011.10.025
http://dx.doi.org/10.1016/0375-9601(90)90873-M
http://dx.doi.org/10.1063/1.3247349
http://dx.doi.org/10.1103/PhysRevE.86.036206
http://dx.doi.org/10.1088/0029-5515/54/6/064010

