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Abstract

Plasma confinement in fusion devices like Tokamaks depends on the
existence of closed magnetic field lines with toroidal geometry. The
magnetic field line structure in toroidal plasma devices is a Hamilto-
nian system, where the role of time is played by an ignorable coordi-
nate. Nonsymmetrical perturbations lead to a nonintegrable hamil-
tonian system that can exhibit area-filling chaotic orbits. If exits
are suitably positioned on a chaotic magnetic field line region, the
Hamiltonian system becomes open and one is interested to know
the corresponding escape basins, i.e., the sets of initial conditions
for which the corresponding field lines escape through a given exit.
From general mathematical arguments, it can be shown that these
escape basins are fractal. In this paper, we investigate quantitatively
fractal escape basins in the magnetic field line structure in Tokamaks
described by an area-preserving map proposed by Balescu et al, us-
ing the uncertainty dimension to characterize the fractal structure of
the magnetic field lines. We also use the concept of basin entropy
in order to quantify the final state uncertainty, a relevant issue that
arises when fractal basins are involved.

©2023 L&H Scientific Publishing, LLC. All rights reserved.

1 Introduction1

The obtention of fusion plasma energy is a desideratum of a number of large undertakings throughout2

the world, the foremost example being the ITER (International Thermonuclear Experimental Reactor),3

currently being assembled in Southern France [1]. A long-term goal of ITER is to prove the feasibility4

of energy generation through thermonuclear fusion. ITER is designed to produce a deuterium-tritium5

plasma in which the fusion reactions are sustained through internal heating. It is expected that, from6

∼ 50 MW of input heating power, ITER will produce ∼ 500 MW of fusion power: a ten-fold increase [2].7

One of the major technical problems of generating a fusion plasma capable of delivering such power8

is the release of high-energy fusion products such as Helium atoms or impurity atoms created from9
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plasma-wall interactions [3]. The resulting heat and particle transport in ITER is expected to generate10

heat loads of 5−10 MW/m2 that can damage the tokamak inner wall [4].11

In order to mitigate this undesirable effect, the concept of divertor has been developed, which is a12

shaped metallic plate placed outside the plasma boundary to capture or divert particles escaping from13

the plasma [5]. Besides ITER, other currently operating tokamak devices like JET (Joint European14

Torus) and Alcator C-Mod also use divertors for this purpose [6, 7].15

The basic idea underlying the operation of a divertor is that magnetic field lines can be arranged to16

deviate charged particles from the outer plasma region and direct them to a metallic plate. However,17

if the heat and particle loadings are not mitigated, the divertor plates could be damaged as well. In18

order to do so, it has been created a chaotic region of magnetic field lines in the outer plasma region.19

This helps to distribute such loadings over a larger area of the plates, creating the so-called magnetic20

footprints [8].21

It was experimentally observed that magnetic footprints in divertor plates are not uniform and22

show a degree of self-similar behavior [9, 10]. In fact, the main point of the present paper is that23

magnetic footprints are a kind of fractal structure due to the nonintegrable nature of the magnetic field24

line structure [11]. Sanjuán and his collaborators have developed a useful tool to characterize fractal25

structures in dissipative and conservative dynamical systems, the so-called basin entropy [12,13]. The26

latter is a measure of the final-state unpredictability of a dynamical system, given the fractal nature27

of the corresponding basins. If the system is dissipative, basins of attraction; if conservative, basins of28

escape [14]. Roughly speaking, the more complicated the basin structure, the higher the corresponding29

basin entropy will be. In the present work, we consider the characterization of fractal escape basins for30

magnetic field lines in a tokamak, using the basin entropy as the main tool and comparing our results31

with those obtained by the uncertainty fraction method [15,16].32

The numerical results we show in this paper are obtained by using as a magnetic field line model33

a two-dimensional area preserving map developed by Radu Balescu et al, the Tokamap [17]. The34

latter describes a Poincaré map for magnetic field lines in a Tokamak, using few parameters, which35

has been often used as a simple model for the study of chaotic trajectories related to nonsymmetric36

perturbations in Tokamaks. Previously we have made a similar analysis in a field line map restricted to37

a particular example, namely of a Tokamak with magnetic limiter [18]. In the present paper we consider38

the Tokamap, which describes a more general situation, since it represents a paradigm of nonsymmetric39

perturbations in Tokamaks. In this sense, the Tokamap is for plasma physics what the standard map40

represents for Hamiltonian dynamics.41

This paper is organized as follows: in Section II we outline the basics of the magnetic field line42

structure in a tokamak, emphasizing the Hamiltonian nature of the equations. Section III presents43

the area-preserving two-dimensional map proposed to investigate the magnetic field line structure.44

In Section IV we present some numerical examples of escape basins for field lines exiting the plasma45

through small rectangular openings, and compute the corresponding connection lengths, directly related46

to the escape times. Section V reviews the method of computing the dimension of the escape basin47

boundary using the uncertainty fraction method. Section VI is devoted to the same characterization but48

now using basin and basin boundary entropies. Finally, in the last Section we report our Conclusions.49

2 Magnetic field structure in a Tokamak50

The Tokamak is a toroidal device for the magnetic confinement of a high-temperature plasma using two51

main magnetic fields: the toroidal field BT created by external coils and the poloidal field BP , generated52

by the plasma itself. The equilibrium field B = BT +BP has helical magnetic lines of force. These field53

lines lie on toroidal surfaces called magnetic surfaces. The magnetic surface with zero volume is called54

magnetic axis. A surface quantity ψ is defined so as to take on a constant value on a magnetic surface,55
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Fig. 1 (a) Schematic figure showing the basic geometrical features of a Tokamak. (b) Coordinates in a surface
of section.

such that [19]56

B ·∇ψ = 0. (1)

Fig.1(a) depicts the basic tokamak geometry which we will use in this paper. We denote by R057

the distance between the magnetic axis and the symmetry (vertical) axis, and by ζ the toroidal angle,58

which is measured along the long way around the torus. If the toroidal vessel has circular cross section,59

a field line point on the corresponding plane (constant ζ ) can be described by polar coordinates (r,θ)60

with center on the magnetic axis position [Fig.1(b)], where θ is called the poloidal angle. Without loss61

of generality, we assume that θ is normalized such that 0 ≤ θ < 1. Moreover, we can choose ψ = (r/a)2,62

where a is the plasma minor radius, and use (ψ ,θ ,ζ ) as a convenient coordinate system for magnetic63

field lines [20]. The magnetic axis and the plasma edge are located at ψ = 0 and ψ = 1, respectively.64

In this system, the magnetic field line equations can be expressed in a canonical form

dψ
dζ

=−∂H
∂θ

, (2)

dθ
dζ

=
∂H
∂ψ

, (3)

where (ψ ,θ) are the canonically conjugated variables, the toroidal angle ζ plays the role of time and65

H is the corresponding field line Hamiltonian. This fact enables us to investigate magnetic field lines66

structure in toroidal plasma devices using the powerful tools of Hamiltonian dynamics, like perturbation67

theory, KAM theorem, and so on.68

In the equilibrium (unperturbed) situation, H does not depend on the “time” ζ , and thus the one-
degree-of-freedom Hamiltonian system is integrable. It is often the case that H is a function of ψ only,
such that the canonical Eqs. (2)-(3) read

dψ
dζ

= 0, (4)

dθ
dζ

=
∂H
∂ψ

=
1

q(ψ)
, (5)

where q(ψ) is called the safety factor. In this situation, (ψ ,θ) are actually action-angle variables, and69

the magnetic surfaces ψ = const. coincide with the invariant tori of the integrable Hamiltonian system.70

We adopt the standard Tokamak equilibrium magnetic field model [21]71

B = BP +BT =
B0r

q(r)R0
êr +

B0

1+(r/R0)cos θ
êζ , (6)
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where B0 is the toroidal field at magnetic axis. The unit vectors êr and êζ refer to the poloidal and72

toroidal directions in Fig.1(a), respectively. Moreover, a and R0 denote the minor and major plasma73

radii, and the Tokamak aspect ratio, A = R0/a, is assumed to be large enough that the safety factor74

depends only on the radial distance:75

q(r) =
dζ
dθ

=
rB0

R0q(r)
, (7)

where we used the magnetic field line equations in this local coordinate system.76

Typical parameter values for the tokamak TCABR, operating at the Institute of Physics, University77

of São Paulo, Brazil, are [22] R0 = 0.61 m, a = 0.18 m, and B0 = 1.1 T . The safety factor radial profile78

q(r) can be tailored to fit density and temperature measurements. We consider the following expression79

for the safety factor, expressed in terms of ψ = (r/a)2 as [21]80

q(ψ) =
4q0

(2−ψ)(2−2ψ +ψ2)
, (8)

where q0 is the safety factor at magnetic axis. In order to avoid dangerous plasma instabilities it81

is convenient to assume q0 = 1. Hence the safety factor at plasma edge is q(ψ = 1) = 4, which is82

consistent with measurements of the plasma current, electron density and temperature. For the TCABR83

Tokamak typical values of these parameters are respectively [23] Ip = 100 kA, ne = (1.0−4.0)×1019 m−3,84

Te = (0.2−1.5) eV .85

Many physical reasons, like error fields, external magnetic fields or instabilities, cause “time”-86

dependent perturbations that turn the magnetic field line into a non-integrable system. The Hamilto-87

nian reads now H = H(ψ ,θ ,ζ ). If the perturbation is weak enough, the Hamiltonian can be cast into88

the form of a quasi-integrable system89

H(ψ ,θ ,ζ ) =
ˆ ψ

0

dψ ′

q(ψ ′)
+ εH1(ψ ,θ ,ζ ), (9)

where ε � 1 represents the perturbation strength.90

3 Magnetic field line map91

In plasma physics applications, after deriving the perturbing Hamiltonian from some physical model of92

non-integrable perturbation, the magnetic field line behavior is obtained from numerically integrating93

Hamilton Eqs. (2)-(3). This is a time-consuming task specially if long-time integrations are needed, so94

a considerable simplification emerges from using a magnetic field line map [24].95

The coordinates of the nth intersection of a given magnetic field line with the surface of section at
ζ = 0 are denoted by (ψn,θn). A Poincaré map relates the coordinates of two consecutive intersections
of a field line with this plane, namely

ψn+1 = f (ψn,θn), (10)

θn+1 = g(ψn,θn), (11)

where the functions ( f ,g) are related to the field line Hamiltonian (9) and must fulfill some conditions96

of physical consistency.97

The condition ∇ ·B = 0 implies the conservation of the magnetic flux. An important consequence98

is that the Poincaré map (10)-(11) is area-preserving in the surface of section, that is,99

∣∣∣∣
∂ f/∂ψ ∂ f/∂θ
∂g/∂ψ ∂g/∂θ

∣∣∣∣= 1. (12)
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Moreover, from the definition ψ = r2/a2, there follows that ψn ≥ 0 for any value of the discrete time n100

(measured in number of toroidal field line turns). In particular, this must hold for n = 0 as well.101

Balescu and coworkers have proposed a Poincaré map satisfying these conditions, called tokamap,
which reads [17]

ψn+1 =
1
2
{P(ψn,θn)+

√
P(ψn,θn)

2 +4ψn} (13)

P(ψn,θn) = ψn −1− k
2π

sin(2πθn), (14)

θn+1 = θn +
1

q(ψn)
− k

4π2
1

(1+ψn+1)
2 cos(2πθn), (mod1), (15)

q(ψ) =
4

(2−ψ)(2−2ψ +ψ2)
. (16)

The perturbation strength k is the only tunable parameter in the tokamap (13)-(16). In a physical102

setting, where the non-symmetrical perturbation is produced by a vacuum magnetic field created by103

helical windings, k can be regarded as proportional to the current flowing through the winding, for104

example [20]. This kind of perturbations is also related to plasma instabilities [25]. Field line maps105

where the non-integrable perturbation term comes from a physical model have been extensively studied106

[26, 27]. The tokamap has the special feature of being consistent with physical requirements, whereas107

the perturbation is kept simple by choosing a sinusoidal term. More general perturbations can be108

regarded, in this sense, as expansions in trigonometric functions, in such a way that the tokamap is109

a simple model, but representative of more complicated situations occurring in physical applications.110

We have recently used this model to investigate the dissipative effect of collision in the magnetic field111

line structure [28].112

In the limit of vanishing perturbation (k = 0) we have P(ψn) = ψn −1 and the tokamap reduces to
a simple twist map,

ψn+1 = ψn (17)

θn+1 = θn +
1

q(ψn)
, (mod1), (18)

which is known to describe an integrable system. This map satisfies the twist condition, provided the113

safety factor is monotonic, i.e., does not present extrema. This is the case, for example, of the safety114

factor given by (8). Non-monotonic safety factor profiles have also been considered by Balescu and115

coworkers, who proposed the so-called revtokamap as a non-twist version of the map (13)-(15) [29].116

In the following, we will work in regimes where k > 0, representing non-integrable perturbations on117

magnetic field line structure. Figs.2(a)-(d) exhibit phase portraits of the tokamap for increasing values118

of the parameter k. Physically this could be realized, e.g. by increasing the current flowing through119

external wires wound around the Tokamak vessel or enhancing a given error field caused by some120

misalignment of external currents [30]. It is well-known that these effects are potentially generators of121

complex field line structures. Although the canonical variables ψ and θ are actually a kind of polar122

coordinates, the visualization of phase portraits improves by using a rectangular projection, in which123

0 ≤ θ < 1 is the poloidal angle and 0 ≤ ψ ≤ 1 is a radial-like coordinate. The lines ψ = 0 and ψ = 1124

represent the magnetic axis and tokamak boundary, respectively.125

For small k, we have invariant curves with some degree of distortion and also some periodic island126

chains [Fig.2(a)]. According to KAM theory, the distorted invariant curves correspond to irrational127

tori of the unperturbed system, whereas the island chains appear due to the destruction of rational128

tori, in accordance with Poincaré-Birkhoff theorem [31]. The observed distortion of both invariant tori129
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Fig. 2 Phase portraits of the Tokamap for (a) k = 3.5, (b) k = 4.0, (c) k = 5.0. (d) k = 6.0.

and island chains increases with k [Fig.2(b)]. Moreover, the width of the island chains also increases130

with this parameter, allowing the visualization of even more periodic islands.131

Physically the invariant tori represent dikes preventing field line diffusion, and the magnetic islands132

also limit radial excursions. The homoclinic intersections in the vicinity of the islands separatrices133

are responsible for the creation of a chaotic layer therein. However, even in this case, the field line134

excursions are limited by the bounding invariant curves above or below. It is important, however, to135

emphasize that the word chaos applies to the magnetic field line structure in a peculiar way: since the136

magnetic fields are strictly static in time, one considers the field line dynamics in a Lagrangian sense137

as being parameterized by the toroidal coordinate, which plays the role of time. Accordingly, field138

line chaos means that two initial conditions chosen in an area-filling region, generate field lines that139

separate at an exponential rate, which we can interpret as the maximal Lyapunov exponent [32].140

As the value of k increases, the chaotic layers belonging to neighbor island chains overlap and give141

rise to wider chaotic layers [Fig.2(c)] which can increase so as to occupy practically all the available142

phase portrait, except for the vicinity of the magnetic axis. If k further increases, even the latter region143

is filled with chaotic orbits [Fig.2(d)], and there are remnants of periodic islands embedded in the large144

chaotic sea.145

The chaotic saddle is a non-attracting invariant chaotic set which is the key structure underlying the146

chaotic dynamics displayed by the Tokamap, hereafter denoted simply by F. The stable manifold of a147

point P in this invariant chaotic set is the set of points Q whose forward iterates asymptotically approach148

each other, i.e. |Fn(P)−Fn(Q)| → 0 as n → ∞. Analogously, the unstable manifold of a point P is the set149

of points Q whose backward iterations asymptotically approach each other: |F−n(P)−F−n(Q)| → 0 as150

n → ∞. We obtained numerical approximations of both manifolds by using the sprinkler method [33]: a151



A. C. Mathias / Journal of Applied Nonlinear Dynamics 12(4) (2023) 725–740 731

Fig. 3 (a) Stable manifold, (b) Unstable manifold, (c) Chaotic saddle of a region in the midst of the chaotic
region for the Tokamap with k = 2π .

given phase plane region R is partitioned into a fine grid of points, and each point is iterated m times.152

If m is large enough, trajectories (field lines) that remain in the region R after m iterates are numerical153

approximations of the stable manifold of the invariant set. Moreover, the m-th iterates of the initial154

conditions are approximations of the unstable manifold. An intermediate number of iterates (like m/2)155

is an approximation of the chaotic saddle itself.156

Our results for the Tokamap at k = 2π are shown in Fig.3: a fine mesh of 1000× 1000 has been157

used in a region contained in the chaotic region. Each mesh point was iterated m = 30 times, and158

the numerical approximations of the stable and unstable manifolds are depicted in Figs.3(a) and (b),159

respectively. The chaotic saddle is shown in Fig.3(c).160

4 Escape basins and connection lengths161

In its original form, Eqs. (13)-(15), the Tokamap represents a closed Hamiltonian system. The re-162

striction ψn ≤ 1 for the orbits generated by the Tokamap is mathematical rather than a physical one,163

such that one could consider orbits with ψn > 1 as well. This dynamical system can be opened by164

considering the possibility of field line escape through one or more exits [34]. Once a given map orbit165

hits one of these exits, it is assumed lost forever and we stop iterating the map.166

These exits can be, for example, divertor plates used to mitigate plasma-wall interactions due to167
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Fig. 4 Escape basins of the exits L and R, for (a) k = 3.50 and (b) k = 3.75. The inset in (a) is a magnification
of a box surrounding L.

energetic particles, as discussed in the Introduction. However, the precise locations of these divertor168

plates depend chiefly on the Tokamak design, and it is a difficult technological problem that has to be169

tackled case-by-case [35]. In the present work, however, we are more concerned with the dynamical170

aspects of the problem, since we are interested in investigating the fractal structures that appear due171

to the chaotic nature of some orbits. Hence we will choose exits in a convenient way from the point of172

view of a better visualization of the fractal structures sought after. Once we identify these structures173

therein, it is rather simple to extend this discussion to exits in actual divertor plates located outside174

the plasma, between its boundary and the tokamak vessel wall.175

In this section, we will consider two of such exits placed in the plasma core, represented by two176

small rectangles in Figs.4(a) and (b): let us call these exits L and R, since they are located at the left177

and right of the line θ = 0.5, respectively. The corresponding escape basins, denoted by B(L) and B(R),178

are the sets of initial conditions that generate orbits escaping through L and R, respectively. If these179

exits are located at uninteresting positions, like within a periodic island, it is unlikely that there will180

be points belonging to either L or R. We thus choose the exits within an area-filling chaotic orbit.181

This is the case of Fig.4(a), for k = 3.5, where the exits are placed in the core of a chaotic orbit182

[see Fig.2(d)], and where basins of L and R are those regions painted in green and blue, respectively.183

The mixing of the escape basins B(L) and B(R) is clearly seen, especially in the vicinity of the exits184

themselves. A magnification of a box in this vicinity shows a finger-like structure of blue basin filaments185

embedded in the green basin. A similar structure appears for k = 3.75 [Fig.4(b)].186

This finger-like structure shows up due to the dynamical behavior of the map iterates in a chaotic187

orbit. More specifically, we concentrate on the boundary S between the escape basins B(L) and B(R).188

Similar to that occurring for basins of attraction, the escape basin boundary is the closure of the189

stable manifold of an unstable periodic orbit embedded in an area-filling chaotic orbit. We represent190

schematically this situation in Fig.5: let P be an unstable periodic orbit (a saddle point) embedded in191

a chaotic orbit of the map F, and we denote by W s(P) and W u(P), respectively, the stable and unstable192

manifolds emanating from P . The extremely complicated set of interactions between these manifolds193

constitutes the so-called homoclinic tangle.194

Let S be a segment of the escape basin boundary intercepting the unstable manifold W u(P). The195

backward images of this segment, as F−1(S) and F−2(S), become increasingly thin and elongated196

spaghetti-like fingers accumulating at the stable manifold W s(P). This occurs because the intersec-197



A. C. Mathias / Journal of Applied Nonlinear Dynamics 12(4) (2023) 725–740 733

Fig. 5 Schematic figure showing the accumulation of escape basin filaments at the stable manifold of an unstable
periodic orbit embedded in a chaotic orbit of the map.

Fig. 6 Connection length (in colorscale) for the Tokamap with k = 3.5. The inset is a magnification of a box
surrounding L.

tions between S and W u(P) converge to the unstable orbit P at a rate given, in its neighborhood, by the198

corresponding eigenvalue of the tangent map DF(P) [36]. The fingers become elongated due to the area199

conservation requirement of the Tokamap F. The numerical approximations of the invariant manifolds200

shown in Fig.3 explain the complicated structure of the escape basin boundaries.201

The mixing of the escape basins has observable consequences in terms of plasma physics applications.202

In Fig.6 we plot (in a color scale) the escape “time” of orbits with initial conditions picked up from203

the chaotic region, which is the number of map iterations it takes for a given orbit to escape through204

either one of the exits. In the plasma physics literature it is also named connection length since we205

are actually measuring the length of a magnetic field line from its initial condition to the point it exits206

from the Tokamak [37].207

The initial conditions with higher escape times (more than 103 iterations) are located near the island208

boundaries, which is a consequence of the stickiness behavior characteristic of these regions. Such orbits209

correspond to magnetic field lines with large connection lengths (remember that each map iteration210

represents a complete particle turn around the Tokamak). Considering that, in a first approximation,211
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Fig. 7 (a) Escape basins of the exits L and R, for k = 5.0. (b) Connection length (in colorscale) for the same
situation.

plasma particles (electrons and positive ions) gyrate along the magnetic field lines, large connection212

lengths are related to particles which makes a large number of turns along the Tokamak before exiting.213

Since these particles collide with other plasma particles, we expect highly energetic particles from field214

lines with large escape times. Such high-energy particles are thus responsible for substantial heat215

loading on the divertor plates positioned at the chosen exits [38].216

We expect that the finger-like structure of the escape times exhibited by Fig.6 brings about a217

similarly complicated structure of the heat patterns measured in divertor plates. This fact has been218

actually observed in a variety of Tokamak experiments. Jakubowski et al has measured the power219

deposition on divertor plates at the DIII-D Tokamak with resonant magnetic perturbations used to220

suppress the so-called edge localized modes in plasmas subjected to high-confinement mode (H-mode)221

[9]. Similar investigations have been made for magnetic perturbations due to a dynamic ergodic divertor222

[10]. The complex structure of heat patterns has been assigned to the situation depicted in Fig.5 [39].223

The mixture of long and short connection length field lines is responsible for the fingerlike structures224

observed in the deposition patterns [40,41].225

5 Uncertainty dimension226

The chaotic region widens considerably by increasing the value of k. In Fig.7(a) and (b), we depict the227

escape basins and the escape time, respectively, for k = 5.0. The chaotic region has increased its size by228

engulfing periodic islands in both sides, such that it intercepts the plasma boundary. A further increase229

of k turns the chaotic region even larger, and the corresponding escape basins are likewise distributed230

over it.231

A close inspection of Fig.7(a) shows that the escape basins are mixed throughout the chaotic region.232

However, the basins are not disconnected as it might seem. In fact, the escape basins are intertwined233

in arbitrarily fine scales, what is only possible if the basins themselves and their common boundary are234

fractals. The existence of fractal basin boundaries has been long-known to be connected with basins of235

attraction, and its fractal nature comes from a mechanism similar to that described here.236

A quite direct way to characterize the fractality of the escape basin boundaries is to compute their237
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Fig. 8 (a) Escape basins of the exits L and R, for k = 6.0. (b) Connection length (in colorscale) for the same
situation.

uncertainty dimension. Since any initial condition in the phase space (in the present case, the Poincaré238

surface of section) is known up to a given uncertainty ε , we can think of it are being represented by a239

disk of radius ε centered at the point (ψ0,θ0). If this ε-disk intercepts the escape basin boundary, one240

cannot say a priori to which exit will escape the orbit generated by that initial condition. We call this241

final-state uncertainty [15,16].242

We consider a number of randomly chosen initial conditions in a given phase plane region containing243

a significant piece of the escape basin boundary. The initial condition at the center of each ε-ball is244

iterated until it escapes through L or R exits. A second initial condition is randomly chosen inside245

this ε-ball, and it is again iterated until it escapes. If this second initial condition leaves through a246

different exit, it will be called ε-uncertain. Notice that, for each escaping initial condition, we consider247

two other initial conditions inside the ε-ball. Accordingly, choosing more initial conditions reduces the248

probability of getting false-negatives.249

The uncertain fraction f (ε) is the number of ε-uncertain conditions divided by their total number.250

It is expected to scale with ε as f (ε) ∼ εα , where α is the uncertainty exponent. The latter is given251

by α = D− d, where D = 2 is the phase plane dimension and d is the box-counting dimension of the252

escape basin boundary. If the escape basin boundary is a smooth curve (d = 1), then α = 1 and the253

uncertain fraction is simply proportional to ε , as it should be (ε-disks close to the basin boundary are254

more likely to intercept the boundary). However, it the basin boundary is fractal, then 0 < α < 1, such255

that its dimension is 1 < d < 2.256

A fractal escape basin boundary turns out to be a strong limitation to the capability of determining257

the final state of the map orbit. Let us suppose, for example, that α = 0.01, implying a basin boundary258

with dimension d = 1.99, i.e., almost an area-filling curve (akin to the Hilbert or Peano curves, for259

instance). Let us imagine that a great deal of effort is spent in diminishing the uncertainty by half. In260

this case, the uncertain fraction becomes261

f (ε ′)∼ (
1
2
)

α
f (ε)≈ 0.9931 f (ε),

which represents a decrease of less than 1% in the final-state uncertainty! We see that such an enor-262

mous effort to decrease the initial condition uncertainty would have a small effect on the final-state263

uncertainty.264
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Table 1 Uncertainty exponents and dimensions for the escape basin boundaries of the Tokamap.

k α d global error

3.5 0.00037 1.9996 0.0006

4.0 0.00015 1.9998 0.0002

4.5 0.00031 1.9997 0.0007

5.0 0.00034 1.9997 0.0007

5.5 0.00045 1.9995 0.0009

2π 0.00078 1.9992 0.0010

The numerical results were obtained for a grid of 5000×5000 initial conditions placed in the midst265

of the chaotic region displayed in the phase portrait of the Tokamap for a given value of the non-266

integrability parameter k. We iterated each initial condition 104 times according to the algorithm267

described above. If the initial condition does not escape at this time it is removed from the computation,268

since the initial condition may be within a periodic island. Some numerical error is expected, though,269

because there are orbits with escape times larger than 104. We assume that these orbits are relatively270

too few to influence the final results.271

For each value of ε , we repeat ten times the computation of the uncertainty fraction, the local error272

being the standard deviation of the results. Ten values of ε are used to make a diagram of log f (ε)273

versus ε , and the uncertainty dimension was determined by a least- squares fit. The global error is the274

average local error for each ε . Our results, for different values of k, are in Table 1. The uncertainty275

dimension varies very little with k and is very close to 2.0. In all those cases, the basin boundary is276

extremely involved and approaches an area-filling curve as k increases to 2π. These results point to an277

extreme fractal escape basin structure, but the information provided by the uncertainty dimension is278

insufficient to characterize the role of the parameter k. This is an example of a situation in which the279

traditional approaches are not very illuminating, and new concepts are necessary, like the basin and280

basin boundary entropies.281

6 Basin entropy282

The fractal nature of the escape basins and their boundaries, suggested by the explicit computation of283

their uncertainty dimensions, can also be investigated using the concept of basin entropy, introduced284

by Daza et al [12,13]. Basin entropy, when applied to escape basins, measures the degree of final-state285

uncertainty produced by the fractality of the escape basin boundary, using basic ideas from information286

theory.287

Let us consider a bounded region R of the phase plane in which an area-filling chaotic orbit exists,288

perhaps with periodic islands embedded. We cover R with a fine mesh, such that each grid point289

is assigned to a random variable with the different exits as the possible results. The corresponding290

basin entropy is obtained from computing information entropy for this set. In the case of an arbitrary291

number NA of exits, we consider that the fine mesh of N2 grid cells covering R has grid size, with initial292

conditions (ψ0,θ0) chosen at each grid cell. To each initial condition, we assign a color labeled from293

1 to NA, and the colors within the grid cell are randomly distributed according to a probability pi j294

for the jth color assigned to the ith grid cell. If the chaotic orbits of the magnetic field line map are295

statistically independent, the basin entropy of the ith grid cell is defined as296

Si =−
mj

∑
j=1

pi j log pi j, (19)

where 1 ≤ mi ≤ NA is the number of colors inside the ith grid cell.297
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Fig. 9 Entropy of the escape basin (black squares) and the escape basin boundary (red triangles) as a function
of the parameter k for the Tokamap. The relative area of the green basin is represented by green circles.

Since this quantity is extensive, the total grid entropy is the sum of (19) for all grid cells. Finally298

the basin entropy results from dividing by the number of grid cells:299

Sb =
1
N

N

∑
i=1

Si. (20)

If we have a single exit (NA = 1) the basin entropy turns zero, which means no uncertainty with300

respect to the final state, since there is a unique escape basin. On the other extreme, let us consider301

NA equiprobable exits: the probability is the same for each grid cell. In this case the corresponding302

basins are densely mixed and have entropy Sb = log NA . Another quantity of interest is the basin303

boundary entropy, which quantifies the final-state uncertainty restricted to the escape basin boundary.304

In this case, we apply (20) by replacing the total number of grid cells N by the number of grid cells Nb305

containing more than one color: Sbb = S/Nb.306

The fractal structures described so far refer to NA = 2 exits, for which the corresponding escape307

basins have been painted green and blue, respectively. The bounded region in the phase plane used308

to compute the basin entropy is the rectangle 0 ≤ ψ ≤ 1, 0 ≤ θ < 1 covered with a grid of 1000×1000309

points. Those grid cells containing pieces of the periodic islands are discarded from the computation,310

since the initial conditions therein are not likely to escape. For those initial conditions centered at each311

box we iterate the Tokamak 104 times until they escape through exits L or R. If the orbit does not312

leave after this maximum time, the corresponding initial condition is also discarded.313

For each grid cell, we compute the number n1 (resp. n2) of points that escape through exit L (resp.314

R), such that the probabilities for the ith box are315

pi1 =
n1

n1 +n2
, pi2 =

n2

n1 +n2
, (21)

and the entropy of that grid cell is Si =−p1 log p1− p2 log p2. The basin entropy Sb results from summing316

Si over all boxes for which all initial conditions escape and dividing by their number. The computation317

of the basin boundary entropy Sbb discards those boxes for which either p1 = 0 or p2 = 0. In other318

words, for computing Sbb we consider only those grid cells which intercept escape basin boundary.319

Our results are summarized in Fig.9, where we plot the entropy of the exit L (green) basin for320

different values of the parameter k of the Tokamap, as well as the corresponding basin boundary321

entropy. The results for the exit L (blue) basin are practically the same as those of the R basin. We322

also indicate in Fig.9 the relative area of the L (green) basin, defined as the number of grid points323
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belonging to that basin divided by the total number of boxes in the grid. A similar computation can324

be done as well for the blue basin, but the sum of the corresponding relative areas is not equal to the325

unity, since a part of the region is occupied by points that do not escape (for example, inside periodic326

islands).327

For k = 3.50 both the basin and basin boundary entropies take on similar values about 0.6, which328

already indicates a considerable degree of mixing between the escape basins, followed by a dip to329

smaller entropies when k = 3.75. The relative area of the green basin has increased from 0.22 to 0.35.330

In Figs.4(a) and (b) we compare both escape basins for these two values of k. The increase in the331

green area (as well as the blue area) results from the destruction of KAM tori and the consequent332

enlargement of the chaotic region. However, due to the placement of the two exits (indicated by the333

squares) there is a preference for exiting through the R basin, thus decreasing the complexity of the334

green basin.335

However, for higher values of k, the basin and basin boundary entropies increase with k, indicating a336

trend for increasing complexity. This trend is not clearly shown by the uncertainty dimension, however337

(see Table 1), since the values are too close to each other within the global error. For k > 4.75, the338

entropies reach a saturation as well, with values close to the predicted maximum S = log2, which would339

represent a completely mixed basin structure. Notice also that the basin boundary entropy Sbb is always340

slightly larger than Sb , which is expected since the number of grid cells containing the boundary is341

smaller than the total number of grid cells considered for basin entropy. It is also noteworthy that the342

area of the green basin increases with k, achieving a maximum of about 0.37.343

Although this would suggest some correlation between the entropies and the relative size of the344

basins, we observe that for k = 3.75 the entropy has actually decreased, even though the relative area345

continues to grow. As a matter of fact, the fractality of the escape basin is related to the invariant346

manifold, rather than to the sheer size of the basins themselves.347

7 Conclusions348

The emergence of chaotic behavior in plasma physics problems is a natural consequence of their intrinsic349

nonlinear character. Only recently has this chaoticity been recognized as a major problem in the350

research towards controlled nuclear fusion using magnetic confinement, chiefly through Tokamaks. In351

particular, the existence of chaotic field lines in Tokamaks is responsible for non-uniform heat and352

particle loadings in divertor plates positioned in the plasma column. The understanding (and possibly353

control) of such chaotic regions is thus important to the design of future Tokamak experiments.354

The actual behavior of plasma particles and even of magnetic field lines can only be revealed through355

complicated models that try to include all factors of physical interest in a given Tokamak experience.356

A direct investigation of chaotic field lines in such hyperrealistic model could hide essential features of357

the problem, which are best displayed by simple models. The Tokamap is an outstanding example of358

two-dimensional, area-preserving map which is nevertheless capable to convey some features of more359

complicated situations. We thus used the Tokamap in this work to investigate the field line escape360

by exits carved on the midst of the chaotic region. One virtue of the Tokamap is that all nonlinear361

behavior can be tuned up by varying a single parameter (k).362

We already expect a complex structure for the escape basins and their boundary, since the latter363

is the closure of the stable manifold of the chaotic saddle, which is a non-attracting invariant set364

underlying a chaotic orbit in the phase space. This complexity is directly related to the final-state365

uncertainty: if the escape basins are much intertwined, it turns out to be almost impossible to predict366

to what exit will a given initial condition asymptote. We remark that this kind of uncertainty is367

completely different from the usual interpretation given to chaotic orbits: a final-state uncertainty is368

essentially due to the fractality of the escape basin boundary.369
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However, the use of an uncertainty dimension has shown not enough to disclose the dependence of370

the complexity, since the boundary is practically area-filling irrespective of the value of the parameter371

k. In this context, an extremely valuable alternative is the basin entropy and basin boundary entropies372

introduced by Sanjuán and collaborators. A zero entropy value would indicate no uncertainty at all,373

whereas a limiting value (log 2) corresponds to a completely uncertain final state, when the escape374

basins are extremely fractal. Indeed, we have found that both entropies have a trend to increase with375

k, until they saturate close to the limit value of log2.376

Our results, although obtained with the help of a simple map, shed some light on the general377

problem of final-state uncertainty of complex plasmas. Even for weak or moderate nonlinearities, the378

existence of a chaotic saddle with a fractal invariant manifold structure is enough to produce escape379

basins so complicated that it will be virtually unfeasible to determine in advance to which exit will a380

given initial condition escape to. This is even more dramatic when three or more exits are considered,381

since the corresponding exit basins can be shown to present the so-called Wada property: some fraction382

of the initial conditions belong to boundaries that contain points of all basins in their neighborhoods,383

no matter how small. This non-trivial property is a direct consequence of the manifold structure as384

well.385
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