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Fractal structures are very common in the phase space of nonlinear dynamical systems, both dissipative
and conservative, and can be related to the final state uncertainty with respect to small perturbations on initial
conditions. Fractal structures may also appear in the parameter space, since parameter values are always known
up to some uncertainty. This problem, however, has received less attention, and only for dissipative systems. In
this work we investigate fractal structures in the parameter space of two conservative dynamical systems: the
standard nontwist map and the quartic nontwist map. For both maps there is a shearless invariant curve in the
phase space that acts as a transport barrier separating chaotic orbits. Depending on the values of the system
parameters this barrier can break up. In the corresponding parameter space the set of parameter values leading
to barrier breakup is separated from the set not leading to breakup by a curve whose properties are investigated
in this work, using tools as the uncertainty exponent and basin entropies. We conclude that this frontier in
parameter space is a complicated curve exhibiting both smooth and fractal properties, that are characterized
using the uncertainty dimension and basin and basin boundary entropies.
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I. INTRODUCTION

Fractal structures appear very often in the analysis of
many nonlinear dynamical systems, both conservative and
dissipative [1]. In the latter, for example, the boundaries
between basins of different attractors can be fractal [2,3], and
the attractors themselves may have fractal dimensions, even
when nonchaotic [4]. The existence of fractal boundaries has
been also found in open Hamiltonian (conservative) systems,
for the boundary between escape (or exit) basins [5]. This is
the case, for example, of chaotic scattering [6]. One of the
observable consequences of the existence of fractal structures
in phase space is final-state sensitivity, i.e., small uncertainties
in the initial conditions may lead to large uncertainties with
respect to the future behavior of the system [3].

The above-mentioned examples refer to fractal boundaries
in phase space. However, fractal boundaries have also been
investigated in the parameter space of dissipative systems.
Moon has studied the parameter space of a forced nonlin-
ear oscillator with a two-well potential, showing that the
boundary between periodic and chaotic motions has a fractal
dimension of 1.26 [7]. Another example is the structure of
Arnold tongues in the parameter space of the sine-circle map,
where the fractal structure of mode locking regions leads to a
devil’s staircase [8]. In these cases, since the parameter values
are known up to some uncertainty, the final state of the system
can be difficult to determine.

In spite of its importance, the study of fractal boundaries in
the parameter space of conservative (area-preserving) systems
has not yet been considered, to our knowledge. We conjecture
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that this is so because the absence of attractors makes it
difficult to achieve a precise characterization of a few common
behaviors that could be associated with specified parameter
values. The well-known Chirikov-Taylor standard map, which
is the paradigm example of area-preserving systems, has only
one relevant parameter [9]. This is also the case of the Hénon-
Heiles Hamiltonian [10,11].

More complicated conservative systems do have more than
one parameter, though, and the question arises of whether
or not fractal boundaries exist in their parameter spaces.
We address this question in the present paper, offering as a
representative example the so-called standard nontwist map
(SNTM), introduced by del Castillo-Negrete and Morrison in
1993 [12]. This map models a variety of interesting physical
phenomena, like the magnetic field lines in toroidal plasma
devices, like tokamaks, with reversed magnetic shear [13,14],
and transport by traveling waves in zonal flows with non-
monotonic velocity profiles [15,16].

The violation of the twist property in SNTM leads to
the existence of a shearless invariant curve, which acts as a
barrier separating chaotic regions in the phase space [15,16].
This internal transport barrier creates two different behaviors,
namely the escape of trajectories to plus or minus infinity [17].
The parameter space of the standard nontwist map presents an
involved boundary between these behaviors [15].

Our work is a numerical investigation of the parameter
space structure of open conservative systems, using a rel-
atively simple example (the SNTM) to illustrate our ideas.
However, open conservative systems do appear in many fields
of physics, like celestial mechanics (motion in a Hénon-
Heiles galactic potential [18], Sitnikov problem [19]), atomic
physics (ionization of hydrogen atoms in crossed electric and
magnetic fields [20]), and plasma physics (escape of magnetic
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field lines in plasma confinement schemes [21] and in the E ×
B motion of charged particles subjected to drift waves [22]),
among others.

In this work we aim to investigate the geometry of this
boundary in the parameter space of the SNTM and the quartic
nontwist map. From a cursory inspection it seems to be a
fractal curve, due to an evident self-similarity, but a detailed
analysis shows that it has both smooth and fractal pieces. The
latter are quantitatively investigated by computing its box-
counting dimension using the uncertain fraction method [2,3].
We also use the recently developed concepts of basin entropy
and basin boundary entropy to characterize the degree of
uncertainty related to the fractality of the parameter space
region, as well as its boundary [23,24]. This method has been
used to investigate escape basins in several dynamical systems
of physical interest, like the motion of a charged particle in
a magnetic field and electrostatic waves [22], the magnetic
field line structure in a tokamak with chaotic limiter [25],
and nanoelectromechanical beam resonators actuated by two-
sided electrodes [26].

This paper is organized as follows: in Sec. II we introduce
the SNTM and some of its dynamical properties, chiefly the
existence of a shearless invariant curve in phase space. In
Sec. III we consider the type of boundary present in the
parameter space of the SNTM and how it influences the final
behavior of the system trajectories. Section IV is devoted to
a classical analysis of the fractality of this boundary using
the uncertainty exponent technique. We also show the results
of the basin entropy and basin boundary entropy for this
boundary. The last section contains our Conclusions.

II. STANDARD NONTWIST MAP

The standard nontwist map (SNTM) was proposed and
defined in Ref. [12]:

xn+1 = xn + a
(
1 − y2

n+1

)
, (1)

yn+1 = yn − b sin(2πxn), (2)

where x ∈ [−1/2, 1/2) and y ∈ R are coordinates in the phase
space T × R, and a ∈ (0, 1) and b ∈ R are parameters of the
system. This map is area preserving and violates the twist
condition |∂xn+1/∂yn| � c > 0, where c is a real number, for
all (x, y) along a curve in phase space. The SNTM violates the
twist condition along an invariant curve in phase space called
shearless curve [15].

In both sides of the shearless invariant curve there are
chains of periodic orbits of the same rotation number. This
is illustrated in the phase spaces of the SNTM depicted in
Figs. 1(a) and 1(b), where the value of b is kept fixed at
0.6 and the value of a is slightly increased from 0.358 to
0.365. The shearless curve is the red curve which separates
periodic island chains. As the parameter a increases these
islands coexist with chaotic orbits, which eventually engulf
practically all islands. If the shearless invariant curve is not
broken, however, these two chaotic regions do not mix their
orbits [Fig. 1(c)]. For other parameter values this barrier
breaks down and a chaotic orbit becomes able to explore a
broader region of the phase space [Fig. 1(d)].

FIG. 1. Phase spaces of the SNTM for (a) a = 0.358 and b =
0.6, (b) a = 0.365 and b = 0.6, (c) a = 0.455 and b = 0.797, and
(d) a = 0.455 and b = 0.851. The red line in phase spaces (a), (b),
and (c) is the shearless curve.

After the shearless curve breakup a given initial condition
generates a chaotic orbit, except if it is located inside a
periodic island remnant. This chaotic orbit has two asymptotic
behaviors: it either escapes to plus or minus infinity. This fact
can be illustrated by the corresponding escape (or exit) basins.
Such a basin is defined by the set of initial conditions, in the
phase space, that generates orbits that escape through a spec-
ified exit [5]. Numerically we consider two horizontal lines
in phase space, namely A : (−1/2 � x < 1/2, y = −1) and
B : (−1/2 � x < 1/2, y = 1). Once a given initial condition
crosses A (B) the subsequent trajectory asymptotes to minus
(plus) infinity.

Accordingly the escape basins, denoted as Bn(A) and
Bn(B), are the sets of initial conditions that generate orbits
that, after a certain time n, cross the lines at y = −1 or
y = 1, respectively. If n is suitably chosen, it turns out that
the changes in the escape basins are negligible. On the other
hand, even after this time n, there can still exist orbits that
do not escape, if they are trapped within periodic islands or
because the remnants of the shearless curve act as a partial
barrier for the transport of these trajectories [27]. This partial
barrier can also be called “shearless Cantori,” as proposed by
Blazevski and del-Castillo-Negrete as a nontwist version of
the cantori [28]. The corresponding initial conditions form a
set of no escape.

The escape basins of the SNTM through the exits labeled
as A and B are depicted in Fig. 2 as green and red regions,
respectively. The parameter values used in Fig. 2 are the same
as in Fig. 1. The escape basins are separated by the shearless
curve as far as it has not been broken [Figs. 1(a)–1(c)]. In
these cases, while the escape basins Bn(A) and Bn(B) appear
to be connected sets, the set of no escape (white points) is
formed by the union of many disjoint sets, basically remnants
of periodic islands partially engulfed by the chaotic orbits.
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FIG. 2. Escape basins of the SNTM for (a) a = 0.358 and b =
0.6, (b) a = 0.365 and b = 0.6, (c) a = 0.455 and b = 0.797, and
(d) a = 0.455 and b = 0.851. The green and red basins represent
the set of initial conditions that escape through the exits A : y = −1
and B : y = 1, respectively. The initial conditions that do not escape
within n = 104 map iterates are depicted in white. We used a grid of
103 × 103 initial conditions.

After the shearless curve has been broken, the escape basins
are intertwined therein, with fingerline striations characteristic
of fractal sets. Indeed, the analysis of the escape basins of the
SNTM has revealed a fractal structure [29].

III. PARAMETER SPACE OF THE STANDARD
NONTWIST MAP

The breakup of the shearless invariant curve occurs for
determined values of the parameters a and b. It is thus
worthwhile to investigate, in terms of the respective parameter
space (a, b), which parameter values lead to shearless curve
breakup and how they are separated from the other ones.
We can determine this boundary using a method proposed
by Shinohara and Aizawa [30], consisting in using indicator
points that are fixed points of the lines of symmetry of the
SNTM, given by [31]

z(±)
1 =

(
±1

4
,±b

2

)
, z(±)

2 =
(

a

2
± 1

4
, 0

)
. (3)

The construction of parameter space is obtained as follows:
we cover a parameter plane region (such as 0 < a < 1 and
0 < b < 1) with a fine mesh of Np × Np points. For each pair
of parameters (a, b) we used the four indicator points, given
by (3), as initial conditions, and iterate them a long time,
e.g., n = 106 iterations. If the y value of the corresponding
trajectory stays below a specified threshold, e.g., |y| < 20, it
is assumed that the shearless curve exists and the point (a, b)
is plotted; otherwise, it is not plotted [17].

Our results, using the indicator points (3), are depicted
in Fig. 3 for the SNTM. The points in magenta represent

FIG. 3. (a) Parameter space of the standard nontwist map. The
magenta points represent the existence of the shearless curve after
n = 106 iterates of the indicator points (3). Black and cyan points
represent parameter values for which orbits escape through the exits
y = −1 and y = 1, respectively. Panel (b) is a zoom of the rectangle
indicated in the right of (a).

parameter values (a, b) for which there is a shearless invariant
curve, the remaining points representing parameter values for
which the shearless curve has been broken. In addition, the
latter region can be further divided into a set of parameter
values (in black) which generates an orbit which escapes
through the exit A : y = −1, whereas the points in cyan are
parameters for which an orbit escapes through B : y = +1. As
we have seen before, the no-escape region is negligibly small
after the shearless curve has been broken [see Fig. 1(d) for an
example].

A cursory inspection of Fig. 3 suggests that the boundary
∂B between the parameter regions for which a shearless
invariant curve exists (magenta) and does not exist is self-
similar and has a fractal structure. The same can be said of the
boundary between the parameter regions for which the escape
is to plus infinity (cyan) and minus infinity (black). Actually
the boundary ∂B cannot be completely fractal, since there
are smooth parts of it corresponding to bifurcation curves,
as shown by Wurm et al. (see Fig. 11 of Ref. [32], where
the bifurcation curves are represented by colored lines su-
perimposed to the numerically determined boundary). These
bifurcation curves contain the parameter values a and b for the
threshold of collision of periodic orbits with a fixed winding
number [32].

The coexistence of smooth and fractal parts of the bound-
ary ∂B depicted in Fig. 3 is well known in dissipative systems,
where it has been long observed that basin boundaries in
phase space have different properties in different regions.
Many examples have been given by Grebogi and co-workers,
who found such behavior in the basin boundary of the kicked
double rotor, where there are smooth and fractal regions.
Moreover, these different regions are intertwined on arbitrar-
ily fine scales [33]. Hence it is virtually impossible to separate
smooth and fractal regions on the same boundary.

Let us now focus our attention in the fractal part of the
boundary ∂B between magenta and cyan+black regions in
Fig. 3. In the left-hand side of it there is a deep tongue that
is anchored at a ≈ 0.1, which separates the boundary into a
left-hand side and the right-hand side, hereafter denoted by
∂Bleft and ∂Bright, respectively, which seem to be qualitatively
different, an impression that our further analysis will prove
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FIG. 4. (a) Region, in the parameter spaces of the SNTM, for
which the shearless curve exists (magenta points). White points
represent parameter values for which the orbits escape to plus or
minus infinity. (b)–(f) A sequence of magnifications of the regions
specified by numbers (1)–(5) in (a).

wrong. A glimpse of the complexity of the boundary parts
∂Bright and ∂Bleft is provided by the various magnifications
shown in Figs. 4 and 5, respectively. These magnifications
are representative since in each of them there is a tonguelike
structure, for which the left part is fractal and the right part is
smooth.

In Figs. 4(b)–4(f), which focus on the boundary part
∂Bright, we show magnifications of the regions labeled as 1 to 5
in Fig. 4(a). Figure 5 does the same, but for the boundary part
∂Bleft . While in both cases a self-similar structure is evident,
it cannot be said that their fractal properties are identical. This
requires a quantitative analysis to be performed in the next
section.

Due to the violation of the nontwist condition, the SNTM
presents more than one orbit of the same winding number.
The variation of parameters can lead to the collision and
annihilation of these orbits [32,34]. The parameter values
(a, b) for which there is a collision of periodic orbits form
a bifurcation curve in the parameter space, first defined by
del Castillo-Negrete, Greene, and Morrison in Ref. [15]. From
the latter reference, the construction of these curves has been
established and the superposition of them in the parameter
space was published by Wurm and co-workers (see Fig. 11
of Ref. [32]), showing that the bifurcation curves follow the

FIG. 5. (a) Second region, in the parameter spaces of the standard
nontwist map, for which the shearless curve exists (magenta points).
White points represent parameter values for which the orbits escape
to plus or minus infinity. (b)–(f) A sequence of magnifications of the
regions specified by numbers (1)–(5) in (a).

smooth parts of the boundary in the parameter space. This
bifurcation scenario has been also investigated by Petrisor
et al. [35].

IV. UNCERTAINTY FRACTION AND BASIN ENTROPIES

In this work we present two different quantitative charac-
terizations of the boundary ∂B and its two parts, in param-
eter space. The first is the computation of the box-counting
dimension of ∂B by the uncertainty fraction method [2,3]. The
second is the determination of the so-called basin entropy and
basin boundary entropy to quantify the degree of uncertainty
due to the fractality of the boundary ∂B [23,24].

The basics of the uncertainty fraction method are well
known but we will outline them here since in most cases the
boundaries are in phase space, rather than in parameter space.
We start from a parameter space region, like that depicted
in Fig. 3, and consider a large number (we choose 103) of
randomly chosen parameter pairs (a, b). For each parameter
pair we iterate the SNTM using, as initial conditions, the first
pair of indicator points given by (3), with the upper signs.
After a long time (106 map iterations) we test whether or
not the trajectory has crossed either of the two threshold lines
(|y| = 20): if so, we assume that the shearless curve has been
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TABLE I. Basin entropy Sb, basin boundary entropy Sbb, and box-counting dimension d of the boundary piece ∂Bleft in the parameter space
of the SNTM. The numbers (1) to (5) refer to the magnifications shown in Fig. 5.

∂Bleft 1 2 3 4 5

Sb 0.048 ± 0.010 0.040 ± 0.009 0.043 ± 0.008 0.066 ± 0.013 0.062 ± 0.012
Sbb 0.435 ± 0.028 0.457 ± 0.032 0.445 ± 0.028 0.436 ± 0.030 0.430 ± 0.028
d 1.815 ± 0.018 1.853 ± 0.024 1.818 ± 0.005 1.873 ± 0.004 1.822 ± 0.027

broken; if not so, we assume that the shearless curve still
exists.

Then we perturb the parameter values (a, b) to a second
pair (a′, b′), chosen randomly inside a small disk of radius ε

centered at (a, b), i.e., such that
√

(a − a′)2 + (b − b′)2 � ε.
Then we iterate the map using the second pair of indicator
points given by (3) with the lower signs, and repeat the
test. If the outcomes turn out to be different we refer to the
parameter pair (a, b) as ε-uncertain. The uncertain fraction
f (ε) is the ratio between ε-uncertain parameter pairs and the
total number of them. These computations are repeated 10
times for each value of ε, which varied from 10−1 to about
10−10. The fraction of a pair of uncertain parameters f (ε) is
expected to increase with ε as a power law f (ε) ∼ εα , where
α is the so-called uncertainty exponent [2,3].

In analogy with the corresponding treatment for phase
space, let D be the parameter space dimension, and let N (δ)
be the minimum number of D-dimensional boxes of length δ

necessary to cover the boundary. The box-counting dimension
of the latter is d = limδ→0 ln N (δ)/ ln(1/δ), such that N (δ)
scales as δ−d for small enough δ [1]. If we set δ = ε, the
volume of the uncertain region in the parameter space will be
N (ε) times the volume of the D-dimensional cubes, which is
εD. Since the pair of parameters are uniformly chosen over the
parameter space region, the uncertain fraction is of the order
of the total volume N (ε)εD = ε (D−d ). Thus the uncertainty
exponent results in α = D − d . In our case we have D = 2 for
the parameter space, for which α = 2 − d , in such a way that
a smooth boundary with d = 1 has α = 1, whereas 0 < α < 1
characterizes a fractal boundary [2,3].

We computed the uncertainty exponent and the corre-
sponding estimate for the box-counting dimension of the
boundary pieces ∂Bleft and ∂Bright, the results being shown
in Tables I and II, respectively. The numbers (1)–(5) refer
to the magnifications exhibited in Figs. 4 and 5. We have
chosen these magnifications to cover chiefly fractal pieces
of the boundary, and we obtained for the corresponding
box-counting dimensions dim(∂Bleft ) = 1.826 ± 0.027 and
dim(∂Bright ) = 1.790 ± 0.045, suggesting that they are both
fractal and with the same dimension d ≈ 1.8. In addition, we
computed the box-counting dimension for those parts of the

boundary corresponding to the bifurcation curves in parameter
space described by Wurm, resulting in d = 0.978 ± 0.011,
which is compatible with our assumption that those pieces are
smooth curves.

Due to the presence of smooth boundary pieces in both
∂Bleft and ∂Bright, the boundary is most properly characterized
as a combination of a smooth and a fractal part. This is in
accordance with a conjecture made by Grebogi et al. that basin
boundaries in phase space can have at most a finite number of
possible dimension values for all typical magnifications [33].

Given the complex nature of this boundary, it would be
important to use other measures of uncertainty related to
its fractality. One such measure is the so-called basin sta-
bility, which essentially quantifies the relative area of the
basins [36,37]. In this work we use the recently proposed
method of basin entropies, which quantifies the degree of
uncertainty due to the fractality of basin [23,24]. Here we
outline the basics of this technique, applied to the parameter
space.

Let us consider the existence of Nout outcomes for a
trajectory in phase space, once a parameter pair of values,
(a, b), is given. We cover a region � of the parameter space
with a mesh of N boxes of linear size δ, and define an
application C : � �→ N relating each parameter value to some
outcome in phase space. This application is called by Daza
et al. a color [23]. Each box contains a large number Np

of parameter values which, after map iterations (using the
indicator points as initial conditions), lead to different values
of a color, from 1 to Nout. By considering the colors into each
box randomly distributed we associate a probability pi j to the
jth color inside the ith box. Assuming that the trajectories
are statistically independent the Shannon entropy of each
box is

Si = −
mi∑
j=1

pi j log pi j, (4)

where mi is the number of colors inside the ith box, varying
from 1 to Nout.

If the boxes covering � are nonoverlapping the entropy
of the parameter space region is S = ∑N

i=1 Si. The basin

TABLE II. Basin entropy Sb, basin boundary entropy Sbb, and box-counting dimension d of the boundary piece ∂Bright in the parameter
space of the SNTM. The numbers (1) to (5) refer to the magnifications shown in Fig. 4.

∂Bright 1 2 3 4 5

Sb 0.034 ± 0.007 0.046 ± 0.010 0.046 ± 0.009 0.071 ± 0.015 0.058 ± 0.012
Sbb 0.428 ± 0.030 0.428 ± 0.029 0.426 ± 0.027 0.441 ± 0.025 0.427 ± 0.034
d 1.788 ± 0.045 1.803 ± 0.037 1.779 ± 0.036 1.792 ± 0.036 1.797 ± 0.030
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entropy is the total entropy divided by the total number of
boxes N : Sb = S/N . The basin entropy quantifies the degree
of uncertainty of the basin; that is, for a single basin the basin
entropy is zero, meaning zero uncertainty, whereas for NA

equiprobable basins Sb = log NA, which means a completely
randomized basin structure [23]. If we restrict the computation
of the basin entropy to the boxes covering the basin bound-
aries, i.e., to the Nb boxes containing more than one color,
we obtain the so-called basin boundary entropy Sbb = S/Nb.
Accordingly, Sbb quantifies the uncertainty referring only to
the basin boundary. It has been conjectured that, if Sbb >

log 2, the basin boundary is fractal, but this turns out to be a
sufficient but not necessary criterion, i.e., there may be fractal
boundaries even if Sbb < log 2.

In the case of SNTM considered here, there are just two
outcomes for a trajectory obtained from a given parameter
pair (a, b): it either escapes to infinity or does not escape at
all (after 106 map iterations); hence Nout = 2. Considering,
as before, the parameter space region � as the square {0 <

a < 1, 0 < b < 1}, we cover it with a grid of N × N points,
varying the resolution from N = 100 to N = 250, and with
a number of parameter values per box Np varying from 16
to 100. If we denote by na the number of points of each
box corresponding to the first outcome (existence of shearless
curve) and nb to the second outcome (nonexistence of the
shearless curve, leading to escape to infinity), the correspond-
ing probabilities for the ith box are

pi1 = na

na + nb
, pi2 = nb

na + nb
, (5)

and the entropy of the ith box is simply Si = −pi1 log pi1 −
pi2 log pi2.

Our results for both basin entropy and basin boundary en-
tropy are summarized in Tables I and II, for the region � and
its magnifications. The corresponding values are Sb(∂Bleft ) =
0.035 ± 0.013 and Sb(∂Bright ) = 0.029 ± 0.015 for the basin
entropy and Sbb(∂Bleft ) = 0.450 ± 0.032 and Sbb(∂Bright ) =
0.426 ± 0.033 for the basin boundary entropy. Finally, for the
smooth part of the boundary (corresponding to the bifurcation
diagram of the indicator points) we obtained Sb = 0.005 ±
0.001 and Sbb = 0.422 ± 0.028.

Within the uncertainty of our measurements, the basin
entropy and the basin boundary entropy take on the same
values for both left and right boundary pieces, namely Sb ≈
0.032 and Sbb ≈ 0.438. It is expected that Sbb > Sb since
the number of boxes containing the boundary is generally
less the total number of boxes. Notice also that Sbb < log 2,
which is the maximum possible value that Sbb can have for a
smooth boundary. Since we have shown that the box-counting
dimension is higher than unity, the left and right bound-
ary pieces are not only fractal but their fractal content can
be quantified by the corresponding entropies. These results
are consistent with the hypothesis that the boundary pieces
∂Bleft and ∂Bright in parameter space have similar properties
with respect to the uncertainty of the final state in phase
space.

We close this section by mentioning that our results do
not depend very much on the detailed form of the standard
nontwist map. In order to verify this point we considered the

immediate generalization, which is the quartic nontwist map
(QNTM), which is [38]

xn+1 = xn + a
(
1 − y2

n+1 − py4
n+1

)
, (6)

yn+1 = yn − b sin(2πxn), (7)

where the phase space variables x and y, as well as the
parameters a and b, are similar to the SNTM, whereas a
new parameter p has been introduced, which is to be varied
from 0.0 to about 0.2 to study changes in the dynamics due
to the quartic term. By comparing the parameter space of
SNTM and QNTM we observe that the boundaries for both
maps are similar, although a slight increase in the size of
the chaotic layer bordering both dimerized island chains is
visible. Moreover, variations in the value of the parameter p
can displace the boundary in parameter space for which the
shearless curve breaks down.

V. CONCLUSIONS

There are fractal structures both in the phase space and the
parameter space of conservative dynamical systems. While
the former case has received a lot of attention in recent years,
the latter has not been considered, to our knowledge. We
address this question using a conservative dynamical system
which has easily recognizable different dynamical behaviors
(since there are no attractors) and two parameters whose
variations lead to these behaviors. In this work, we investigate
the dynamics of the standard nontwist map, which exhibits
these properties. However, the kind of analysis we present in
this paper can be applied to many other similar conservative
systems with more than one parameter.

The nontwist maps have a peculiar behavior thanks to the
nonmonotonicity of the winding number profile, and they do
not obey KAM theory in all points of their phase space. The
standard nontwist map has been the most intensively studied
of all those systems and has two tunable parameters, whose
variations lead to different dynamical behaviors. For selected
values of these parameters we identify the presence, in the
system two-dimensional phase space, of shearless invariant
curves that act as barriers of transport throughout the chaotic
area-filling orbits. For some values of these system parameters
there occurs the breakup of these shearless curves. After this
breakup there can be trajectories asymptoting both in the
positive and negative directions in the transversal variable
(the longitudinal value being periodic in the cylindrical phase
space of the system).

The parameter space of these two variables is divided in
two regions: parameter values for which there is a shear-
less barrier and for which there is escape through positive
or negative values. We obtain the boundary between such
behaviors using the method of indicator points. The form of
this boundary suggests a self-similar structure, but in our work
we demonstrate the fractal nature of this boundary, which is
a representative example of fractal structure in the parameter
space of a conservative dynamical system.

We have used two methods to achieve this conclusion:
first the uncertainty dimension of the boundary has been
determined to be circa 1.8. We know, however, that there are
nonfractal (smooth) parts of the boundary (dimension equal
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to the unity), which correspond to bifurcation curves already
described by Wurm and co-workers [32]. The existence of two
different dimensions depending on the region of the structure
considered has been long known to occur in the phase space
of dissipative dynamical systems. Hence, on the basis of the
calculation we did, we cannot say that the value of ∼1.8 is the
dimension of the fractal part, but instead it is the dimension
of the boundary as a whole. While the boundary is clearly
partially fractal and smooth, the dimension of the fractal part
may not be the same as the uncertainty dimension of the
boundary as a whole.

Moreover, this value is consistently the same in different
regions of the boundary, suggesting that it is a homogeneous
fractal structure. The second method was the computation of
the basin entropy and basin boundary entropy, which quantify
the uncertainty of the final state of any dynamical system. We
obtained values of ∼0.05 for the basin entropy and ∼0.45 for
the basin boundary entropy, which are also characteristic of a
complicated fractal basin structure.

The method of uncertainty exponent we have used to
estimate the dimension of the boundary in the parameter space
allows us to estimate the final-state uncertainty issue raised by
the fractality of the boundary. Using our estimate of 1.8 for the
boundary dimension, the corresponding uncertainty exponent
is α = 0.2, such that the fraction of ε-uncertain conditions in
the parameter space scales as f (ε) ∼ ε0.2. Suppose that we
improve our determination of the parameter values (either a or
b, or both) such that the uncertainty can be decreased at half its

original value, i.e., ε → ε′ = ε/2. The fraction of ε-uncertain
parameters will decrease to just f ′ ∼ 0.87 f .

Hence a substantial reduction in the uncertainty of the
parameters will not result in a proportional reduction in the
fraction of uncertain parameters. The more α approaches zero
the more unfavorable is this reduction. In the limiting case
of α ≈ 0 the fraction will not decrease at all. Hence it is
increasingly difficult to reduce final-state uncertainty when
one has a fractal boundary, which is an important issue if the
map parameters are to be fed with experimentally obtained
values, which are always known within a given confidence
interval.

Notice that, in the case of conservative systems, we refer
to a behavior basin: either the shearless barrier curve is or
is not broken. Other qualitatively different behaviors could
be similarly analyzed. We consider another example of non-
twist map, the so-called quartic nontwist map, and found
essentially the same behavior, showing that fractal boundaries
may be quite common in the parameter space of conservative
systems.
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