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Basic structures of the Shilnikov homoclinic bifurcation scenario
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We find numerically small scale basic structures of homoclinic bifurcation curves in the parameter
space of the Chua circuit. The distribution of these basic structures in the parameter space and their
geometrical properties constitute a complete homoclinic bifurcation scenario of this system. Fur-
thermore, these structures and the scenario are theoretically demonstrated to be generic to a large
class of dynamical systems that presents, as the Chua circuit, Shilnikov homoclinic orbits. We
classify the complexity of primary and subsidiary homoclinic orbits by their order given by the
number of their returning loops. Our results confirm previous predictions of structures of ho-
moclinic bifurcation curves and extend this study to high order primary orbits. Furthermore, we
identify accumulations of bifurcation curves of subsidiary homoclinic orbits into bifurcation curves
of both primary and subsidiary orbits. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2031978�
Shilnikov homoclinic orbits are trajectories that depart
from a fixed saddle-focus point, with specific eigenvalues,
and return to it after an infinity time (that is also true to
time reversal evolution). Since they are intimately con-
nected to the existence of chaos and the existence of a
countable infinity of periodic orbits, it is important to
understand their bifurcation in the parameter space.
Such homoclinic orbits are connected to the chaotic dy-
namics of systems of different areas, as chemical chaos,1

glow-discharge systems,2 spiking neurons,3,4 rabbit arter-
ies intermittency,5 noise-induced phenomena,6 and such
electrochemical oscillators.7 Here, we find numerically
the basic codimension-one structure of the bifurcation
curves of these orbits analyzing the parameter space of
the Chua circuit. We demonstrate its generality by con-
structing such structure theoretically from a two-
parameter bifurcation analysis performed in a generic
normal form of dynamical systems that have a Shilnikov
homoclinic orbit. The set of the identified basic bifurca-
tion curve structures forms a scenario that can guide re-
searchers to find, in the parameter space, accumulation
of chaotic sets, periodic orbits, and horseshoes for sys-
tems with Shilnikov homoclinic orbits.

I. INTRODUCTION

Homoclinic orbits, chaos, and periodic orbits are closely
connected. This connection was first noticed in the end of the
XIX century, when Poincaré was studying the solvability of
the equations of the three-body problem. He showed the im-
possibility of solving these equations due to the existence of
homoclinic orbits and the sensitivity to initial conditions, the
most important trademark of chaotic behavior. The relation
between chaos and periodic orbits was demonstrated in the
sixties, when Smale showed that the existence of a horse-
shoe, an invariant set that contains an infinity number of
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periodic orbits in a discrete chaotic system,8 implies chaos.
Soon later, Shilnikov9 showed that, for a class of time-
continuous three-dimensional dynamical systems, the exis-
tence of a Shilnikov homoclinic orbit �the joint of the stable
and unstable manifolds of a saddle-focus fixed point with
specified eigenvalues� implies the existence of a horseshoe in
the neighborhood of this orbit, and therefore, chaos.

After that, a series of numerical and experimental inves-
tigations revealed how the Shilnikov homoclinic orbits in the
vicinity of a chaotic attractor determine its dynamical and
topological properties1,10. More recent works11–17 have ex-
tended the Shilnikov results and demonstrated that the exis-
tence of one Shilnikov homoclinic orbit implies the existence
of infinite homoclinic orbits.

A homoclinic bifurcation occurs for some parameters if
there is a homoclinic orbit for these parameters. Each ho-
moclinic bifurcation curve describes a family of homoclinic
orbits in the parameter space. One-parameter local bifurca-
tion analysis in the neighborhood of a Shilnikov homoclinic
orbit showed that there exists an infinite number of other
subsidiary homoclinic orbits associated with that primary
one, each one with its countable infinity of horseshoes.15

Then, given a primary Shilnikov homoclinic orbit, the
existence of other Shilnikov subsidiary orbits of arbitrary
order was demonstrated �see Ref. 16� �defined as the number
of loops through phase space before returning to the equilib-
rium fixed point�. In Ref. 17 a two-parameter space analysis
was presented predicting the distribution of two structures of
homoclinic bifurcation diagrams of subsidiaries H2 and H3

nearby a primary H1 parameter. A conjecture is also pre-
sented about the increasing complexity of other structures
containing bifurcation curves with order n�3. After that, in
a recent work18 we derived a general scaling law that gives
the ratio between bifurcation parameters of different nearby
Shilnikov orbits in parameter space. These analytical results
were numerically confirmed in the parameter space of Chua

19
circuit.
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Our present work deals with the numerical identification
of basic structures formed by the bifurcation curves of the
Chua circuit20 in the parameter space. These structures in-
volve accumulation of bifurcation curves of subsidiary Hnj

orbits �n�1� into both primary homoclinic orbits, Hj, �of
any order j�N*� and other subsidiaries. The representation
of these basic structures in the physical control parameters is
analytically deduced by a two-parameter analysis performed
for dynamical systems, in a normal form, that presents
Shilnikov homoclinic orbits. Thus, this analytical result and
the numerical homoclinic bifurcation codimension-one sce-
nario obtained for the Chua parameter space are valid for to
a large class of dynamical systems. Here, we classify the
Shilnikov orbits, Hm, by their order, m, defined by the num-
ber of loops they described in phase space. These orbits pre-
dicted in our work could also be discriminated according to
the number of circuits around the unstable direction as was
done in Ref. 17. Basic structures similar to those reported in
this work were predicted before, in Ref. 17, for orbits with a
high number of circuits. Differences in the described struc-
tures are due to the different parameter spaces used in these
works. In our case we looked for physical control parameters
such that the predicted bifurcations could be identified in
experiments involving the Chua circuit. On the other hand, in
Ref. 17 general statements were derived for homoclinic bi-
furcation curves with a large variation in terms of a saddle
index, a parameter obtained from the saddle eigenvalues.

This paper is organized as follows. Since all our numeri-
cal work is performed on the Chua circuit, we present in Sec.
II a short description of this dynamical system, its phase
space topology, and its main attractors in phase and param-
eter space. In Sec. III, we show examples of homoclinic orbit
families observed in the Chua circuit, and present a two-
parameter characterization of the trajectories leaving the
saddle focus as a way to understand the homoclinic bifurca-
tions. In Sec. IV, we perform the same two-parameter analy-
sis to reveal the generic structure of the bifurcation curves of
the Chua circuit and present the theoretical model for the
microscopic structure of the family bifurcations. Finally, in
Sec. V we present the conclusions.

II. CHUA CIRCUIT AND ITS ATTRACTORS

The Chua circuit is schematically shown in Fig. 1�a�. It
is composed of two capacitors, C1 and C2, one linear resistor,
R, one inductor, L, and the nonlinear negative resistor, RN,
whose characteristic curve, a piecewise-linear function, is
represented in Fig. 1�b�. The rescaled Chua circuit equations
in dimensionless units20 are

ẋ� = ��y� − x� − k�x��� ,

ẏ� = x� − y� + z�,

ż� = − �y�,

k�x�� = bx� + 1
2 �a − b���x� + 1� − �x� − 1�� �1�

and we set a=−8/7 and b=−5/7; � and � are control pa-

rameters.
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In Fig. 2 we show a bidimensional projection on the
variables x� and y� of four of the possible three-dimensional
attractors such circuit presents. In Figs. 2�a� and 2�b� stable
periodic attractors, period-1 and period-2, respectively, and
in Figs. 2�c� and 2�d� chaotic attractors, the Rössler-type one
and the double-scroll one, respectively, are shown.

The phase space of Eq. �1� has three domains: D0

= �R3 �x� � �1�, D+= �R3 �x��1� and D−= �R3 �x��−1�.
There is a fixed point in each domain: P0= �0,0 ,0�, in D0,
and P±= �±� ,0 , ���, in D±, where �= �b−a� / �b+1�=1.5.
These points are indicated in Figs. 2�a�–2�d� with the pre-
sented attractors.

The way periodic attractors and chaotic attractors appear
as we vary the parameters � and � can be visualized in the
parameter space of Fig. 3, where we indicate with gray levels
the parameters for which we have each one of the three types
of attractors: periodic, Rössler-type, and double scroll. As
one shall see, most of the homoclinic orbits presented here
coexist in parameter space with the double scroll attractor.

FIG. 1. �a� Representation of the Chua circuit, with two capacitors, C1 and
C2, one inductor L, and one linear resistor R. RN is a piecewise linear
negative resistor whose characteristic curve is shown in �b�.

FIG. 2. Four possible attractors from Eq. �1�. �a� Stable period-1 attractor,
�b� stable period-2 attractor, �c� chaotic Rössler-type attractor, and �d� cha-

otic double scroll attractor. The fixed points are indicated by P+, P0, and P−.
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In this work, we are interested in homoclinic orbits to
the saddle-focus fixed point P0. For this point, the Jacobian
matrix of Eq. �1� has a pair of complex conjugate eigenval-
ues −�± i� that determine the bidimensional stable subspace,
ES�P0�, tangent to the stable manifold in the vicinity of P0. It
has also a real eigenvalue 	, that determines the one-
dimensional unstable subspace EU�P0�, which coincides with
the one-dimensional unstable manifold, in D0. A more com-
plete geometrical description of the system can be seen in
Fig. 4; more details are in Ref. 19 where we have also de-
scribed the conditions for the existence of a homoclinic orbit
to the point P0.

In an order-n ,m homoclinic orbit of P0, n and m means
that this orbit turns n times around the fixed point P+, and m
times around the fixed point P−. To find homoclinic orbits
Hn,0, we introduce a measure dn,0, the distance between the
line L+ and the point Qn,0 �indicated in Fig. 4 for n=1�. Qn,0

is the intersection of the unstable manifold of P0 with the
plane U+ �Fig. 4�, when the flow goes to D0 after n turns
around P+. We consider dn,0�0 if Qn,0 is between L+ and the

FIG. 3. Parameter space with the regions where we find periodic attractors
�light gray�, Rössler-type attractors �black�, and double scroll attractors
�dark gray�.

FIG. 4. Fixed point P0 with its stable and unstable subspaces ES�P0� and
EU�P0�. The term d1 is the distance between Q1 and the line L+ on the plane
U+. The term d2=0, so there is a homoclinic orbit H2, whose trajectory turns
two times around the fixed point P+. The plane U±= �R3 �x= ±1� is the
boundary of the domains D0 with D±. In D0, ES�P0� is a plan and EU�P0� is

S
a line, both limited by U+ and U−. So, L±=E �P0��U±.
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axis x�, and dn,0
0 if L+ is between Qn,0 and the axis x�.
Whenever m=0, we will omit this index. Thus, in Fig. 4 we
represent d1,0 �n=1 and m=0� as d1, and Q1,0 as Q1. Simi-
larly, to find homoclinic orbits Hn,m we introduce the dis-
tance dn,m in the plane U−. Finding an order-n ,m orbit, Hn,m,
is equivalent to finding a parameter for which dn,m=0.

In Figs. 5�a�–5�f� we show a series of homoclinic orbits
of different orders: n=1 �a�, n=2 �b�, n=3 �c�, n ,m=1,1 �d�,
n ,m=3,4 �e�, n ,m=4,3 �f�. As already conventioned, the
index m=0 is omitted in �a�,�b�,�c�. The high order orbit
geometry already looks similar to the chaotic attractor geom-
etry.

According to the Shilnikov theorem, if a homoclinic or-
bit exists, and the eigenvalues satisfy the condition �
1,
with �= �� /	�, there exists a countable number of infinity
Smale horseshoes in the vicinity of the homoclinic orbit.9 In
Fig. 6, the dashed lines correspond to parameter values for
which the Shilnikov condition, �
1, is satisfied and the light
gray region corresponds to ��1. In the dark gray region the
Shilnikov theorem cannot be applied because the eigenvalues
� and 	 are in R. Most homoclinic orbits studied in this work
have parameters within the region where �
1, except for
some H1 orbits near the origin of the parameter space.

III. HOMOCLINIC BIFURCATIONS

A codimension-one bifurcation curve in the bidimen-
sional parameter space ��� defines a family of homoclinic
orbits Hn,m. This continuous curve in parameter space repre-
sents a set of infinity parameter values for which orbits Hn,m

exist. The structure formed by the bifurcation curves in the
parameter space constitutes the scenario we obtain in this

FIG. 5. A series of homoclinic orbits of different orders: n=1 �a�, n=2 �b�,
n=3 �c�, n ,m=1,1 �d�, n ,m=3,4 �e�, n ,m=4,3. The parameters � and �
are indicated in the figure.
work.
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Examples of homoclinic bifurcation curves are shown in
Fig. 6, in which it is possible to observe the first primary
families21 of orbits Hj, with j=1, . . . ,7 �m=0�. With the ex-
ception of the bifurcation curve of the H1 family, all the other
bifurcation curves �orders varying from 2 to 7� have two
branches, left and right, as indicated for the family-H7 curve
in Fig. 6. For parameters within each region bounded by a
primary Hj bifurcation curve there are no Hn orbits. This is a
consequence of the fact that, for parameters in that region,
any trajectory leaving the point P0 goes to the domain D−,
and therefore, only families of the type Hj,m, with m�0 can
exist. So, we find the family-Hj,m within these regions. Hn

subsidiary orbits appear between the right branch of an
order-�j+1� orbit and the left branch of an order-j orbit.

Next, we present typical properties of homoclinic orbit
bifurcation curves in a small part of the parameter space
shown in Fig. 6. However, these properties are general and
can be observed in other areas of the parameter space.

Initially, we show in Fig. 7�a� an example of a primary-
H3 family curve and the corresponding orbit. To understand
the bifurcation scenario from which this family appears in
parameter space, in Fig. 7�b� we show the distance d3 as the
parameter � is increased and � is kept fixed. The distance d3

is unimodal, presents one local minimum and vanishes twice,
so in the parameter space of Fig. 7�a� we observe two orbits
H3 for that fixed �. As we decrease �, the minimum of d3

FIG. 6. Parameter space of the primary homoclinic orbits Hn, with n
=1, . . . ,7. Dashed lines correspond to parameters values for which the
Shilnikov condition is satisfied. Shilnikov conditions are not satisfied in
light and gray regions.

FIG. 7. �a� Primary family-H3 curve in the parameter space ��� and a H3

orbit indicated by the arrow. �b� The d3 function with respect to �, �=40.

Homoclinic orbits of the family-H3 exist when d3=0.
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increases until d3 does not vanish and there is no homoclinic
orbit.

As shown in Ref. 18 the vicinity of the primary family-
H3 curve, shown in Fig. 7, contains an infinity number of
subsidiary family-H6 curves. The distance d6 vanishes an in-
finity number of times, as �→�3r

for a decreasing �, and as
�→�3l

for an increasing �.
Now, we show in Fig. 8�a� two bifurcation curves, of

subsidiary H6 orbits, which are localized between the bifur-
cation curves of the primary orbits H2 and H3, shown in Fig.
6. In Figs. 8�a�–8�d� we show the distance d6, for the values
�1, �2, and �3, indicated by lines in 8�a�, as we vary �2

=�−�2, with �2 being the � value for which H2 exists. Dif-
ferently from what is observed in Fig. 7�a� for a primary
orbit curve, in Fig. 8�a� we observe that one subsidiary H6

curve is within another subsidiary H6 curve. We see that d6

in Fig. 8�b� is a unimodal function, as in Fig. 7�a�, with a
local minimum crossing twice the d=0 line. As we increase
� another family-H6 appears, when d6 in Fig. 8�c� has two
local minima and one local maximum, presenting tree values
of �2 for which d6=0. Then, for �=�3, the d3 function has
four values for which d6=0.

The two-parameter character of this bifurcation is
present in the appearance of local maxima or minima in the
d function versus � as we change the parameter �. That
character is responsible for creating other homoclinic orbits
in the vicinity of � parameters for which an orbit already
exists.

We present bifurcation curves of primary �Fig. 8�a�� and
subsidiary �Fig. 7�a�� homoclinic orbits in the parameter
space. However, we find an accumulation of subsidiary fam-
ily orbits into these curves. Thus, in the regions between two

FIG. 8. �a� Two subsidiary family-H6 curves and �b�–�d� d6 function with
respect to �2=�−�2 for �1, �2, and �3 indicated by the lines in �a�, and �2

is the parameter for which an orbit H2 �indicated by the arrow in the origin�
is formed ��2=0�. Homoclinic orbits of the family-H6 exist when d6=0.
�b is the local minimum of the longer family-H6 curve.
primary bifurcation curves there are always parameters for
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which subsidiary orbits exist, although they are not shown in
Fig. 6.

In short, the structure of the bifurcation curves can be
pictorially described as being formed by a within-to-within
accumulation of subsidiary families into other subsidiary or
primary families. The bifurcation scenario of the parameter
accumulations can be studied by a one-parameter approach
of subsidiary order-nj orbits �Hnj� into order-�n−1�j orbits
�H�n−1�j�, in the vicinity of Hj �n , j�N with n�2 and j�1�.
To see this, we analyze the homoclinic bifurcations for �
values close to those indicated by stars in Fig. 8�a�, at the
bottom point of each family-H6 curve.

In Fig. 9 we show the distances d6 and d8 vs � for �
=19.803
�b ��b is indicated in Fig. 8�a��. There are H8

orbits for d8=0; d6 is positive and close to zero. Although an
orbit H6 does not exist, it is possible to recognize the accu-
mulation of subsidiary H8 �n=4, j=2� orbits into the d6

minimum where the subsidiary H6 �n−1=3, j=2� orbit will
appear for �=�p. This accumulation happens in the vicinity
of the primary H2 �n=1, j=2� whose critical parameter was
used as a reference in 8. The minimum for d6 is in �*

	12.582. As we vary � approaching �*, d8 becomes zero
several times. Assuming the index i and i+1 to describe two
consecutive � values for which d8=0, the distance ��i

−�i+1� shrinks as � approaches �*. The index i increases in
the direction of �* with an accumulation of �i values on �*.
Thus, as � reaches �b, d6 vanishes once and d8 vanishes
several times, for �	�*. So, there is an accumulation of
family-H8 curves into the family-H6 curves, from outside the
external curve of Fig. 8�a�. So we refer to this accumulation
process as an outer accumulation. Note that if ���b, for
example �=�1, d6 becomes smaller than zero inside the H6

bifurcation curve, and thus, no H8 orbit is observed in this
region.

A similar accumulation process is in Fig. 10, in which
we show the distances d6 and d8 vs � for �=41.52��2

�where �2 is the minimum � of the internal family curve in
Fig. 8�a��. In this figure, the left vertical axis represents d8

and the right vertical axis d6. In this figure, there are two

FIG. 9. The d6 and d8 functions with respect to � for �=19.803. The arrow
shows the local minimum of d6 at �*	12.582; d6 is always positive. There
is an outer accumulation of orbits H8 into the orbit H6.
zones of accumulation, where d6 is close to zero and posi-
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tive. As � approaches the values for which d6=0 �orbit H6

exists�, d8 vanishes several times. We refer to this accumu-
lation process as an inner accumulation, as it happens in Fig.
8�a�, for parameters between the two H6 curves.

These inner and outer accumulations are verified along
the two family-H6 curves. Although only shown for a family-
H6, these results can be extended to families of any order for
similar conditions in the neighborhood of a primary or a
subsidiary family curve. To know if the accumulation pro-
cess of a family-Hnj into a family-H�n−1�j is either of type
outer or inner, all we need is to verify if the d�n−1�j function
has either a local minimum �as in Fig. 9� or a local maximum
�as in Fig. 10�. In Fig. 11 we represent these types of accu-
mulation process.

In Fig. 11�a� we represent one structure of bifurcation
curves in the vicinity of subsidiary family curves. Between
two subsidiary family-Hnj curves, one within the other, there
is an outer accumulation process of the curves H�n+1�j into
the internal family-Hnj curve, and an inner accumulation pro-
cess of the family-H�n+1�j curves into the external family-Hnj

curve. These accumulations are represented in Fig. 11�a� by

FIG. 10. The d6 and d8 functions with respect to �, for �=41.52, showing
the inner accumulation of orbits H8 into the orbit H6.

FIG. 11. Representation of basic structures of the homoclinic bifurcation
curves in the Chua circuit parameter space. �a� Basic structure of the inner
and outer accumulation of subsidiary family-H�n+1�j curves inside two
family-Hnj curves. �b� The outer accumulation of basic structure curves into

a primary family-Hj curve.
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the gray region. From this basic structure, we can construct
the more complex structures observed in the homoclinic bi-
furcations of the Chua parameter space. For example, one
can consider that the two family-Hnj curves like the ones
shown in Fig. 11�a� are accumulating into a family-H�n−1�j

that is somewhere within these two family-Hnj curves. Thus,
what we see are infinities replications of the structure seen in
Fig. 11�a� one inside the other �in the blank region� as one
approaches the family-H�n−1�j curve. With the constraint that,
between two family-Hnj curves, there is a region where no
family-Hm curves are found, with m�N. Moreover, similar
replications can be found in the gray region involving H�n+2�j

accumulating into H�n+1�.
In Fig. 11�b� we show the structure in the vicinity of a

primary family curve. As previously discussed, in the Chua
circuit, the dj functions for all the observed primary family-
Hj is only positive between the left branch of the family-Hj

curve and the right branch of the family-Hj+1 curve. Thus,
around the primary family curves, the accumulation process,
family-H2j into family-Hj, is always of the outer type. One
can pictorially visualize this scenario as having in the gray
region of Fig. 11�b� an infinity number of basic structures of
the type shown in Fig. 11�a�.

IV. BIFURCATION SCENARIO

The theoretical description of the codimension-one bi-
furcation curves in parameter space is done by an extension
of the one-parameter bifurcation analysis performed in Ref.
18. To achieve that, we first derive a map that captures the
evolution of trajectories departing from a saddle-focus
point.18 With this map we vary one parameter to understand
the distance d variation observed in Figs. 7�b� and 8�b�–8�d�.

The simplified dynamics of a system that has a Shilnikov
homoclinic orbit is given, in the vicinity of this orbit, by the
following normal form:

ẋ = �x − �y + P�x,y,z;�� ,

�2�
ẏ = �x + �y + Q�x,y,z;�� ,

ż = 	z + R�x,y,z;�� , �2�

where the eigenvalues of the saddle-focus fixed point are
	1=	 and 	2,3=�± i�, with 	�
0 and ��0. The functions

P, Q, and R are real analytics, and Ṗ�0,0 ,0 ;��
= Q̇�0,0 ,0 ;��= Ṙ�0,0 ,0 ;��=0, for the fixed point in the
origin; � is a control parameter. If there is a homoclinic orbit
and �� /	�
1, the condition for this orbit to be of the Shilni-
kov type, there exists a countable number of infinity Smale
horseshoes in the vicinity of the homoclinic orbit.9 Note that
the normal form of Eq. �1� in the D0 domain is Eq. �2� for
P=Q=R=0.

In Fig. 12 we show a homoclinic orbit of order-2 �H2�, a
solution of Eq. �2�, in the coordinates of the eigenvectors of
the saddle-focus fixed point. We define two surfaces, �0

= ��x ,y ,z� �x2+y2
 r̃2 ,z=h� and �1= ��x ,y ,z� �y=0,0
x
˜

r ,0
z
h�, also represented in this figure. P1 is the first
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crossing of the saddle-focus unstable manifold on the surface
�0. Thus, this manifold leaves the z axis on this plane �z
=h�; r̃ gives the limit of �0 and �1.

In the region within the cylinder containing surfaces �0

and �1, the dynamics of Eqs. �2� is given by its linearized
form


ẋ

ẏ

ż
� = 
− � − � 0

� − � 0

0 0 	
�
x

y

z
� , �3�

where we have chosen 	�0, a particular solution of Eq. �2�,
and changed � for −� �with the new � being positive�. The
solution of Eq. �3� is


x

y

z
� = 
e−�t�x0 cos �t − y0 sen �t�

e−�t�x0 sen �t + y0 cos �t�
z0e	t � . �4�

Defining �0 :�1→�0, in the cylindrical coordinates, a
point �r ,� ,z� in �1 is mapped to �0 by

�0�r,0,z� = �r� z

h
�/	

,�,h
with �= �� /	� ln �h /z�, where we use that t= �1/	� ln �h /z�
�obtained by the solution of z=h in Eq. �4��. Assuming that
there is a primary homoclinic orbit H1, for the parameter �1,
the orbit H2, shown in Fig. 12 for the parameter �2, can be
thought of as a perturbed orbit around H1. Thus, we intro-
duce the map �1 :�0→�1 that describes a perturbation
around H1. Then, a point �r0 ,�0 ,z0=h� in �0 is mapped to �1

in the point �r1 ,0 ,z1� by

�1�r0,�0,h� = �rH1
+ a�1 + pr0 cos��0 + �1�,��1

+ qr0 cos��0 + �2�� ,

where �1=�−�1, rH1
represents the coordinate r of the

first crossing of H1 with the surface �1 and we suppressed

FIG. 12. A H2 homoclinic orbit in the coordinates of the eigenvectors of the
saddle-focus point �x=y=z=0�. We show the surface �0; on the top of the
cylinder at z=h and the surface �1 at y=0. P1 is the point that the unstable
manifold of the saddle-focus point crosses the first time on the plane �0;
�r1 ,z1� and �r2 ,z2� are successive mapping from �0 to �1 of the homoclinic
orbit.
the coordinate �=0 of the point in �1. The constants a, �, p,
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q, �1, and �2 depend on the flow. Note that, for �=�1,
�1�0,0 ,h�= �rH1

,0 ,0�, the points �0,0 ,h� and �rH1
,0 ,0� are

in H1.
Now we apply the same perturbation procedure to study

the bifurcation scenario of a subsidiary homoclinic orbit Hnj

�for �nj� from a primary homoclinic orbit Hj �for � j�.
For that, initially, we consider a point �r0 ,�0 ,z0=h� on
the surface �0. From this, as we showed, a point �r1 ,z1� on

znj =0, which contains a cosine function.
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the surface �1 can be obtained by applying �1�r0 ,�0 ,h�. The
second point �r2 ,z2� is determined by �2�r0 ,�0 ,h�
=�1�0�1�r0 ,�0 ,h�=�1�0�r1 ,z1�, so the third point �r3 ,z3� is
obtained by �3�r0 ,�0 ,h�=�1�0�1�0�1�r0 ,�0 ,h�
=�1�0�r2 ,z2�, and so on. So, the nth point �rn ,zn� is obtained
by �n�r0 ,�0 ,h�, that is given by
�1�0�rn−1,zn−1� = ��1�r0,�0,h� , n = 1

�r1 + prn−1� zn−1

h
�/	

cos�� + �1�,z1 + qrn−1� zn−1

h
�/	

cos�� + �2�� , n � 1. �
Now we use this map to generate a point �rnj ,znj� in �1 from the point P1= �0,0 ,h�, the first crossing of the unstable manifold
on �0. Then, we consider explicitly that a point �rnj ,znj� in �1, that is P1 mapped nj times from �0 to �1, is given by

�rnj

znj
 =��

rHj
+ a� j

�� j
 , n = 1


rj + pr�n−1�j� z�n−1�j

h
�/	

cos���n−1�j + �1�

zj + qr�n−1�j� z�n−1�j

h
�/	

cos���n−1�j + �2� � , n � 1� , �5�
where j�N is the order of the primary homoclinic orbit, nj
is the order of the subsidiary orbits �n�1�, ��n−1�j

= �� /	� ln �h /z�n−1�j�, � j =�−� j and rHj
represents the co-

ordinate r of the jth mapping from �0 to �1 of Hj.
The condition for the existence of any homoclinic orbit

Hnj is znj =0. Thus a homoclinic orbit Hnj is obtained as a
solution of Eq. �5� for znj =0 �the orbit returns to the fixed
point P0 after nj turns around P+�. This special solution can
be better visualized by introducing two auxiliary functions.
To apply that we introduce two auxiliary functions f =znj

−zj, and g=−zj; then the condition znj =0 implies that f =g.
In Fig. 13 we show the variation of f and g, as a function of
zj, with n=2, for two flows, one with the eigenvalues ratio
�= �� /	��1 and the other with �
1. In the first case, as the
Shilnikov condition for the existence of homoclinic orbits is
not satisfied, there is no solution for f =g and therefore no
homoclinic orbits �Fig. 13�a��. In the second case �Fig.
13�b�� the Shilnikov condition is satisfied and there are infi-
nite values of f =g and infinite homoclinic orbits H2j.
Equivalent results are obtained for n�2, therefore, in the
limit zj→0, the Shilnikov condition implies the existence of
an infinity number of order-nj homoclinic orbits accumulat-
ing into an order-�n−1�j orbit. Note that the limit zj→0 is
equivalent to � j→0. For the case when ��1, no subsid-
iary orbits exist.

The pairwise character of the primary families in Fig. 6,
i.e, the existence of two branches in their bifurcation curves,
can be inferred from the analytical solutions of Eq. �5� for
In Fig. 14 we illustrate the znj solutions given by Eqs.
�5�, for n=1, n=2 and n=3, in the neighborhood of � j. We
show zj, z2j, and z3j with respect to � j =�−� j. The ho-
moclinic orbits Hj, H2j, and H3j exist whenever the coordi-
nates zj, z2j, and z3j are equal to zero. An important fact in
this picture is the number of critical parameters �3j accumu-
lating into �2j tending to infinity as � j→0 �Fig. 14�b�� and
the infinity number of �2j accumulating into � j �Fig. 14�a��.
Moreover, in the parameter interval � j with a negative z2j,
there is no even homoclinic orbit H3j or Hnj for n�N. Thus
we identify intervals in the parameter space without any Hn

homoclinic orbits.
Therefore, in the accumulation of Hnj into H�n−1�j orbits

in Fig. 14, we can identify critical parameter sequences �nj
i

with homoclinic orbits Hnj
i �of order nj� for each of these

parameters. The scaling law describing this accumulation is

�nj
i − �nj

i+1

�nj
i−1 − �nj

i = exp−	�/�, �6�

where n�2 and j�1; 	 and � are determined by the eigen-
values of the saddle-focus fixed point for the parameter � j.
The upper index i identifies the sequences of these ho-
moclinic orbits Hnj

i appearing in the parameter vicinity of
H�n−1�j. So, given two consecutive homoclinic orbits with
parameters �nj

i and �nj
i+1, they accumulate for increasing i

into ��n−1�j, where the sequence satisfies ��nj
i −��n−1�j�

� ��nj
i+1−��n−1�j�. For n=2, we have the approach of the sub-

sidiary H2j into the primary Hj. For n�2, we have the ap-

proach of the subsidiary Hnj into the subsidiary H�n−1�j, in the
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vicinity of the primary Hj. For more details on the derivation
of Eq. �6� see Ref. 18. So, while subsidiary orbits accumulate
into primary orbits and have always others subsidiary accu-
mulating into them, primaries can only have subsidiaries ac-
cumulating into them, and they never accumulate into any
other primary.

The one-parameter bifurcation analysis shown in Fig. 14
cannot explain the two-parameter character observed in the
homoclinic bifurcations of the Chua parameter space of Figs.
8–10. In particular, the inflection of a d function, with the
consequent appearance of other local maximum and mini-
mum, as we vary the parameter �. Such behavior, in the znj

solution of Eq. �5�, comes from the second parameter in the
two-parameter analysis of this equation due to the coefficient
a of the term a� j.

The saddle index �= �� /	�, used in Ref. 17 as the other
parameter, is not appropriate here, because, for most primary
homoclinic curves, � does not vary much. For example, the
primary homoclinic curves H6 and H7 have �
0.2, as we
can see in Fig. 6. On the other hand, the parameter a, to be
varied to this work, depends on the flow that is sensitive to
the physical control parameter.

In Figs. 15�a�–15�d� we show z solutions of Eq. �5� for
four different values of a as we vary � j =�−� j with zj

	0.06. In the sequence of Figs. 15�a�–15�c�, Hnj orbits are
created when the local minima of z�n−1�j tend to zero. When
H�n−1�j orbit is created there is a finite number of Hnj solu-
tions that tend to infinity for zj→0 �Fig. 15�d��. Figure 15�e�
shows the theoretical obtained homoclinic bifurcation sce-
nario in the parameter space � j vs a. In this figure, the
filled circles along the family-Hnj curves for a
=a1 ,a2 ,a3 ,a4 represent � j values for which the znj function
is zero. This basic geometrical structure represents family-
Hnj curves accumulating into a family-H�n−1�j curve. Be-
tween each pair of family-Hnj curves one finds inner and
outer accumulations of family-H�n+1�j curves into the below
and above family-Hnj curves, respectively. These accumula-
tions obey the scaling law described by Eq. �6�, and between
two pairs of these family-Hnj curves no homoclinic orbits
Hm, with m�N, exist. This example of basic structure is of
the type within-to-within, where families appear one inside
the other.

Due to the within-to-within structure in which family
curves appear parallel to other family curves in parameter
space, the scaling of Eq. �6� is verified even if one checks the
accumulation process in transversal directions that are not

FIG. 13. The f and g functions, for ��1, not satisfying the Shilnikov
condition �a� and for, �
1, satisfying the Shilnikov condition �b�. f =z2j

-zj, and g=−zj.
strictly perpendicular to two accumulating family curves.
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Moreover, we can see an external subsidiary Hnj bifur-
cation curve on the left of Fig. 15�e�. This agrees with the H6

subsidiary curve in Fig. 8 localized externally of the primary
H2. Note that both figures present the within-to-within struc-
tures.

The described scenario, with the presented structures and
scaling laws, predicts all possible homoclinic bifurcation in
the parameter space.

V. CONCLUSIONS

By performing a theoretical normal form analysis of dy-
namical systems that present Shilnikov homoclinic orbits, we
obtain a complete description of homoclinic bifurcations and
a scaling law that reveals the basic structures formed by the
bifurcation curves in the parameter space of these systems.

We apply this analysis to the Chua circuit and derive
numerically all the main features of the homoclinic bifurca-
tion scenario of this system. Thus, we present new high order
primary homoclinic orbits in an extended parameter space.
This helps us obtain a complete bifurcation curve structure
and accumulation process for this system, extending the al-
ready known small regions in parameter space, nearby orbits
of order one, to the whole parameter space containing ho-
moclinic orbits of any order.

The obtained scenario is a codimension-one of bifurca-
tion curves in the two-parameter space. Thus, we find an
infinity number of bifurcation curves, each one representing
a type of homoclinic orbit, classified by a natural number
named order. These family curves appear organized in a
within-to-within structure, in which, given a family curve for
orbits of order nj, it can exist an infinity number of other
family curves of order �n−1�j accumulating into the order nj
family for � j→0, being all these curves are close to a
primary family curve of order j. The accumulating set of
family curves �of order �n−1�j and nj� is referred to as the
subsidiary set.

This accumulating scenario of subsidiary family curves
into subsidiary family curves as well as subsidiary family
curves into primary family curves is governed by a scaling
law, which was theoretically derived and numerically veri-
fied in the Chua circuit.

Due to the intimate connection between the homoclinic
orbits and other sets present in dynamical systems, the basic
structure of homoclinic orbit bifurcations should be seen as a
skeleton of the parameter space of such sets. Thus, the curve

FIG. 14. �a� Solutions znj in Eq. �5� for n=1, n=2 and n=3. For znj =0, the
parameters of homoclinic orbits of order 2j and 3j, accumulate into param-
eters of the orbit Hj, for the chosen parameters rHj

=1, a=0.1, �=1, p=1,
q=0.1, �=1, 	=2, �=100, �1=1, �2=1, and h=0.1. We show � j =�
−� j. �b� Magnification of the box indicated in �a�.
of a family in parameter space could guide one to search to
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particular properties in other coexisting sets, as one varies
parameters along that curve. Whenever there is a homoclinic
orbit, in a Chua circuit there is an infinity number of periodic
orbits and horseshoes associated with it.22 Therefore, infinity
number of periodic orbits and complex horseshoes will be
found following the same parameter scaling laws derived in
this work. A particular example of such an important connec-
tion between the homoclinic bifurcation structure and the
parameter space of chaotic attractors in the Chua circuit is an
imaginary line beneath all the primary homoclinic orbits
very close to the crisis line, in which the Rössler-type attrac-
tor bifurcates into the double scroll attractor, through a crisis-
induced intermittency.23 So, this crisis should be associated
with the creation of an infinity number of homoclinic orbits
and, therefore, an infinity number of horseshoes.

Thus, in this work we extend the previous knowledge
about structures of homoclinic bifurcation curves and accu-

FIG. 15. Solutions z of Eq. �5� for �n−1�j and nj. For z=0, we show the acc
to � j, for a1=62 �a�, a2=64 �b�, a3=68 �c�, a4=70 �d�. The chosen param
=0.1. � j =�−� j, where � j is the parameter of the primary Hj orbit. In �e
scenario in parameter space a�� j. In gray are the regions with the inn
indicated by the arrows. In the blank regions there are no homoclinic orbits
curves.
mulation of these curves in the parameter space.
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