
Shilnikov homoclinic orbit bifurcations in the Chua’s circuit
R. O. Medrano-T.
Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, 05315-970 São Paulo, Brazil

M. S. Baptista
Universität Potsdam, Institut für Physik, Am Neuen Palais 10, D-14469 Potsdam, Germany

I. L. Caldas
Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, 05315-970 São Paulo, Brazil

�Received 20 May 2006; accepted 31 October 2006; published online 7 December 2006�

We analytically describe the complex scenario of homoclinic bifurcations in the Chua’s circuit. We
obtain a general scaling law that gives the ratio between bifurcation parameters of different nearby
homoclinic orbits. As an application of this theoretical approach, we estimate the number of higher
order subsidiary homoclinic orbits that appear between two consecutive lower order subsidiary
orbits. Our analytical finds might be valid for a large class of dynamical systems and are numeri-
cally confirmed in the parameter space of the Chua’s circuit. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2401060�

Shilnikov homoclinic orbits are trajectories that depart
from a fixed saddle-focus point, with specific eigenvalues,
and return to it after an infinite amount of time (that is
also true to time reversal evolution). That results in an
orbit that is unstable and has an infinite period. These
two main characteristics contribute in the hardness for
its observation in a dynamical system as well as in nature.
However, its presence reveals fundamental characteristics
of the system involved, as the existence of unstable peri-
odic orbits embedded in a chaotic set. Once the unstable
periodic orbits give invariants quantities of this set,1 the
Shilnikov homoclinic orbits are also related to the char-
acteristics of the chaotic set. Their connection with the
fundamental dynamical properties is verified in a wide
variety of systems. A series of numerical and experimen-
tal investigations reveal how Shilnikov homoclinic orbits,
in the vicinity of a chaotic attractor, determine its dy-
namical and topological properties.4 Thus, the Shilnikov
orbits are related to the returning time of the trajectory
of a CO2 laser,5 also to the topology of a glow-discharge
system.6 Moreover, some class of spiking neurons are
modeled by chaos governed by such orbits,7,8 and their
presence are connected to the intermittence present in
rabbit arteries.9 These orbits are shown to be behind the
mechanism of noise-induced phenomena,10 and they are
also responsible for the dynamics of an electrochemical
oscillator.11 In this work, we contribute to the under-
standing of how Shilnikov homoclinic orbits appear on
the parameter space of systems as the ones above men-
tioned, by showing that these orbits are not only distrib-
uted following an universal rule but also exist for large
parameter variations. We then confirm our previsions in
the Chua’s circuit system.12

I. INTRODUCTION

The relation between homoclinic orbits and the existence
of a complex dynamical behavior was first noticed by
Poincaré, who studied the solvability of the equations of the

three-body problem in the end of the 19th century. He
showed the nonintegrability of them due to the existence of
homoclinic orbits which cause the appearance of sensitivity
to initial conditions. Then, in the sixties, Smale showed that
chaos in a discrete chaotic system implies the existence of
these orbits.2 Soon later, for a three-dimensional class of
continuous systems, Shilnikov3 showed that the existence of
a Shilnikov homoclinic orbit, defined as the joint of the
stable and unstable manifolds of a saddle-focus fixed point,
with specific eigenvalues,13 implies the existence of a horse-
shoe in the neighborhood of this orbit, and therefore, chaos.2

The existence of only one Shilnikov homoclinic orbit is
already sufficient to introduce a high degree of complexity in
a dynamical system. One-parameter local bifurcation analy-
sis, in the neighborhood of a Shilnikov homoclinic orbit,
shows that there exists an infinite number of other ho-
moclinic orbits.14–18 Similar analysis with the same consid-
erations have been done for complex trajectories with a high
number of loops.19,20 Since each orbit is associated with a
horseshoe, in the neighborhood of one homoclinic orbit,
there is an infinite number of chaotic sets.

In this context, it is important to localize the homoclinic
orbits in the parameter space, and to determine the structure
by which homoclinic orbits appear in this space. This knowl-
edge indicates the place of chaos and bifurcations of attrac-
tors in the parameter space and may help to understand the
relation between Shilnikov orbits and attractor bifurcations,
as done, for example, in Ref. 21 for the Rössler system.

In a parameter neighborhood of a homoclinic orbit, re-
garded as Hj, there is a series of homoclinic bifurcations
which creates subsidiary orbits, regarded as Hnj, that are to-
pologically equivalent to Hj. Following the traditional termi-
nology, we say that a homoclinic bifurcation happens for
some parameter if there is a homoclinic orbit for this param-
eter. Given a primary homoclinic orbit of any j order �Hj�
�the order of the orbit labels its topology�, we analytically
derive a scaling law that governs parameter distributions and

CHAOS 16, 043119 �2006�

1054-1500/2006/16�4�/043119/9/$23.00 © 2006 American Institute of Physics16, 043119-1

Downloaded 02 Jan 2007 to 143.107.134.77. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp

http://dx.doi.org/10.1063/1.2401060
http://dx.doi.org/10.1063/1.2401060


accumulations, i.e., a one-parameter approach of order nj
subsidiary orbits �Hnj� into order �n−1�j orbits �H�n−1�j�, in
the vicinity of a primary Hj �n , j�N with n�2 and j�1�.
This is an extension of previous results obtained by
Gaspard18 relating critical parameters of the accumulation of
the subsidiary H2 into the primary H1 homoclinic orbit. Our
derivation extends the one presented in Ref. 18 including not
only the accumulation of the subsidiary H2 orbit into the
primary H1 orbit but also the distributions of any subsidiary
Hnj. Our results also agree with the work of Feroe,19 that
shows that one H4 subsidiary homoclinic orbit in the neigh-
borhood of a H2 subsidiary has the same topology as the H2,
and not of the H1; therefore, one can consider the subsidiary
H2 to be a primary orbit. By showing that subsidiaries accu-
mulate into a subsidiary in the same way that subsidiaries
accumulate into a primary, we are led also to the same con-
clusion: a subsidiary can be thought of as a primary with a
set of subsidiary orbits that accumulates into it. The new
point in our work, as in the comparison with the results in
Ref. 19 is that our verification is based not only on the exis-
tence of orbits H2n, topologically similar to Hn, but in the
existence of families of subsidiaries H2nj that accumulate
into subsidiaries Hnj. In addition, we show that all sets of
homoclinic orbits Hlnj are distributed near Hnj following the
same scaling laws. Moreover, we also estimate the number of
subsidiary Hnj that appear between two consecutive subsid-
iary orbits H�n−1�j, in the vicinity of the primary orbit Hj.

As pointed out in Ref. 22, it is impossible to analytically
describe completely the parameter space structure of ho-
moclinic orbit bifurcations of three-dimensional systems
with homoclinic tangencies. On the other hand, our work
shows that we can understand very well the bifurcations in
the vicinity of the primary orbits, which appear in extended
regions of the parameter space. As a direct application of the
proposed theoretical approach, we accurately described the
bidimensional parameter space of the homoclinic orbit bifur-
cations in the Chua’s circuit, in the vicinity of the primary
orbits.23 This parameter space is not completely new, be-
cause it was already partially drawn in Ref. 24, in which a
few orbits can be observed. In the present work, though, we
show its microscopic structure, by revealing the scaling at
which subsidiary homoclinic orbits appear in extended re-
gions of the parameter space. Therefore, an experimentalist
that intends to reproduce our results has the flexibility of
finding homoclinic orbits �and the proposed scaling� using
parameters that are accessible from the experiment, and it is
not restricted to any special parameter condition. The choice
of this circuit is grounded in the following facts: �i� it is a
system that has Shilnikov orbits, fact explored to demon-
strate that this circuit is chaotic;25 �ii� we have already de-
veloped an accurate reliable method to determine homoclinic
orbits in piecewise systems,26 like the Chua’s circuit; �iii�
since this circuit is being widely used to demonstrate experi-
mentally properties of chaotic systems, we expect that the
results shown here could be quickly experimentally repro-
duced.

This work is organized as follows: In Sec. II, we present
the theoretical description for the bifurcation of the ho-
moclinic orbits, i.e., the proof that there is an infinite number

of homoclinic orbits and the derivation of the scaling law, the
rule by which these orbits appear in the parameter space. In
Sec. II A, we estimate the number of subsidiary homoclinic
orbits that appear between two consecutive subsidiary orbits.
In Secs. III and III A, we present the numerically obtained
scenario of homoclinic bifurcations in the Chua’s circuit and
we show the outstanding agreement between the introduced
theory and the numerical results. Finally, in Sec. IV are the
conclusions.

II. SCENARIO OF HOMOCLINIC ORBITS
BIFURCATIONS

Let us derive the scaling of the appearance of ho-
moclinic orbits in dynamical systems that can be reduced to
the following normal form:17

ẋ = �x − �y + P�x,y,z;��

ẏ = �x + �y + Q�x,y,z;�� �1�

ż = �z + R�x,y,z;��

where the eigenvalues of the saddle-focus fixed points are
�1=� and �2,3=�± i�, with ���0 and ��0. The functions
P, Q, and R are real, analytics, and vanish with their first
derivatives for the fixed point in the origin. � is a control
parameter.

Theorem 1: If there is a primary homoclinic orbit Hj

with order j for the parameter � j and the Shilnikov relation
�� /���1 is satisfied, there is an infinite number of subsidiary
homoclinic orbits Hnj

i for the parameters �nj
i in the neigh-

borhood of � j distributed in the parameter space with the
ratio

lim
i→�

��nj
i − �nj

i+1

�nj
i−1 − �nj

i � = e−��/�,

where i�N denotes the ith subsidiary homoclinic orbit of
order nj.

The studies in Refs. 16, 18, and 19 have shown that a C1

linearization of Eq. �1� is enough to investigate homoclinic
orbits bifurcations. So, to prove Theorem 1, we will consider
the first order terms of the Taylor development near the
saddle-focus around the parameter � j for which a primary
homoclinic orbit Hj exists. However, to observe other types
of bifurcations, as for example, bifurcations of periodic or-
bits close to a saddle-focus point, one should consider higher
order expansions as in Ref. 27.

In Fig. 1, we show an order-2 homoclinic orbit �H2�, a
solution of Eq. �1�, in the coordinates of the eigenvectors of
the saddle-focus point. We define two surfaces, 	0

= ��x ,y ,z��x2+y2�� r̃2 ,z=h	 and 	1= ��x ,y ,z��y=0� ,0�x
� r̃ ,0�z�h	, also represented in this figure by the dark
gray and light gray regions, respectively. The number n of
times that the trajectory is mapped from 	0 to 	1 gives the
order of the homoclinic orbits. In the region within the cyl-
inder containing these surfaces, the dynamics of Eqs. �1� is
given by its linearized form around the saddle-focus point
�x ,y ,z�= �0,0 ,0�. That is �r ,
 ,z�= �r0e−�t ,
0+�t ,z0e�t� in
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cylindrical coordinates. Note that an initial condition, inside
the cylinder at z=z0, needs a time t=1/� ln h /z0 to cross 	0.
Thus, the map �0 :	1→	0 is obtained by

�0�r0,0,z0� = �r0� z0

h
��/�

,�,h� ,

with �=� /� ln h /z0 and 
0=0.
Let us assume that there is a primary homoclinic orbit

H1 for the parameter �1. The point P1= �0,0 ,h� is mapped
from 	0 to 	1 to the point �rH1

,0 ,0�. We also assume that for
a parameter � close enough to �1, a point in 	0 close enough
to P1 is mapped nearby �rH1

,0 ,0� by the map �1 :	0→	1.
So, we may consider the map �1 a first order Taylor expan-
sion around the point �rH1

,0 ,0� in 	1. If one wants to con-
sider higher order terms in this expansion one should follow
the works in Ref. 28. However, for the accurate description
of the homoclinic bifurcations in the Chua’s circuit, the lin-
ear expansion is sufficient.

Putting this expansion in cylindrical coordinates, we ar-
rive at

�1�r0,
0,h� = �rH1
+ a
�1 + pr0 cos�
0 + �1�,0,m
�1

+ qr0 cos�
0 + �2�� ,

where 
�1=�−�1, rH1
represents the coordinate r of the

first crossing of H1 with the surface 	1, and the arbitrary
constants a, m, p, q, �1, and �2 depend on the flow and they
are not relevant for the scaling in Theorem 1. Note that for
�1�0,0 ,h� with �=�1 we obtain �rH1

,0 ,0�, which is the po-
sition of H1 in 	1.

Applying �1�0�r0 ,0 ,z0� we obtain a bidimensional map
� :	1→	1 given by

�r,z� = �rH1
+ a
�1 + pr0� z0

h
��/�

cos�� + �1�,m
�1

+ qr0� z0

h
��/�

cos�� + �2�� .

Here z is the vertical axis that contains P0 and P1, and r
is the distance between a point in 	1 and this axis.

To obtain an order-n homoclinic orbit in the vicinity of a
primary H1, we have first to determine the points where the
unstable manifold crosses 	1. The first point �r1 ,z1� is ob-
tained by �1�P1�= �rH1

+a
�1 ,m
�1�. The second point
�r2 ,z2� is obtained by �2�P1�=��1�P1�, the third by �3�P1�
=���1�P1� and the nth point �rn ,zn� is obtained by �n�P1�:

�rn

zn
� =
r1 + prn−1� zn−1

h
��/�

cos��n−1� + �1

z1 + qrn−1� zn−1

h
��/�

cos��n−1� + �2
�, n � 1,

where �n−1=� /� ln h /zn−1.
Generalizing this result to obtain an order-nj subsidiary

homoclinic orbit Hnj in the vicinity of an order-j primary
homoclinic orbit Hj, the point �rnj ,znj� is obtained by
�nj�P1�:

�rnj

znj
� =�

�rHj
+ a
� j

m
� j
�, n = 1


rj + pr�n−1�j
 z�n−1�j

h
��/�

cos���n−1�j + �1�

zj + qr�n−1�j
 z�n−1�j

h
��/�

cos���n−1�j + �2� � ,

n � 1

�
�2�

where 
� j =�−� j, and rHj
represents the coordinate r of the

jth crossing of Hj with the surface 	1. j�1 is the order of
the primary homoclinic orbit, and nj is the order of the sub-
sidiary orbits with n�2. Also, ��n−1�j =� /� ln h /z�n−1�j and
the constants �, �, and � are associated to the eigenvalues of
the fixed point of the primary homoclinic orbit Hj.

Having determined the points rnj, the condition for the
existence of any homoclinic orbit Hnj is znj =0,29 what im-
plies that

− zj = qr�n−1�j
 z�n−1�j

h
��/�

cos���n−1�j + �2� . �3�

To ensure the existence of a solution in Eq. �3� note that in
the limit z�n−1�j→0 the dominant terms are zj, on the left-
hand side, and �z�n−1�j��/�, on the right-hand side. From Eqs.
�2� we can see that zj � �z�n−1�j�MAX, where �z�n−1�j�MAX

means the maximal amplitude of z�n−1�j. When the Shilnikov
condition �� /���1 is satisfied, in the limit z�n−1�j→0, zj

� �z�n−1�j�MAX
�/� , which guarantees that the amplitude of the

term containing the cosine function decreases slower than
the value of zj. For z�n−1�j→0, the phase of the cosine func-
tion goes to infinity, which implies that there are an infinite

FIG. 1. An H2 homoclinic orbit in the coordinates of the eigenvectors of the
saddle-focus point �x=y=z=0�. We show the surface 	0 on the top of the
cylinder at z=h and the surface 	1 at y=0. P1= �0,0 ,h� is the point that the
unstable manifold of the saddle-focus point crosses the first time the plane
	0. �r1 ,z1� and �r2 ,z2� are successive points on 	1 mapped from 	0. WS is
the surface of the stable manifold nearby the saddle-focus point.
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number of solutions for znj =0, as zj→0. Therefore, the
Shilnikov condition implies the existence of an infinite num-
ber of arbitrary order-nj homoclinic orbits with 
� j�0, in
the vicinity of Hj. This is always true whenever all the con-
ditions imposed by the Shilnikov Theorem are satisfied.

In Fig. 2 we illustrate the znj solutions of Eqs. �2�, for
n=1, n=2, and n=3, in the neighborhood of � j where the
constants a, m, p, q, �1, and �2 were adjusted such that we
can have a good visualization of the parameter space. We
show zj, z2j, and z3j with respect to 
� j =�−� j. The ho-
moclinic orbits H2j and H3j exist whenever the coordinates
z2j and z3j are equal to zero, respectively. And for 
� j =0, Hj

exists. An important fact in this picture is the similarity of
the distribution of orbits between the finite number of H3j

near H2j �see the inset in Fig. 2� and the infinite number of
H2j accumulating into Hj, for 
� j→0. Also, in the param-
eter interval 
� j with a negative znj, there is not any ho-
moclinic orbit. Note that there are infinite solutions of z3j

=zj accumulating into the parameter �2j �see the solution of
znj with n=3 in Eqs. �2��, and that lead to a distribution of
finite parameter values �3j �for which H3j homoclinic orbits
exist� that appear close to the parameters �2j �for which H2j

homoclinic orbits exist�. In this sense we say that �nj �Hnj� is
approaching into ��n−1�j �H�n−1�j�.

We introduce an upper index i to identify the many ho-
moclinic orbits Hnj

i appearing in the parameter vicinity of
H�n−1�j. For 
� j→0, given two consecutive homoclinic or-
bits that appear for the parameters �nj

i and �nj
i+1, the param-

eter difference ��nj
i −��n−1�j� decreases as i grows. The se-

quence for which orbits appear satisfies ��nj
i −��n−1�j�

� ��nj
i+1−��n−1�j�. In the limit of zj→0, Eq. �3� leads to �i+1

−�i=� for two consecutive solutions, where �i=��n−1�j
i +�2

is the phase of the solution i �znj
i =0� and �i+1=��n−1�j

i+1 +�2,
the phase for the consecutive solution i+1 �znj

i+1=0�. Thus
whenever the Shilnikov condition �� /���1 is satisfied, we
arrive at

z�n−1�j
i+1

z�n−1�j
i = e−��/�. �4�

In Eqs. �2� znj has a smooth solution if z�n−1�j �0
�z�n−1�j �0, znj does not have a solution�. Thus, we conclude
that d /d
� jz�n−1�j =−d /d�z�n−1�j �const. in a neighborhood
for which �nj

i −�nj
i+1 is small, as we can see in the inset of

Fig. 2. Thus, z�n−1�j
i −z�n−1�j

i+1 /�nj
i −�nj

i+1=z�n−1�j
i−1 −z�n−1�j

i /�nj
i−1

−�nj
i . Equation �4� implies that z�n−1�j

i −z�n−1�j
i+1 /z�n−1�j

i−1 −z�n−1�j
i

=e−��/�. So, finally, we arrive at the result announced by
Theorem 1,

lim
i→�

��nj
i − �nj

i+1

�nj
i−1 − �nj

i � = e−��/�. �5�

Note that the limit i→� is obtained for zj→0, i.e., 
� j

→0. So, in this limit, for n=2, we have the accumulation of
the subsidiaries H2j into the primary Hj. Considering the
primary homoclinic orbit parameter � j =0, for j=1 and n
=2, Eq. �5� describes the countable set of H2 as shown in
Refs. 16 and 20 deduced originally in Ref. 18.

For completeness, as demonstrated in Ref. 19, an H2

subsidiary homoclinic orbit can be thought of as a primary
homoclinic orbit. So, in general terms, we should find that
there is a set of orbits H2nj accumulating into a set Hnj, in a
similar fashion that a subsidiary H2j accumulates into a pri-
mary Hj. Thus, Fig. 3 shows a set of H4j accumulating into
H2j, both subsidiaries of Hj.

To demonstrate that the scaling in Theorem 1 is also
valid for this accumulation, we consider that, in the neigh-
borhood of 
� j =0, for 
� j→
�nj, �rlnj ,zlnj�= �rHnj
+a
�nj ,m
�nj� for l=1, where 
�nj =�−�nj and rHnj

rep-
resents the coordinate r of the njth crossing of Hnj with the
surface 	1. That conduces to equivalent solutions of Eq. �2�
which results in the accumulation of H2nj into Hnj. Since we

FIG. 2. Distribution of homoclinic or-
bit parameters �2j into � j and �3j into
�2j. The curves gives the coordinate
znj of the unstable manifold intersec-
tions with the surface 	1 �given by the
solutions terms of Eqs. �2�� for n=1,
2, 3, in terms of 
� j =�−� j. Each
znj =0 gives �=�nj, the critical param-
eter of a homoclinic orbit Hnj, for the
chosen parameters rHj

=1, a=0.1, m
=1, p=1, q=0.1, �=1, �=2, �=100,
�1=1, �2=1 and h=0.1. We show

� j =�−� j. In the inset is a magnifi-
cation of the box.

FIG. 3. A countable set of subsidiaries H4j accumulating into a subsidiary
H2j. The z3j curve is oscillating around the zj curve. The z2j is zero in 
�2j

and cannot be distinguished by the axis 
� j in this scale. The subsidiary H2j

occurs in 
�2j, indicated by the arrow. Parameters are the same presented in
Fig. 2.
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are considering 
� j→0, the distribution and accumulations
of homoclinic orbits, obtained by this analysis, also obeys
Eq. �5�. This shows that the scaling law predicted by Theo-
rem 1 is valid for all subsidiary homoclinic orbits.

A. Estimation of the number of subsidiary
homoclinic orbits

Knowing that the distribution of subsidiary homoclinic
orbits obey the scaling law given by Eq. �5�, we can improve
our knowledge about the bifurcation of homoclinic orbits
estimating the number of Hnj subsidiaries that exist between
two consecutive H�n−1�j subsidiaries.

The inset of Fig. 2 shows that we can consider the z
curve locally symmetric, which conduces to equivalent solu-
tions of Eq. �3�. Figure 4 illustrates a generic form of the znj

solutions. In this figure the triangles formed by the vertices
���n−1�j

i+1 , �nj
i+1, z�n−1�j

i+1 � and ���n−1�j
i+1 , �nj

i , z�n−1�j
i � can be consid-

ered approximately similar rectangular triangles, where the
vertices z�n−1�j

i+1 and z�n−1�j
i are points on the curve z�n−1�j for

the parameters �nj
i+1 and �nj

i , respectively. Therefore, we have
that �nj

i −��n−1�j
i+1 /�nj

i+1−��n−1�j
i+1 =z�n−1�j

i /z�n−1�j
i+1 which equals

the inverse of the right-hand side of Eq. �4�, and therefore,
we arrive at

�nj
i − ��n−1�j

i+1

�nj
i+1 − ��n−1�j

i+1 = e��/�. �6�

In order to estimate the number of subsidiary homoclinic
orbits between two consecutive orbits, we consider the fact
that the total number of elements of the geometric progres-
sion series �ai ,ai+1 , . . . ,aN�, with i= �1,2 ,3 , . . . ,N� and ratio
qi−1=ai /a1, is given by

N =
ln�aN/a1�

ln�q�
+ 1.

So, defining the first element a1 to be the parameter distance
a1=�nj

*i+1−��n−1�j
i+1 , the last element aN= ���n−1�j

i −��n−1�j
i+1 � /2,

and the geometric ratio q given by Eq. �6�, we estimate the
number N of Hnj orbits within two consecutive H�n−1�j by
N=Ni+Ni+1, where Ni is the number of orbits that appear in
the right-hand side of the z�n−1�j curve �in Fig. 4� and Ni+1 the
number on the left-hand side. We find that

Nk = � �

��
ln���n−1�j

i − ��n−1�j
i+1

2��nj
*k − ��n−1�j

k �� + 1� , �7�

where k represents either i or i+1 and the � 	 operator implies
that only the integer part of the right-hand side of Eq. �7� is
taken.

We should expect that Ni�Ni+1. As the frequency of
z�n−1�j increases for z�n−2�j→0, the closer is one of the sides
of the curve z�n−1�j to the orbit H�n−2�j, the larger is the num-
ber of Hnj found. But, for the limit zj→0, the difference
between Ni and Ni+1 is irrelevant compared to the total num-
ber N of orbits Hnj. At this situation, it is justified to consider
that N�2Nk and, therefore, between two orbits H�n−1�j there
are approximately 2Nk orbits Hnj.

III. HOMOCLINIC BIFURCATION
IN THE CHUA’S CIRCUIT

To confirm our analytical findings, we use the Chua’s
circuit12 whose rescaled equations are

ẋ� = ��y� − x� − k�x��� ,

ẏ� = x� − y� + z�, ż� = − �y�, �8�

k�x�� = bx� + 1
2 �a − b���x� + 1� − �x� − 1�� ,

and we set a=−8/7 and b=−5/7. � and � are control pa-
rameters.

The phase space of Eq. �8� has three domains: D0

= �R3 �x� � �1	, D+= �R3 �x��1	, and D−= �R3 �x��−1	.
There is a fixed point in each domain: P0= �0,0 ,0�, in D0,
and P±= �±l ,0 , � l�, in D±, where l= �b−a� / �b+1�=1.5. We
focus our attention in homoclinic orbits to the saddle-focus
point P0. For this point, the Jacobian matrix of Eq. �8� has a
pair of complex conjugate eigenvalues −�± i� that determine
the bidimensional stable subspace, ES�P0�, tangent to the
stable manifold in the vicinity of P0. It has also a real eigen-
value �, that determines the one-dimensional subspace
EU�P0�, which is tangent to the one-dimensional unstable
manifold. A geometrical description of the Chua’s circuit can
be seen in Fig. 5; more details are in Ref. 26, where we have
also described the conditions for the existence of a ho-
moclinic orbit to the point P0.

The relation between the coordinates used in Eq. �1�,
which led to the scaling in Eq. �5�, and the coordinates used
in Eq. �8� can be understood by the following analogy. The
axis z, the plane WS, 	0, and 	1 in Fig. 1 correspond to the
unstable subspace EU�P0�, the plane ES�P0�, U+, and a plane

FIG. 4. We show the curves zj, z�n−1�j, and znj, and the parameters ��n−1�j
i+1 and

��n−1�j
i corresponding to two consecutive subsidiary orbits H�n−1�j

i+1 and
H�n−1�j

i . Likewise, �nj
i+1 and �nj

i represent the parameters for which there are
two consecutive subsidiary orbits Hnj

i+1 and Hnj
i . The upper index *k �with

k= �i , i+1	� indicates the closest parameter �nj to ��n−1�j
i+1 �k= i+1� or to

��n−1�j
i �k=1�.
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that contains EU�P0� in Fig. 5, respectively. The distance d is
linearly related to the z coordinate, used in Fig. 1, by a linear
coefficient obtained from the relation between the �x� ,y� ,z��
Chua’s coordinates to the �x ,y ,z� theoretical coordinates.

In the proposed theory the order of a homoclinic orbit
defines the number of times the point P1 is mapped from 	0

to 	1, while for orbits in the Chua’s circuit, the order defines
the number of turns the orbit makes around the fixed point
P+. Both notions are equivalent in the sense that whenever,
in this system, an orbit turns around the point P+, there can
almost always be found two planes 	0 to 	1, where similar
mappings like Eqs. �2� exist. Numerically, finding an order-
nj homoclinic orbit, Hnj, is equivalent to find a parameter set
for which dnj =0, with dnj being the distance between the
trajectory that leaves, EU�P0� and turns nj times around P+,
and the line L+ on the plane U+, as represented in Fig. 5.
�More details on the definition of d can be seen in Ref. 26.�

To illustrate the way we classify the homoclinic orbits,
by specifying an order and whether or not it is a primary or
subsidiary orbit, in Fig. 6 we show three order-8 subsidiary
orbits �a–c� that appear in the vicinity of the order-4 primary
�d�. To determine the order of the orbit, i.e., how many times
the orbit turns around the point P+, indicated in �d�, we count
the number of times that the orbit crosses the line x�=1.5
�the x� coordinate of P+ shown in �a�� in the direction where
the x� coordinate is decrescent. Note that the subsidiary or-
bits preserve the form of the primary. In addition, as �8

i ap-
proaches the parameter �4, for which there is a primary H4,
the order-8 subsidiary orbits resembles more and more the
primary. So, to discern if an order-k is a subsidiary orbit �k is
an integer multiple of j�, that accumulates/approaches into an
order-j primary, or a primary orbit, one could simply note
that the order-k subsidiary orbit would resemble the primary
order-j orbit.

In order to extend the results in Eqs. �4� and �5� to the
Chua’s circuit, we put Eq. �4� in terms of the distances d. As
previously discussed, the dnj curve is linearly related with the
znj curve, so

dnj = Cznj , �9�

with C being a term that slowly varies in a linear rate pro-
portional to 
� j =�−� j and thus it is treated as a constant.
That implies that for small 
� j,

d�n−1�j
i+1

d�n−1�j
i = e−��/�.

This equation lead us to a scaling for the parameter distance

� j =�nj −� j of subsidiary homoclinic orbits of order nj in
the vicinity of primaries of order j

S =
�nj

i − �nj
i+1

�nj
i−1 − �nj

i . �10�

For larger i values, 
� j decreases, and the scaling S should
converge to the one in Eq. �5�, ST=e−��/�. Although this
scaling law was derived for smooth systems, it is also valid
for the non smooth Chua’s circuit because near the fixed
point P0 the differential equations �8� are smooth. Moreover,
for the Chua’s circuit, the surfaces 	0 and 	1 �defined for the
mappings used to derive the scaling law� are inside one do-
main �D0�, for which the system is linear, i.e., smooth.

In the parameter space of Fig. 7�a� primary homoclinic
orbit bifurcations are identified. Except for the H1 bifurcation
line, all the other bifurcation lines �orders varying from 2 to
7� have two branches, left and right, as indicated for the H7

curve. For parameters within a region bounded by a bifurca-
tion line dj �0 and, therefore, no subsidiary orbits are found.
That is shown in Fig. 7�b� for �=8.8, where it is shown the

FIG. 5. Three-dimensional phase space of Eq. �8�, with a slight rotation
around the y� axis, for a better visualization. P0 is the homoclinic orbit point
and ES�P0� and EU�P0� are its stable and unstable subspaces, both limited by
the plane U+= �R3 �x= +1	 which is the boundary of the domains D0 with
D+. The distance between P1�, which is on the plane U+, and the line L+

=ES�P0��U+ is d1. d2=0, so there is a homoclinic orbit H2, whose trajec-
tory turns 2 times around the fixed point P+.

FIG. 6. Three subsidiary order-8 homoclinic orbits �a–c� in the vicinity of
the order-4 primary �d� that appear for the parameters �=52 and �8

1

=23.639 33 �a�, �8
2=23.640 35 �b�, �8

3=23.640 45 �c�, �4=23.640 51 �d�.
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accumulation of subsidiaries H6 into two primaries H3 by the
left and right sides. Within the � interval where d3�0, there
are no Hnj homoclinic orbits. These orbits appear between
the right branch of an order-�j+1� primary orbit and the left
branch of an order-j primary orbit. A complete picture and
topology analysis of this microscopic character of the ho-
moclinic bifurcation scenario in the Chua’s circuit can be
seen in Ref. 23.

An example of the relation between the existence of ho-
moclinic orbits and fundamental properties and bifurcations
in the Chua’s circuit can be seen in Fig. 7�a�. In this figure,
� j

min represents the minimum � value for a given Hj. The
resulting curve connecting all the minimum parameter values
�� ,� j

min�, for which primary homoclinic orbit exist, is very
close to the crisis line in which the Rössler-type attractor
bifurcates into the Double Scroll attractor through a crisis-
induced intermittency.30 So, this crisis should be associated
with the creation of an infinite number of homoclinic orbits
and therefore, an infinite number of horseshoes.

In Figs. 8�a�–8�d� we show a series of pictures showing
the approach of Hnj homoclinic orbits into the orbit H�n−1�j.
This scaling constitutes the characterization of the micro-

scopic structure of the homoclinic bifurcation scenario in the
bidimensional parameter space of the Chua’s circuit. In the
vertical axis we show S determined by Eq. �10�. The line
represents the value ST, with � and � calculated for param-
eters of the primary homoclinic orbits. Figures 8�a� and 8�b�
show the scaling of the approach of subsidiaries H2j into
primaries Hj. In �a� the primary H1 appears for �1

=2.758 67 and �=3, while in �b� the primary H4 appears for
�4=23.640 51 and �=52. The approach of subsidiaries Hnj

into subsidiaries H�n−1�j is shown in Figs. 8�c� and 8�d�. In
�c�, H3 approaches into H2 ��2=6.199 62, �=7.5�, in the
vicinity of the primary H1 ��1=6.199 66, �=7.5�, and in �d�
H6 approaches into H4 ��4=15.400 64, �=25�, in the vicin-
ity of the primary H2 ��2=15.405 98, �=25�. Note that the
scaling with which parameters of subsidiary orbits
accumulate/approach into H4 in �b� and �d� are far away from
the parameter for which the primary H1 appears, and there-
fore, it is clear the validity of the Theorem 1 for extended
regions in the parameter space. While the scaling S con-
verges to ST for accumulations of subsidiaries into the pri-
maries, as i grows �Figs. 8�a� and 8�b��, for the approaching
of subsidiaries into subsidiaries, the theoretical ratio ST gives
a good estimation of the obtained S values �Figs. 8�c� and
8�d��. It reflects the fact that there is no accumulation of
subsidiaries Hnj into subsidiaries H�n−1�j because, in this re-
gion, there is a finite number of Hnj. Nevertheless, there is an
infinite number of Hsj, with s�n.

A. Estimation of the number of subsidiary orbits
in the Chua’s circuit

In the following, we show that the number of subsidiary
orbits between subsidiary orbits can be estimated by

FIG. 7. �a� Parameter space of the primary homoclinic orbits Hn, with n
=1, . . . ,7. �b� Accumulation of subsidiaries H6 �d6=0� into two primaries
H3 �d3=0� for �=8.8. The vertical axis shows on the left side the value of d6

and on the right side the value of d3. � j
min represents the minimum � value

for a given Hj.

FIG. 8. The scaling S=�nj
i −�nj

i+1 /�nj
i−1−�nj

i of the approach of Hnj into the
H�n−1�j homoclinic orbit, for j=1, n=2, and ST=e−��/�=0.0293 �a�, j=4, n
=2, and ST=0.0786 �b�, j=1, n=3, and ST=0.0374 �c�, and j=2, n=3, and
ST=0.0594 �d�.
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Nk = � �

��
ln���n−1�j

i − ��n−1�j
i+1

2��nj
*k − ��n−1�j

k �� + 1� , �11�

where �nj
*k=i represent the parameter of the closest subsidiary

Hnj to the subsidiary H�n−1�j
i , and �nj

*k=i+1 the parameter of the
closest subsidiary Hnj to H�n−1�j

i+1 �and therefore closer to the
orbit H�n−2�j�. Nk is the estimated number of orbits Hnj ap-
proaching into H�n−1�j

i �k= i� or into H�n−1�j
i+1 �k= i+1�. To de-

rive Eq. �11� we have used Eq. �9� in Eq. �7�.
Figure 9 shows the distribution of the subsidiary H3 or-

bits within two consecutive subsidiary H2, in the vicinity of a
primary H1 orbit. Using the � parameter values indicated in
the caption of Fig. 9, and the fact that e��/�=1/0.0374, we
can estimate the number of orbits H3 that appear for param-
eters for which the d2 curve is crescent �k= i� and decrescent
�k= i+1�. We arrive that Ni=4 and Ni+1=6, which is exactly
the number of orbits observed in our simulations. So, the
number of orbits from the left side of the crescent d2 function
is lower than the number of orbits from the right side of the
decrescent d2 function.

IV. CONCLUSION

In conclusion, it has been known that homoclinic orbits
bifurcate in dynamical systems that have saddle-focus points,
when the condition of Shilnikov is satisfied.14,18 Here, a sce-
nario of these bifurcations was demonstrated in the neighbor-
hood of any primary homoclinic orbit Hj �j�N�. In Ref. 18
a scaling law was derived for H2 accumulating in H1 ho-
moclinic orbits. Here, we derived an exponential scaling law
that describes the parameter distribution of general sets of
subsidiary homoclinic orbits Hnj �n�2� near the parameter
for which primary homoclinic orbits Hj exists. As it was
discussed in Sec. II, our result is in agreement with Refs. 16
and 20 and it was verified by either calculating the distribu-

tion of subsidiary homoclinic orbits in the vicinity of a pri-
mary one, in the Chua’s circuit, or by predicting the number
of subsidiary Hnj orbits that appear between a pair of con-
secutive H�n−1�j subsidiary homoclinic orbits, in the vicinity
of a Hj. Moreover, one can consider any subsidiary as a
primary orbit with families of subsidiary orbits distributed
nearby with the same scaling law.

A relevant achievement in this work was to show that the
proposed scaling is valid in the neighborhood of any primary
homoclinic orbit, and the prediction clearly demonstrated to
be valid in the parameter space of the homoclinic bifurcation
in the Chua’s circuit. The fact that this scaling is valid ev-
erywhere in this parameter space has a great experimental
appeal, since an experimentalist is not restricted to looking
for homoclinic orbits in a particular range of parameters, but
is free to use possible accessible parameters, available in the
experiment.

Whenever there is a Shilnikov homoclinic orbit, there is
an infinite number of periodic orbits and horseshoes associ-
ated with it.25 Therefore, an infinite number of periodic orbits
and complex horseshoes will be found following the same
parameter scaling laws derived in this work. As discussed in
Ref. 18 the presented scaling should be also valid for higher
dimensional systems.

These results indicate how sensitive the system is to
even small changes of the control parameters, and, further-
more, they can be used to determine critical regions in the
parameter space where attractor bifurcations occur. Thus, our
approach, using Shilnikov’s theorem to understand how
Shilnikov orbits are created, may contribute to understanding
the relation between homoclinic Shilnikov orbits and bifur-
cations in chaotic attractors.

Our analytical findings are valid for systems whose dy-
namical behavior in the vicinity of the saddle-focus point are
given by a linear transformation. It remains to be seem to

FIG. 9. Curves d2 and d3. �a–b� are successive magnifications of �c� in the region close to the parameter �2
i =6.199 620 571 935 for which there is a subsidiary

H2 orbit �filled circle in the left of the figure�. �d–e� are successive magnifications of �c� in the region close to the parameter �2
i+1=6.199 654 388 756 for which

there is a subsidiary H2 orbit �filled circle in the right of the figure�. The leftmost H3 orbit appears for the parameter �3
*i=6.199 620 572 167 indicated in �b�

and the rightmost H3 orbit appears for the parameter �3
*i+1=6.199 654 388 755. In �c� the left and the right vertical axes indicate the values of the d2 and d3

curves, respectively. The indices l and r differentiate the left series �crescent d2 function� to the right series �decrescent d2 function� of �3
i .
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which class of dynamical systems this linear transformation
succeeds in describing their homoclinic bifurcation scenario.
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