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Abstract

Basic phenomena in chaos can be associated with homoclinic and heteroclinic orbits. In this paper, we present a general
numerical method to demonstrate the existence of these orbits in piecewise-linear systems. We also show that the tangency of
the stable and unstable manifolds, at the onset of the chaotic double-scroll attractor, changes the basin boundafi@sibf two
sets. These changes are evidence of homoclinicity in the dynamical system. These basins give complete information about the
stable manifolds around the fixed points. We show that trajectories that depart from these boundaries (for backward integration)
are bounded sets. Moreover, we also show that the unstable manifolds are geometrically similar to the existing attracting sets.
In fact, when no homo- (hetero-)clinic orbits exist, the attractorgdimnit sets of initial conditions on the unstable manifolds.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

A homoclinic orbit occurs when the stable and unstable manifolds of a fixed point join. These manifolds have
the following properties: trajectories departing from initial conditions on the stable manifold approach the fixed
point ast — +o0; trajectories departing from initial conditions on the unstable manifold approach the fixed point
ast — —oo. A manifold that forms a closed loop connecting two or more fixed points is cahetksoclinic orbit
There are two main difficulties to obtain homoclinic or heteroclinic orbits: both the parameter sets for which the
manifolds join and the geometry of the manifolds are unknown.

It is known that the existence of homoclinic orbits is a signature of global changes in the dynamics. In two-
dimensional systems studied by Andronov e{H], the onset of a homoclinic orbit causes the sudden appearance
of periodic orbits. In the Lorenz system, homoclinic orbits can be associated with the bifurcations of a periodic set
to form a chaotic sd,3]. In the double-scroll system, the birth and changes of chaotic attractors can be related to
homoclinic bifurcation$4]. For a three-dimensional class of systems, Shiln[kew] showed that the existence of
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a homoclinic orbit may imply the existence of a horsedj&)@] in the neighborhood of this orbit that is responsible
for the creation of a chaotic set.

Asystemis chaotic if it has sensitivity to initial conditions, is transitive, and has an uncountable number of periodic
orbits. By Shilnikov’s theorenf5—7], homaoclinicity can imply the existence of a horseshoe and consequently the
three conditions for chaotic motion.

However, a homoclinic orbit is structurally unstable, which means that arbitrary small parameter perturbations
may destroy it and, as a consequence, also destroy its associated horseshoe. So, to better understand the role of
homoclinic orbit in the global dynamics and the existence of chaotic motion, we look for its relation with more
stable sets, like attracting sets (which are different from the sets in the neighborhood of the homoclinic orbit), basins
of attraction, and for specific structure of the manifolds.

We choose to work with the double-scroll circ[liD,11]because itis a piecewise system of the family for which
the Shilnikov theorem applies. That is, a homoclinic orbit exists for a set of parameter ranges for which a chaotic
attracting set also exists.

In general, calculating homoclinic orbits is not an easy task. In a piecewise system, we can partially determine
analytically the stable and unstable subspaces containing the manifolds close to the fixed point. This can be use
in a semi-analytical approach to numerically determine the homo- (hetero-)clinic orbit. In a piecewise system, the
phase space is divided into domains, each with its own fixed point. Thus, it is possible to know the topology of
the manifolds in each domain within a neighborhood of these points. The procedure presented here is generally
applicable to any three-dimensional and piecewise-linear dynamical system.

In addition to numerically obtaining homo- (hetero-)clinic orbits, we also give conditions to numerically demon-
strate the existence of a homo- (hetero-)clinic orbit to a fixed point. Furthermore, we investigate the relation of this
orbit with the manifolds of the homoclinic point, the attracting set, and the basins of attraction. We also contribute to
an understanding of how the presence of a homoclinic orbit changes the geometry of the trajectories, based only or
the information about the subspaces. This topological description is used to describe the manifold’s characteristics
and topology and their relationship to the attractors. Finally, we show that the existence of a homoclinic orbit implies
changes in the manifolds that result in a global change of a basin of attractiordirait set.

This paper is organized as follows.3ection 2we present the double-scroll circuit, andSection 3its subspaces
and manifolds. IrSection 4 we show how to numerically demonstrate the existence of the homo- (hetero-)clinic
orbit, and inSection 5 we show the relationship between the homoclinic orbits, the manifolds, the basins of
attraction, and the attractors. Final§gction 6contains the conclusions.

2. Thedouble-scroll circuit

The double-scroll circuitL0,11]illustrated inFig. 1(a) has two capacitor€ andC>), one inductor ), a linear
resistor represented by its admittange<{1/R), and a nonlinear resistoR().

Fig. 1(b) shows the circuit characteristic curvep andm, are the slopes for the linear region, at#, are
the values of thé/c, for which the slope changes. Applying Kirchoff's law to the circuit and changing to the
dimensionless formd{= V¢,/B,, y = V,/Bp, 2 = i1 /9By, & = C1/Ca, p = C2/Lg?, T = gt/ C2, a = m1/g,
andb = mg/g) we have the circuit equations:

x:a[y_x_k(x)]v j/ZX—y-i-z, Z:_ﬂy7 (1)
where
k(x) = bx+ 3(a —b)(Ix + 1| — |x — 1) (2)

anda = —8/7,b = —5/7. Thus, the control parameters arandp.
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Fig. 1. (a) Schematic diagram of the double-scroll circlit, andVc, are the potential across capacitéisandCy, respectively, and;, is the
current across the inductdr. (b) Characteristic curve of the nonlinear resistaRge showing the currentz, acrossRy, with respect td/c, .

3. Subspaces of the manifolds

According toEq. (2) we divide the domain dgq. (1)into three partsDg = {R3: |x| < 1}, D; = {R3: x > 1},
andD_ = {R3: x < —1}. In each domain, there is a fixed poiffg = (0, 0, 0) in Dg and P+ = (+¢, 0, F¢£) in
D4, wheret = (b — a)/(b+ 1) = 1.5. This system has three eigenvalues in each domain. In the domaiasad
D_, the eigenvalues are the same.

When there is a chaotic set, one eigenvalue is real and the other two are complex conjugate. The complex
eigenvalues are responsible for the two eigenvectors that determine a two-dimensional planar subspace, and the
real eigenvalue is associated to the eigenvector that determines a linear subspace. In a domain around each fixec

Fig. 2. Stable £5) and unstablek") subspaces of the fixed poinks, P, and P_. The planes/+ = {R® : x = +1} are the boundaries of the
domainsDg with D.. In Dg the unstable subspacE\{(Py)) is a line and the stable subspad®(Pp)) is a plane. InD.., the unstable subspace
(EY(Py))is aplane and the stable subspa€g((P+)) is aline. The line... is the intersection aEY (P+) with the plane/.. Lor = ES(Po)NU-+
andQi =Ly N Lot.
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point, the manifoldV are either straight lines or surfaces and coincide with the associated linear subspace. This
behavior is unlike general nonlinear systems, where subspaces and manifolds are tangent to each other only locally
in piecewise-linear systems, this tangency occurs not only in a point but in a large region of the subspace close
to the fixed pointEq. (1)is linear within the domains, and the stability of the manifolds is determined by the
sign of the real part of the eigenvalu€sg. 2 represents the subspaces of the fixed poin&&pf(1) The planes

Ui = {R® : x = +1} are the boundaries of the domaifg with D.. In Do, the unstable subspac&Y{(Po))

is a line and the stable subspad(Pp)) is a plane. InD., the unstable subspacEY{(P.)) is a plane and the

stable subspaceE?(Pi)) is a line. The lineL is the intersection oY (Py) with the planeU.. Notice that

Lo+ = ES(Po)NU+ andQ+ = L4 N Lox.

4. Method to obtain homo- (hetero-)clinic orbits

The problem of calculating homoclinic orbits of a fixed point requires that one find a local neighborhood around
the fixed point that maps to itself for— +o0o. Eq. (1) has an important property: the invariant dynamics in a
neighborhood of the fixed point exists only in a planar subspace and a linear subspace. Therefore, the calculatior
of a homoclinic orbit is reduced to the verification of the existence of a local neighborhood of the fixed point along
one subspace, that, when iterated by the dynamics fer+oo, approaches the neighborhood of the fixed point
on the other subspace. It is clear that defining a neighborhood on the linear subspace is easier than in the plane
subspace. Therefore, the calculation of a homoclinic orbit is drastically simplified: we verify the existence of a
local neighborhood of the linear subspace that, when iterated by the dynamics, approaches the planar subspace f
t — Foo.

The calculation of heteroclinic orbits is completely equivalent to that to the homoclinic orbit. However, we have
to show the existence of a neighborhood of the fixed pai) that goes to anotheP{) for 1 — F-co0. Because
Eg. (1)has odd symmetry, if the former condition is satisfied, then there exists a neighborhood of thePpdint (
that goes to @) for t = too.

4.1. Method to obtain homoclinic orbits

First we show how to numerically obtain the homoclinic orbit of the fixed p&ntWe determine an initial
condition on the unstable subspat¥(Py) close toPy (10~° distant) and integrate, numerically, from this point.
The resulting trajectory goes along the unstable manifold, crossing thel@plaatthe pointP; shown inFig. 3. In
fact, asEY (Py) is a straight line, the poinf; can be determined analytically. We continue integrating the trajectory
until it again reaches the plarié, at P,. A necessary condition for the existence of the homoclinic orbit is that
P> € ES(Py), that is, the distance betweenP, and the lineLo, (=U, N ES(Py)) must be zero. We regaitias
positive if P is between_g, and P, and as negative iP; is on the other side afg. Note thatLg,. is an infinite
line and belongs t@&S(Py). Let I be the finite interval C Lo, that is formed byWS(Pg) N Loy, whereWS(Pg)
is the stable manifold ofy. Whend = 0, P> belongs toES(Pp) and, if P> € 1, there exists a homoclinic orbit. In
practice, due to numerical roundaffjs never exactly zero, and the parameters should be set such thatéveif
and P> ¢ I, we can be sure a homaoclinic orbit exists, i ,approaches a sufficiently small neighborhoodPef

We can show that a homoclinic orbit exists#g if we can show that there is a strip(on the pland/..) of size
|d| < €/2, centered ako (seeFig. 3), whose edges approach aeighborhood ofp, wheree ands are sufficiently
small. We also need that the iteration of the strip formedddy< ¢/2 remain neaPp for a while. Furthermore,
immediately after leaving the neighborhoodRy, iterates of the edge for whieh> 0 (resp.d < 0) of the stripT
gotoD. (resp.D-). To setP, as close as we want to the plalig, we change the integration step size to minimize
the inaccuracy in the computation B5.
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Fig. 3. Representation of the poinks and P,, that are formed byvY (Po) N U,.. We represent the distance betwden and P, by d. T
represents a strip of widthcentered at the linéo. A necessary condition for the existence of homoclinic orbits isdhat0.

A homoclinic orbit exists if the following conditions are satisfied for sufficiently small valuésamide:

(I) There exist parametetsandA« € R such that two trajectories for the parameteendo + A« (Or o — Ac),
departing from the neighborhood 86, remaine close to each other until they reach the patat

(I) The parameters and A« are such thaiP(«) is positioned on the strif’ atd > 0 and P2(«x + Aw) (or
Pr(x — Aw)) atd < 0, for|d| < €/2.
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Fig. 4. The distancé with respect to the parametey for a fixed paramete = 19.0. Homoclinic orbits appear far values for whichd = 0,
including the three values indicategs_p, oo, andog_g.
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Fig. 5. A trajectory departing from the vicinity afy on EY(Py), for the parameter: (&} < ay, (b) @ > ap; and (C)a = ay. Here

ay = 14.43746643008159 is the parameter for which an orbit homocliniggtexists. In (a), this trajectory leaveg” (Py) and returns to
the neighborhood oPy, heading up toward the plari, . In (b), the contrary happens, i.e., this trajectory leali€$Py) and returns to the
neighborhood ofPy, but heading down toward the plabg . In (c) this trajectory leave$y and returns to it.

(Ill) There is a parameter’ € [o, o + Ac] (0or @' € [o, o — Aca]) such that the trajectory departing frofa (')
reaches @ neighborhood o’y and goes td, for r — +oc0. There is alsc\a’ € R such thatP2(a’ + Aa’)
(or Po(o — Aa’)) goes toD_ for t — +oo.

(IV) | —apyl € |la —ay| andAd’ < Aa, whereay is the value ofx that exactly yields a homoclinic orbit.

If conditions -1V are satisfied, we conclude that a homoclinic orbit exist&fpin the interval {/, o’ + Ad/]
(or [, &' — A)).

Condition Il is a rough tuning of the parametethat lets us estimate the parameatérand condition Il is a
fine tuning of the parameterthat lets us estimate the parametgr. While A« is of the order of 103, Ao/ is of
the order of 1015, We take the value af’ asay. To estimate the maximum size afx, we study how/ changes
as we vary (Fig. 4) and verify that forAa < 1072, ¢ < 108, and therefored| is very small. Condition 1l is
based on the fact that the homoclinic orbit is not structurally stable, that is, arbitrarily small variatignslodnge
completely the behavior of the trajectory departing frépm This structural instability is illustrated iRig. 5. For
o < ay (Fig. 5a)), we havel > 0 and the divergence is in the direction®f ; for @ > ay, we haved < 0 and
divergence in the direction dd_ (Fig. 5(b)). Fig. 5(c) shows the case = o’ = ay.
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Fig. 6. Homoclinic orbits of the poinPy for four values of the parametessand 8: () a1—y = 14.43746643008159 and = 19.0; (b)
ap—py = 12165457244219103 and = 19.0; (c) az—y = 11.174540527682883 anfl = 19.0; (d) s—y = 14.85399064174358 and
B =290.

Another reason why we have to consideg 0 andA«’ # 0 is that we cannot work with infinities. The “exact”
homoclinic orbit needs an infinite time to returnRg, and the associated parameters cannot be specified with infinite
precision. Instead, we regard our numerical calculations as being a satisfactory approximation to the homoclinic
orbit when conditions 1-1V are satisfied add< 107>, i.e., the trajectory of?, gets at least 10 close to the
fixed point Pp. The orbit offFig. 5c) is the 1— H family, because it turns one time around the fixed p&ipt For
the sames, there may exist other homaoclinic orbits of the same type, and the same method presented here can be
applied to locate these other— H families (i.e., those that turm times aroundP,.). We just need to considet,
as the crossing of the trajectory departing frégaftern turns around the poirk,.. In Fig. 6, we show the + H,

2— H,3— H, and 4— H homoclinic orbits. For each homoclinic orbit family #y presented here, there is another
symmetrically opposite, with a looping arouid , with the same parameters. To see this, we just need to change
the initial condition close t@ to the other side of the unstable subspace.

The procedure described in this section is applicable when the real eigeinatdehe real part of the complex
eigenvaluep are of the same order. In this cage=£ 19.0 anda = [10.0, 15.0]), the ratio|A/p| is in the interval
[2.4, 2.9]. When the fixed point has a linear stable subspace and a planar unstable subspace, we integrate the systen
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Fig. 7. (a) Representation of the poittsand P, that are formed byvS(P_) N U_ andWS(P_) N U, respectively, and the distangédetween
the pointP, and the lineL, on U.. A heteroclinic orbit exists connecting the poiits to P_, if 4 = 0. (b) For a fixed8 = 19.0, we show
the distancel with respect to the parameter

backward in time, using the initial condition along the stable manifold. This is the method used to determine
homoclinic orbits to the point®, or P_. Next, we describe the method to calculate heteroclinic orbits which can
also be used to calculate homaoclinic orbits when the fatip| > 1.

4.2. Method to obtain heteroclinic orbits

The heteroclinic orbit is the orbit that joins two or more fixed points in the phase space. The unstable manifold
of the first fixed point joins the stable manifold of another fixed point, and its unstable manifold joins the stable
manifold of the next fixed point, and so on, until the unstable manifold of the last fixed point joins the stable manifold
of the first point. In this section, we show that conditions I-IV are sufficient to demonstrate that a heteroclinic orbit
exists around the, and P_ fixed points. We integrate the system backward in time with an initial condition on the
stable manifold ofP_ and minimize the distancé (Fig. 7(a)), fixing 8 and changing by A« to obtaind < ¢/2
(Fig. 7(b)). Then we refine the approach Bf to P, by findinge’ such that the trajectory af,, for a backward
time integration, converges tasaneighborhood of,.. Due to the odd symmetry &q. (1) the unstable manifold
of P, is connected to the stable manifold Bf, and therefore the heteroclinic orbit should existdos o’ = ay.

If one wants to see a heteroclinic orbit, one has to be careful with the|katio defined inSection 4.1for the
eigenvalues. Although conditions I-1V specify the existence of a heteroclinic orbit, its visualization depends on the
ratio|A/p|. If [A/p|] = 1, then the heteroclinic orbit is just the trajectoryf, under backward time integration,
along the stable manifold together with the trajectory leaving the other direction of the stable manifold connecting
P,. But, as in the general case, the rgtigp| at the fixed points”;. and P (8 = 19.0 ande = [10.0, 15.0])
is within the interval [148, 28.2]. In other words, the modulus of the real eigenvaluassociated to the stable
manifold ES(P.) is much larger than the real part of the complex eigenvatu@sis implies that when a trajectory
is integrated backward in time from_, it approaches the fixed poift,. only for a brief time before diverging
quickly from a neighborhood aP... In this case, we must modify the above procedure to visualize the heteroclinic
orbit.
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Fig. 8. For the parametesge = 13.1326237991123528 ar)= 19.0 there is a heteroclinic orbit connectiRg to P_. The orbit connecting the
points P; and P,, shown in (a) (which are the same points represent€&ajin7(a)) can be numerically determined. To visualize this heteroclinic
orhit, an initial condition close t®-, on the planeEV (P,.), must be chosen such that an orbit leaving from it, for forward iteration, crosses the
planeU; at the pointP; and the distancd’ betweenPs and P; is zero. (b) The heteroclinic orbit.

After finding the parameter interval + Aca’ for which a heteroclinic orbit exists, we find an initial condition,
&' close to the poinf”,, that, when integrated by a positive time, approaché&sreighborhood of the poings.
More specifically, we determine a circle of initial conditions, centereB,awith radiuss’ on the EY (P,) plane,
and integrate these points for a positive time until their trajectories drosat P; (Fig. 8@a)). Then we calculate
the distancel’ betweenP3 and P, (Fig. 8a)). We consider the trajectory that leave$ aeighborhood ofP;. and
reached. . with the minimumd’, which is very small, as a good approximation to the heteroclinic orbifigng(b),
we show a heteroclinic orbit connecti®y. with P,. The same procedure is used to obtain the homoclinic orbit to
P, (Fig. Ya)) and one of the family 25 H (Fig. Ab)).

2.0 4
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~0.4 _0.2 00 02 0.4 03

@ y )

Fig. 9. (@) Homoclinic orbit of the poinP,. for the parametera; = 131251380866 ang = 19.0. (b) A homoclinic orbit of Py for the
parametersps_y = 37695172431 angg = 3000. Note that this homoclinic orbit, before returningAg turns 25 times around the poift. .
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5. Manifolds, chaotic attr actor sand basins of attraction

The double-scroll system has two types of chaotic attractors, known as the “Rossler-type” attigcidfg)) and
the “double-scroll” attractorKig. 1Q(b)). Here we discuss how these chaotic attractors are related to the subspaces
of the fixed points and the manifolds introduced in this work. Because the manifolds’ geometry, close to the fixed
points, is completely described by a subspace of lower dimension, an understanding of the subspace structure
can describe the geometry of the manifolds and the attractors. Our main goal is to understand how the presenc
of a homoclinic orbit changes the global geometry of the trajectories, based only on the information about the
subspaces. This topological description will be used to describe the manifold characteristics and topology and
their relations with the mentioned chaotic attractors. Finally, we will show that the existence of a homoclinic orbit
implies changes in the manifolds, which results in a global change of a basin of attractionosfirthie set of
WS(Po).

5.1. Chaotic attractors

WhenEg. (1) has a chaotic attractor, the modulus of the real eigenvalue is much bigger than the real part of
the complex eigenvalues. In the domdig, the real eigenvalue (whose eigenvectors form the subspag) &
associated with the unstable subspace. Therefore, the trajectory quickly leaves this domain. In the deraaihs
D_, the real eigenvalues are associated with the stable subspB¢eaofl P_. Therefore, the trajectory converges
quickly to the vicinity of the unstable subspacenf, or P_, which are planes. Most of the time, the trajectory is
out of the domairDy. Let us take an initial condition near the unstable subspadg 0EY (Pg)) with 0 < x < 1.
The trajectory goes td., along this subspace and approaches the stable subspRcelt( P, ). As the trajectory
cannot cross the unstable subspatk P, ), it spirals, going exponentially away from, , getting even closer to
ES(Py), until it crosses the boundaty, . If it crosses on the right side @f, (d > 0), the trajectory is attracted again
to the vicinity of P, and the Réssler attractor is formed. For a largealue, the trajectory can cross the boundary
L. on the left sided < 0), where it is attracted t® by the stable subspade®(Po) and quickly goes to the
domainD_ by the effect ofEY (Pp). Then, itis attracted t&_ by the stable subspacgS(P_)) until it approaches
the unstable subspacgY{(P_)). Thus, the same phenomenon as previously described a®undcurs, and the
double-scroll attractor is formed.

2.0 1

0.0 1

05 -03 -01 0.1 0.3 05
@) y (b)

Fig. 10. Two chaotic attractors of the double-scroll system: (a) the Rossler-type attractor for the parameteds8 andg = 19.0; (b) the
double-scroll attractor fox = 13.0 andg = 19.0.
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Fig. 11. (a) The one-dimensional unstable manifald (Po) for the parameters = 10.8 andg = 19.0, where the system presents the
Rossler-type attractor. (3yY (Po) for the parameters = 13 andg = 19.0, where the system presents the double-scroll attractor. For these
parameter sets, no homo- (hetero-)clinic orbits exist. The fact that the manifolds are geometrically similar to the attracting set&ghdon in
means that the attractors belong to the closure of the unstable maififtl#l). The thick orbits represerV (Py). (c) and (d) are for the same
parameters as (a) and (b), respectively, but show a trajectory on the unstable mankoldgfain, the attracting sets belong to the closure of
the unstable manifoldV (P,.). The thick trajectories belong to unstable subspader, ).

5.2. Unstable manifold

In Fig. 11(a) and (b), we show that the topology of the one-dimensional unstable mawitbi#) is equivalent
to that of the attractor, that is, trajectories departing from initial condition®81Po), in the vicinity of Py, have
the same geometry of the attractor showriig. 1(0(a). These figures are done for a parameter set for which a
Rossler-type and a double-scroll attractor exist, respectively, and there are no homo- (hetero-)clinic orbits. Similar
results hold forwV (P.) (Fig. 11(c) and (d)). Hence, the attractors of the double-scroll systenwdimit sets
of initial conditions on the unstable manifold&". When there is a homo- (hetero-)clinic orbit, any trajectory
departing fromWY converges to a fixed point instead of converging to the attractor. Therefore; it set of
initial conditions onWY (Py) is the fixed pointPo when a homoclinic orbit exists.

5.3. Stable manifold

All initial conditions on the stable manifold converge to the fixed point as +oc. On the other hand, initial
conditions on the stable manifold & converge to two different places as> —oo: either these initial conditions
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Fig. 12. (a) Orbit belonging t&S(Po). (b) A portion of WS(P,.) in the neighborhood oP,.. The superior part ofVS(P,.) (thick line in (b))
is a straight line that extends towards the painty, z) = (400, —oo, —o0). (c) The orbit that belongs t&S( Py) and part of the manifold of
WS(P,), for a large region of the phase space. The purpose of this figure is to assure that initial conditiohePgntend tox o, along the
stable subspaceS(P, ) ast - —oc.

go tox = 400 (alsoy = z = —oo) ortox = —oo (alsoy = z = +00). We denote by », thea-limit set of initial
conditions inWS(Pg) that go tox = 4-00. Analogously, we denote by, thea-limit set of initial conditions in
WS(Pp) that go tax = —oo. To clarify this, inFig. 1Xa), we show an orbit belonging WS( Po) in the neighborhood

of Py, and inFig. 12b), a piece oW S(P, ) in the neighborhood aP, . Note that the superior part & S( P, ) (thick

line in Fig. 12b)) is a straight line, which we know extends toward thexset. In Fig. 12c), we show the orbit
that belongs tdVS(Pp) and part of the manifold o S( P, ) for a large region of the phase space. The purpose of
this figure is to assure that initial conditions Bf°( Pg) tend tox. . along ES(P,). Since the double-scroll system
has odd symmetry, the same geometry is observed for the stable manif¥ &) and WS(P_). Hence, initial
conditions onWS(Pg) go tox_n.. Thus, it is convenient to tred¥S(Py) as two separated subsets that define the
initial conditions that go either to, , or x_,. Note that the branch a#S(P,.) shown inFig. 12b) coincides with
ES(Py) shown inFig. 12c).

To visualize thex-limit setsx_ o, andx_,, we show inFig. 13a) the behavior of trajectories departing from the
neighborhood of, for backward time integration. In this figure, the dark points in the vicinitygére the initial
conditions that go ta.», aroundES(P,.) (points on the top left oFig. 13a)), for an arbitrary negative time. Gray
points in the vicinity of Py are the initial conditions that go to_., aroundES(P_) (points on the bottom right of
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Fig. 13. (a) Trajectories departing from the neighborhoodgfor backward integration. The dark points in the vicinity Bf go tox > 0
(points on the top left) for a negative time. Gray points in the vicinityP@fo tox < 0 (points on the bottom right), for this same negative time
interval. (b) Magnification of (a) for points for whicS(Pg) N ES(Pg) # @.

Fig. 13a)), for this same negative time. Fig. 13b), we show a magnification ¢fig. 13a) for points for which
WS(Pg) N ES(Pg) # . Note that the branch dfS(P..) shown inFig. 13a) coincides with a branch o¥S(P.)
shown inFig. 12b). The same happens fér..

This manifold property can be explored to understand its geometry in the vicinity of the homoclinic point. The
points inWS(Pg) N ES(Py) form the basin of attraction of the-limit setsx... In the basin shown ifig. 13b),
there are two boundaries where the black color meets the gray color. These boundaries do not belong to the basin
of either of thex-limit setsx ., andx_.. Therefore, thex-limit set of these boundaries should be a bounded set.

In Fig. 13b), we indicate the point@ 1 that lie in the vicinity of a homoclinic orbit, if one exists (see aisg. 2).
Although the pointg) 1 seem to be close to the basin boundariesiqf , they are not part of the boundaries. These
points belong taEY (P, ) and do not belong téVY (P, ). A trajectory leavingQ -, for backward integration, does
not go to the pointP;. and does not belong to a homaoclinic orbit.

5.4. Homoclinic orbits, the double-scroll attractor, and the basins of attraction

When the parameters iag. (1) are such that the double-scroll attractor exists, the basin boundary of the sets
X400 Decomes more complex than in the case of the Réssler attractors. Four more boundaries appear. Again, these
boundaries belong to trajectories that should asymptotically go to bounded sets for backward time integration. In
Fig. 14a), we show the basin of the limit sets., and a homoclinic orbit. A magnification of this figure in the
region of the pointQ is shown inFig. 14b). We see a homoclinic orbit passing along a new basin boundary
created by the presence of the double-scroll attractor. This new basin boundary, a gray strip in this figure, can be
better visualized irfrig. 14(c), where we have omitted the homoclinic orbit.

This new gray strip appears due to the existence of the double-scroll attractor, and it is a consequence of the fact
that the manifold$vS( Py) and WY (Pp) are becoming tangent. The approach of these two manifolds is responsible
for two new bounded trajectories departing fratg in backward time. In addition, a special case of a bounded
trajectory is about to be created: a trajectory that le@geand forr — —oo returns toPy, i.e., the homoclinic orbit.

The existence of a homoclinic orbFig. 14(a)) to the pointPy means that two trajectories, departing frémfor
backward integration, leaveS(Pg) and do not go any longer to the limit sets... Instead, they bounce back and
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Fig. 14. (a) The basin of the-limit setsx1,, and a homoclinic orbit for the parameters_py = 11.174540527682883 angl = 19.0. (b)
Magnification of (a) in the region of the poit . A homoclinic orbit passes along the basin boundary of thexgats This basin boundary, a
gray strip in this figure, can be better visualized in (c), where we do not show the homoclinic orbit.

return to P along its one-dimensional unstable subspd&(P). In fact, we believe that these new boundaries
(on ES(Py)) belong to the homoclinic orbit. So a trajectory leaving the pétnalong EY (Po) entersES( Pg) along
the boundaries of the limit sets. .

We believe the other four non-trivial trajectories, which belong to the boundaries afdhattractor, go to an
unstable chaotic set within the domdily in backward time.

6. Conclusions

We propose a series of conditions to demonstrate the existence of homoclinic and heteroclinic orbits in piecewise-
linear systems. Satisfying these conditions implies the existence of a parameter within a specified range for which
those special orbits must exist. We apply these conditions to obtain homo- and heteroclinic orbits for the three fixed
points of the double-scroll system. We show examples of homoclinic orbits to the fixed Ryintthe central
domain and of a heteroclinic orbit connectiRg and P_, the other fixed points in the external domains. Once the
proposed conditions are constructed based on properties of the system for a finite range of parameter values, they cc
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instruct an experimentalist who seeks the existence of homo- (hetero-)clinic orbits in piecewise-linear laboratory
systems whose parameters cannot be maintained with infinite precision.

We also give a full geometrical picture of the stable manifolds of the gjntVe describe a basin of attraction, lo-
cated on the subspa&&( Pp), of two important-limit sets, one called,, ., located atx, y, z) = (+00, —00, —0o0)
and another called_,, located atx, y, z) = (—o00, 400, +00). To understand the geometry of the stable manifold
WS(Pp), we must understand the geometry of this basin of attraction. This basin, formed by two subsets, represents
points that go either t@, -, oOr to x_~,. The boundary between these two subsets belongs to trajectories that, for
backward integration, do not go to eithedimit set. Therefore, trajectories departing from this boundary should
evolve to a different, boundeglimit set.

Changes in the manifolds, which indicate that a homoclinic orbit exists, can be observed by looking at the changes
in this basin. For parameters within the range for which the double-scroll attractor exists, the basin of the limit sets
X400 has six continuous boundaries, four more boundaries than when a Rdssler-type attractor exists. These extra
boundaries are a consequence of the complexity of basin of attraction and result from the imminent tangency between
the stable and unstable manifolds®y. At the tangency, one special bounded orbit is created that conAgts
itself, which is the homoclinic orbit. Therefore, the creation of the double-scroll attractor enables the existence of
the homoclinic orbit. We believe this new boundary belongs to the homoclinic orbit.

As a way to understand the relation between the invariant manifolds and the attracting set, we show that the
attractors arev-limit sets of initial conditions on the manifold&", when no homo- (hetero-)clinic orbits are
present. Otherwise, when there are homo- (hetero-)clinic orbits, there ate-liwit sets of initial conditions on
WVY: one is the attractor, and the other is a fixed point.
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