
Physica D 186 (2003) 133–147

Homoclinic orbits in a piecewise system
and their relation with invariant sets

Rene O. Medrano-T.∗, Murilo S. Baptista, Iber̂e L. Caldas
Instituto de F´ısica, Universidade de São Paulo, C.P. 66318, CEP 05315-970 São Paulo, SP, Brazil

Received 13 November 2002; received in revised form 6 March 2003; accepted 11 August 2003
Communicated by E. Kostelich

Abstract

Basic phenomena in chaos can be associated with homoclinic and heteroclinic orbits. In this paper, we present a general
numerical method to demonstrate the existence of these orbits in piecewise-linear systems. We also show that the tangency of
the stable and unstable manifolds, at the onset of the chaotic double-scroll attractor, changes the basin boundaries of twoα-limit
sets. These changes are evidence of homoclinicity in the dynamical system. These basins give complete information about the
stable manifolds around the fixed points. We show that trajectories that depart from these boundaries (for backward integration)
are bounded sets. Moreover, we also show that the unstable manifolds are geometrically similar to the existing attracting sets.
In fact, when no homo- (hetero-)clinic orbits exist, the attractors areω-limit sets of initial conditions on the unstable manifolds.
© 2003 Elsevier B.V. All rights reserved.

PACS:05.45.+b; 47.20.Ky; 47.52.+j; 02.60.CB

Keywords:Homoclinic orbits; Bifurcation; Nonlinear piecewise systems; Numerical computation

1. Introduction

A homoclinic orbit occurs when the stable and unstable manifolds of a fixed point join. These manifolds have
the following properties: trajectories departing from initial conditions on the stable manifold approach the fixed
point ast → +∞; trajectories departing from initial conditions on the unstable manifold approach the fixed point
ast → −∞. A manifold that forms a closed loop connecting two or more fixed points is called aheteroclinic orbit.
There are two main difficulties to obtain homoclinic or heteroclinic orbits: both the parameter sets for which the
manifolds join and the geometry of the manifolds are unknown.

It is known that the existence of homoclinic orbits is a signature of global changes in the dynamics. In two-
dimensional systems studied by Andronov et al.[1], the onset of a homoclinic orbit causes the sudden appearance
of periodic orbits. In the Lorenz system, homoclinic orbits can be associated with the bifurcations of a periodic set
to form a chaotic set[2,3]. In the double-scroll system, the birth and changes of chaotic attractors can be related to
homoclinic bifurcations[4]. For a three-dimensional class of systems, Shilnikov[5–7] showed that the existence of
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a homoclinic orbit may imply the existence of a horseshoe[8,9] in the neighborhood of this orbit that is responsible
for the creation of a chaotic set.

A system is chaotic if it has sensitivity to initial conditions, is transitive, and has an uncountable number of periodic
orbits. By Shilnikov’s theorem[5–7], homoclinicity can imply the existence of a horseshoe and consequently the
three conditions for chaotic motion.

However, a homoclinic orbit is structurally unstable, which means that arbitrary small parameter perturbations
may destroy it and, as a consequence, also destroy its associated horseshoe. So, to better understand the role of the
homoclinic orbit in the global dynamics and the existence of chaotic motion, we look for its relation with more
stable sets, like attracting sets (which are different from the sets in the neighborhood of the homoclinic orbit), basins
of attraction, and for specific structure of the manifolds.

We choose to work with the double-scroll circuit[10,11]because it is a piecewise system of the family for which
the Shilnikov theorem applies. That is, a homoclinic orbit exists for a set of parameter ranges for which a chaotic
attracting set also exists.

In general, calculating homoclinic orbits is not an easy task. In a piecewise system, we can partially determine
analytically the stable and unstable subspaces containing the manifolds close to the fixed point. This can be used
in a semi-analytical approach to numerically determine the homo- (hetero-)clinic orbit. In a piecewise system, the
phase space is divided into domains, each with its own fixed point. Thus, it is possible to know the topology of
the manifolds in each domain within a neighborhood of these points. The procedure presented here is generally
applicable to any three-dimensional and piecewise-linear dynamical system.

In addition to numerically obtaining homo- (hetero-)clinic orbits, we also give conditions to numerically demon-
strate the existence of a homo- (hetero-)clinic orbit to a fixed point. Furthermore, we investigate the relation of this
orbit with the manifolds of the homoclinic point, the attracting set, and the basins of attraction. We also contribute to
an understanding of how the presence of a homoclinic orbit changes the geometry of the trajectories, based only on
the information about the subspaces. This topological description is used to describe the manifold’s characteristics
and topology and their relationship to the attractors. Finally, we show that the existence of a homoclinic orbit implies
changes in the manifolds that result in a global change of a basin of attraction of anα-limit set.

This paper is organized as follows. InSection 2, we present the double-scroll circuit, and inSection 3, its subspaces
and manifolds. InSection 4, we show how to numerically demonstrate the existence of the homo- (hetero-)clinic
orbit, and inSection 5, we show the relationship between the homoclinic orbits, the manifolds, the basins of
attraction, and the attractors. Finally,Section 6contains the conclusions.

2. The double-scroll circuit

The double-scroll circuit[10,11]illustrated inFig. 1(a) has two capacitors (C1 andC2), one inductor (L), a linear
resistor represented by its admittance (g = 1/R), and a nonlinear resistor (RN).

Fig. 1(b) shows the circuit characteristic curve:m0 andm1 are the slopes for the linear region, and±Bp are
the values of theVC1 for which the slope changes. Applying Kirchoff’s law to the circuit and changing to the
dimensionless form (x = VC1/Bp, y = VC2/Bp, z = iL/gBp, α = C1/C2, β = C2/Lg2, τ = gt/C2, a = m1/g,
andb = m0/g) we have the circuit equations:

ẋ = α[y − x− k(x)], ẏ = x− y + z, ż = −βy, (1)

where

k(x) = bx+ 1
2(a− b)(|x+ 1| − |x− 1|) (2)

anda = −8/7, b = −5/7. Thus, the control parameters areα andβ.
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Fig. 1. (a) Schematic diagram of the double-scroll circuit.VC1 andVC2 are the potential across capacitorsC1 andC2, respectively, andiL is the
current across the inductorL. (b) Characteristic curve of the nonlinear resistanceRN, showing the currentiRN acrossRN, with respect toVC1.

3. Subspaces of the manifolds

According toEq. (2), we divide the domain ofEq. (1)into three parts:D0 = {R3 : |x| < 1},D+ = {R3 : x > 1},
andD− = {R3 : x < −1}. In each domain, there is a fixed point:P0 = (0,0,0) in D0 andP± = (±�,0,∓�) in
D±, where� = (b− a)/(b+ 1) = 1.5. This system has three eigenvalues in each domain. In the domainsD+ and
D−, the eigenvalues are the same.

When there is a chaotic set, one eigenvalue is real and the other two are complex conjugate. The complex
eigenvalues are responsible for the two eigenvectors that determine a two-dimensional planar subspace, and the
real eigenvalue is associated to the eigenvector that determines a linear subspace. In a domain around each fixed

Fig. 2. Stable (ES) and unstable (EU) subspaces of the fixed pointsP0, P+ andP−. The planesU± = {R3 : x = ±1} are the boundaries of the
domainsD0 withD±. InD0 the unstable subspace (EU(P0)) is a line and the stable subspace (ES(P0)) is a plane. InD±, the unstable subspace
(EU(P±)) is a plane and the stable subspace (ES(P±)) is a line. The lineL± is the intersection ofEU(P±)with the planeU±.L0± = ES(P0)∩U±
andQ± = L± ∩ L0±.
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point, the manifoldsW are either straight lines or surfaces and coincide with the associated linear subspace. This
behavior is unlike general nonlinear systems, where subspaces and manifolds are tangent to each other only locally:
in piecewise-linear systems, this tangency occurs not only in a point but in a large region of the subspace close
to the fixed point.Eq. (1) is linear within the domains, and the stability of the manifolds is determined by the
sign of the real part of the eigenvalues.Fig. 2 represents the subspaces of the fixed points ofEq. (1). The planes
U± = {R3 : x = ±1} are the boundaries of the domainsD0 with D±. In D0, the unstable subspace (EU(P0))
is a line and the stable subspace (ES(P0)) is a plane. InD±, the unstable subspace (EU(P±)) is a plane and the
stable subspace (ES(P±)) is a line. The lineL± is the intersection ofEU(P±) with the planeU±. Notice that
L0± = ES(P0) ∩ U± andQ± = L± ∩ L0±.

4. Method to obtain homo- (hetero-)clinic orbits

The problem of calculating homoclinic orbits of a fixed point requires that one find a local neighborhood around
the fixed point that maps to itself fort → ±∞. Eq. (1)has an important property: the invariant dynamics in a
neighborhood of the fixed point exists only in a planar subspace and a linear subspace. Therefore, the calculation
of a homoclinic orbit is reduced to the verification of the existence of a local neighborhood of the fixed point along
one subspace, that, when iterated by the dynamics fort → ±∞, approaches the neighborhood of the fixed point
on the other subspace. It is clear that defining a neighborhood on the linear subspace is easier than in the planar
subspace. Therefore, the calculation of a homoclinic orbit is drastically simplified: we verify the existence of a
local neighborhood of the linear subspace that, when iterated by the dynamics, approaches the planar subspace for
t → ±∞.

The calculation of heteroclinic orbits is completely equivalent to that to the homoclinic orbit. However, we have
to show the existence of a neighborhood of the fixed point (P±) that goes to another (P∓) for t → ±∞. Because
Eq. (1)has odd symmetry, if the former condition is satisfied, then there exists a neighborhood of the point (P∓)
that goes to (P±) for t = ±∞.

4.1. Method to obtain homoclinic orbits

First we show how to numerically obtain the homoclinic orbit of the fixed pointP0. We determine an initial
condition on the unstable subspaceEU(P0) close toP0 (10−5 distant) and integrate, numerically, from this point.
The resulting trajectory goes along the unstable manifold, crossing the planeU+ at the pointP1 shown inFig. 3. In
fact, asEU(P0) is a straight line, the pointP1 can be determined analytically. We continue integrating the trajectory
until it again reaches the planeU+ at P2. A necessary condition for the existence of the homoclinic orbit is that
P2 ∈ ES(P0), that is, the distanced betweenP2 and the lineL0+ (=U+ ∩ ES(P0)) must be zero. We regardd as
positive ifP2 is betweenL0+ andP1 and as negative ifP2 is on the other side ofL0+. Note thatL0+ is an infinite
line and belongs toES(P0). Let I be the finite intervalI ⊂ L0+ that is formed byWS(P0) ∩ L0+, whereWS(P0)

is the stable manifold ofP0. Whend = 0,P2 belongs toES(P0) and, ifP2 ∈ I, there exists a homoclinic orbit. In
practice, due to numerical roundoff,d is never exactly zero, and the parameters should be set such that even ifd �= 0
andP2 /∈ I, we can be sure a homoclinic orbit exists, i.e.,P2 approaches a sufficiently small neighborhood ofP0.

We can show that a homoclinic orbit exists inP0 if we can show that there is a stripT (on the planeU+) of size
|d| ≤ ε/2, centered atL0+ (seeFig. 3), whose edges approach aδ neighborhood ofP0, whereε andδ are sufficiently
small. We also need that the iteration of the strip formed by|d| ≤ ε/2 remain nearP0 for a while. Furthermore,
immediately after leaving the neighborhood ofP0, iterates of the edge for whichd > 0 (resp.d < 0) of the stripT
go toD+ (resp.D−). To setP2 as close as we want to the planeU+, we change the integration step size to minimize
the inaccuracy in the computation ofP2.
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Fig. 3. Representation of the pointsP1 andP2, that are formed byWU(P0) ∩ U+. We represent the distance betweenL0+ andP2 by d. T
represents a strip of widthε centered at the lineL0+. A necessary condition for the existence of homoclinic orbits is thatd = 0.

A homoclinic orbit exists if the following conditions are satisfied for sufficiently small values ofδ andε:

(I) There exist parametersα and(α ∈ R such that two trajectories for the parametersα andα+(α (orα−(α),
departing from the neighborhood ofP0, remainε close to each other until they reach the pointP2.

(II) The parametersα and(α are such thatP2(α) is positioned on the stripT at d > 0 andP2(α + (α) (or
P2(α−(α)) atd < 0, for |d| ≤ ε/2.

Fig. 4. The distanced with respect to the parameterα, for a fixed parameterβ = 19.0. Homoclinic orbits appear forα values for whichd = 0,
including the three values indicated:α3−H , α2−H , andα1−H .
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Fig. 5. A trajectory departing from the vicinity ofP0 on EU(P0), for the parameter: (a)α < αH ; (b) α > αH ; and (c)α = αH . Here
αH = 14.43746643008159 is the parameter for which an orbit homoclinic toP0 exists. In (a), this trajectory leavesEU(P0) and returns to
the neighborhood ofP0, heading up toward the planeU+. In (b), the contrary happens, i.e., this trajectory leavesEU(P0) and returns to the
neighborhood ofP0, but heading down toward the planeU+. In (c) this trajectory leavesP0 and returns to it.

(III) There is a parameterα′ ∈ [α, α + (α] (or α′ ∈ [α, α − (α]) such that the trajectory departing fromP2(α
′)

reaches aδ neighborhood ofP0 and goes toD+ for t → +∞. There is also(α′ ∈ R such thatP2(α
′ +(α′)

(or P2(α
′ −(α′)) goes toD− for t → +∞.

(IV) |α′ − αH | � |α− αH | and(α′ � (α, whereαH is the value ofα that exactly yields a homoclinic orbit.

If conditions I–IV are satisfied, we conclude that a homoclinic orbit exists forαH in the interval [α′, α′ +(α′]
(or [α′, α′ −(α′]).

Condition II is a rough tuning of the parameterα that lets us estimate the parameterα′, and condition III is a
fine tuning of the parameterα that lets us estimate the parameterαH . While(α is of the order of 10−3,(α′ is of
the order of 10−15. We take the value ofα′ asαH . To estimate the maximum size of(α, we study howd changes
as we varyα (Fig. 4) and verify that for(α < 10−2, ε < 10−8, and therefore|d| is very small. Condition III is
based on the fact that the homoclinic orbit is not structurally stable, that is, arbitrarily small variations ofαH change
completely the behavior of the trajectory departing fromP2. This structural instability is illustrated inFig. 5. For
α < αH (Fig. 5(a)), we haved > 0 and the divergence is in the direction ofD+; for α > αH , we haved < 0 and
divergence in the direction ofD− (Fig. 5(b)). Fig. 5(c) shows the caseα = α′ = αH .
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Fig. 6. Homoclinic orbits of the pointP0 for four values of the parametersα andβ: (a) α1−H = 14.43746643008159 andβ = 19.0; (b)
α2−H = 12.165457244219103 andβ = 19.0; (c) α3−H = 11.174540527682883 andβ = 19.0; (d) α4−H = 14.85399064174358 and
β = 29.0.

Another reason why we have to considerd �= 0 and(α′ �= 0 is that we cannot work with infinities. The “exact”
homoclinic orbit needs an infinite time to return toP0, and the associated parameters cannot be specified with infinite
precision. Instead, we regard our numerical calculations as being a satisfactory approximation to the homoclinic
orbit when conditions I–IV are satisfied andδ ≤ 10−5, i.e., the trajectory ofP2 gets at least 10−5 close to the
fixed pointP0. The orbit ofFig. 5(c) is the 1−H family, because it turns one time around the fixed pointP+. For
the sameβ, there may exist other homoclinic orbits of the same type, and the same method presented here can be
applied to locate these othern−H families (i.e., those that turnn times aroundP+). We just need to considerP2

as the crossing of the trajectory departing fromP0 aftern turns around the pointP+. In Fig. 6, we show the 1−H ,
2−H , 3−H , and 4−H homoclinic orbits. For each homoclinic orbit family inP0 presented here, there is another
symmetrically opposite, with a looping aroundP−, with the same parameters. To see this, we just need to change
the initial condition close toP0 to the other side of the unstable subspace.

The procedure described in this section is applicable when the real eigenvalueλ and the real part of the complex
eigenvalueρ are of the same order. In this case (β = 19.0 andα = [10.0,15.0]), the ratio|λ/ρ| is in the interval
[2.4,2.9]. When the fixed point has a linear stable subspace and a planar unstable subspace, we integrate the system
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Fig. 7. (a) Representation of the pointsP1 andP2 that are formed byWS(P−)∩U− andWS(P−)∩U+, respectively, and the distanced between
the pointP2 and the lineL+, onU+. A heteroclinic orbit exists connecting the pointsP+ to P−, if d = 0. (b) For a fixedβ = 19.0, we show
the distanced with respect to the parameterα.

backward in time, using the initial condition along the stable manifold. This is the method used to determine
homoclinic orbits to the pointsP+ or P−. Next, we describe the method to calculate heteroclinic orbits which can
also be used to calculate homoclinic orbits when the ratio|λ/ρ| � 1.

4.2. Method to obtain heteroclinic orbits

The heteroclinic orbit is the orbit that joins two or more fixed points in the phase space. The unstable manifold
of the first fixed point joins the stable manifold of another fixed point, and its unstable manifold joins the stable
manifold of the next fixed point, and so on, until the unstable manifold of the last fixed point joins the stable manifold
of the first point. In this section, we show that conditions I–IV are sufficient to demonstrate that a heteroclinic orbit
exists around theP+ andP− fixed points. We integrate the system backward in time with an initial condition on the
stable manifold ofP− and minimize the distanced (Fig. 7(a)), fixingβ and changingα by(α to obtaind ≤ ε/2
(Fig. 7(b)). Then we refine the approach ofP2 to P+, by findingα′ such that the trajectory ofP2, for a backward
time integration, converges to aδ neighborhood ofP+. Due to the odd symmetry ofEq. (1), the unstable manifold
of P+ is connected to the stable manifold ofP−, and therefore the heteroclinic orbit should exist forα = α′ = αH .

If one wants to see a heteroclinic orbit, one has to be careful with the ratio|λ/ρ| defined inSection 4.1for the
eigenvalues. Although conditions I–IV specify the existence of a heteroclinic orbit, its visualization depends on the
ratio |λ/ρ|. If |λ/ρ| ≈ 1, then the heteroclinic orbit is just the trajectory ofP−, under backward time integration,
along the stable manifold together with the trajectory leaving the other direction of the stable manifold connecting
P+. But, as in the general case, the ratio|λ/ρ| at the fixed pointsP+ andP− (β = 19.0 andα = [10.0,15.0])
is within the interval [14.8,28.2]. In other words, the modulus of the real eigenvalueλ associated to the stable
manifoldES(P±) is much larger than the real part of the complex eigenvaluesρ. This implies that when a trajectory
is integrated backward in time fromP−, it approaches the fixed pointP+ only for a brief time before diverging
quickly from a neighborhood ofP+. In this case, we must modify the above procedure to visualize the heteroclinic
orbit.
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Fig. 8. For the parametersαHe = 13.1326237991123528 andβ = 19.0 there is a heteroclinic orbit connectingP+ toP−. The orbit connecting the
pointsP1 andP2, shown in (a) (which are the same points represented inFig. 7(a)) can be numerically determined. To visualize this heteroclinic
orbit, an initial condition close toP+, on the planeEU(P+), must be chosen such that an orbit leaving from it, for forward iteration, crosses the
planeU+ at the pointP3 and the distanced′ betweenP3 andP2 is zero. (b) The heteroclinic orbit.

After finding the parameter intervalα′ ± (α′ for which a heteroclinic orbit exists, we find an initial condition,
δ′ close to the pointP+, that, when integrated by a positive time, approaches ad′ neighborhood of the pointP2.
More specifically, we determine a circle of initial conditions, centered atP+ with radiusδ′ on theEU(P+) plane,
and integrate these points for a positive time until their trajectories crossL+ atP3 (Fig. 8(a)). Then we calculate
the distanced′ betweenP3 andP2 (Fig. 8(a)). We consider the trajectory that leaves aδ′ neighborhood ofP+ and
reachesL+ with the minimumd′, which is very small, as a good approximation to the heteroclinic orbit. InFig. 8(b),
we show a heteroclinic orbit connectingP− with P+. The same procedure is used to obtain the homoclinic orbit to
P+ (Fig. 9(a)) and one of the family 25−H (Fig. 9(b)).
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parametersα25−H = 376.95172431 andβ = 3000. Note that this homoclinic orbit, before returning toP0, turns 25 times around the pointP+.
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5. Manifolds, chaotic attractors and basins of attraction

The double-scroll system has two types of chaotic attractors, known as the “Rössler-type” attractor (Fig. 10(a)) and
the “double-scroll” attractor (Fig. 10(b)). Here we discuss how these chaotic attractors are related to the subspaces
of the fixed points and the manifolds introduced in this work. Because the manifolds’ geometry, close to the fixed
points, is completely described by a subspace of lower dimension, an understanding of the subspace structures
can describe the geometry of the manifolds and the attractors. Our main goal is to understand how the presence
of a homoclinic orbit changes the global geometry of the trajectories, based only on the information about the
subspaces. This topological description will be used to describe the manifold characteristics and topology and
their relations with the mentioned chaotic attractors. Finally, we will show that the existence of a homoclinic orbit
implies changes in the manifolds, which results in a global change of a basin of attraction of theα-limit set of
WS(P0).

5.1. Chaotic attractors

WhenEq. (1) has a chaotic attractor, the modulus of the real eigenvalue is much bigger than the real part of
the complex eigenvalues. In the domainD0, the real eigenvalue (whose eigenvectors form the subspace ofP0) is
associated with the unstable subspace. Therefore, the trajectory quickly leaves this domain. In the domainsD+ and
D−, the real eigenvalues are associated with the stable subspace ofP+ andP−. Therefore, the trajectory converges
quickly to the vicinity of the unstable subspace ofP+, orP−, which are planes. Most of the time, the trajectory is
out of the domainD0. Let us take an initial condition near the unstable subspace ofP0 (EU(P0)) with 0 < x < 1.
The trajectory goes toD+ along this subspace and approaches the stable subspace ofP+,ES(P+). As the trajectory
cannot cross the unstable subspaceEU(P+), it spirals, going exponentially away fromP+, getting even closer to
ES(P0), until it crosses the boundaryU+. If it crosses on the right side ofL+ (d > 0), the trajectory is attracted again
to the vicinity ofP+, and the Rössler attractor is formed. For a largerα value, the trajectory can cross the boundary
L+ on the left side (d < 0), where it is attracted toP0 by the stable subspaceES(P0) and quickly goes to the
domainD− by the effect ofEU(P0). Then, it is attracted toP− by the stable subspace (ES(P−)) until it approaches
the unstable subspace (EU(P−)). Thus, the same phenomenon as previously described aroundP+ occurs, and the
double-scroll attractor is formed.
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Fig. 10. Two chaotic attractors of the double-scroll system: (a) the Rössler-type attractor for the parametersα = 10.8 andβ = 19.0; (b) the
double-scroll attractor forα = 13.0 andβ = 19.0.



R.O. Medrano-T. et al. / Physica D 186 (2003) 133–147 143

–0.5 –0.3 –0.1 0.1 0.3 0.5

y

0.0

1.0

2.0

x

P+

P0

α=10.8
β=19.0

–0.4 –0.2 0.0 0.2 0.4

y

–2.0

–1.0

0.0

1.0

2.0

x

P+

P0

α=13.0
β=19.0

P -

–0.5 –0.3 –0.1 0.1 0.3 0.5

y

0.0

1.0

2.0

x

P+

P0

α=10.8
β=19.0

–0.4 –0.2 0.0 0.2 0.4

y

–2.0

–1.0

0.0

1.0

2.0

x

P+

P0

α=13.0
β=19.0

 

(a) (b)

(d)(c)

P -

Fig. 11. (a) The one-dimensional unstable manifoldWU(P0) for the parametersα = 10.8 andβ = 19.0, where the system presents the
Rössler-type attractor. (b)WU(P0) for the parametersα = 13 andβ = 19.0, where the system presents the double-scroll attractor. For these
parameter sets, no homo- (hetero-)clinic orbits exist. The fact that the manifolds are geometrically similar to the attracting sets shown inFig. 10
means that the attractors belong to the closure of the unstable manifoldWU(P0). The thick orbits representEU(P0). (c) and (d) are for the same
parameters as (a) and (b), respectively, but show a trajectory on the unstable manifold ofP+. Again, the attracting sets belong to the closure of
the unstable manifoldWU(P+). The thick trajectories belong to unstable subspaceEU(P+).

5.2. Unstable manifold

In Fig. 11(a) and (b), we show that the topology of the one-dimensional unstable manifoldWU(P0) is equivalent
to that of the attractor, that is, trajectories departing from initial conditions onWU(P0), in the vicinity ofP0, have
the same geometry of the attractor shown inFig. 10(a). These figures are done for a parameter set for which a
Rössler-type and a double-scroll attractor exist, respectively, and there are no homo- (hetero-)clinic orbits. Similar
results hold forWU(P±) (Fig. 11(c) and (d)). Hence, the attractors of the double-scroll system areω-limit sets
of initial conditions on the unstable manifoldsWU. When there is a homo- (hetero-)clinic orbit, any trajectory
departing fromWU converges to a fixed point instead of converging to the attractor. Therefore, theω-limit set of
initial conditions onWU(P0) is the fixed pointP0 when a homoclinic orbit exists.

5.3. Stable manifold

All initial conditions on the stable manifold converge to the fixed point ast → +∞. On the other hand, initial
conditions on the stable manifold ofP0 converge to two different places ast → −∞: either these initial conditions
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Fig. 12. (a) Orbit belonging toWS(P0). (b) A portion ofWS(P+) in the neighborhood ofP+. The superior part ofWS(P+) (thick line in (b))
is a straight line that extends towards the point(x, y, z) = (+∞,−∞,−∞). (c) The orbit that belongs toWS(P0) and part of the manifold of
WS(P+), for a large region of the phase space. The purpose of this figure is to assure that initial conditions onWS(P0) tend tox+∞ along the
stable subspaceES(P+) ast → −∞.

go tox = +∞ (alsoy = z = −∞) or tox = −∞ (alsoy = z = +∞). We denote byx+∞ theα-limit set of initial
conditions inWS(P0) that go tox = +∞. Analogously, we denote byx−∞ theα-limit set of initial conditions in
WS(P0) that go tox = −∞. To clarify this, inFig. 12(a), we show an orbit belonging toWS(P0) in the neighborhood
of P0, and inFig. 12(b), a piece ofWS(P+) in the neighborhood ofP+. Note that the superior part ofWS(P+) (thick
line in Fig. 12(b)) is a straight line, which we know extends toward the setx+∞. In Fig. 12(c), we show the orbit
that belongs toWS(P0) and part of the manifold ofWS(P+) for a large region of the phase space. The purpose of
this figure is to assure that initial conditions onWS(P0) tend tox+∞ alongES(P+). Since the double-scroll system
has odd symmetry, the same geometry is observed for the stable manifolds ofWS(P0) andWS(P−). Hence, initial
conditions onWS(P0) go tox−∞. Thus, it is convenient to treatWS(P0) as two separated subsets that define the
initial conditions that go either tox+∞ or x−∞. Note that the branch ofWS(P+) shown inFig. 12(b) coincides with
ES(P+) shown inFig. 12(c).

To visualize theα-limit setsx+∞ andx−∞, we show inFig. 13(a) the behavior of trajectories departing from the
neighborhood ofP0 for backward time integration. In this figure, the dark points in the vicinity ofP0 are the initial
conditions that go tox+∞ aroundES(P+) (points on the top left ofFig. 13(a)), for an arbitrary negative time. Gray
points in the vicinity ofP0 are the initial conditions that go tox−∞ aroundES(P−) (points on the bottom right of
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Fig. 13. (a) Trajectories departing from the neighborhood ofP0 for backward integration. The dark points in the vicinity ofP0 go tox > 0
(points on the top left) for a negative time. Gray points in the vicinity ofP0 go tox < 0 (points on the bottom right), for this same negative time
interval. (b) Magnification of (a) for points for whichWS(P0) ∩ ES(P0) �= ∅.

Fig. 13(a)), for this same negative time. InFig. 13(b), we show a magnification ofFig. 13(a) for points for which
WS(P0) ∩ ES(P0) �= ∅. Note that the branch ofES(P+) shown inFig. 13(a) coincides with a branch ofWS(P+)
shown inFig. 12(b). The same happens forP−.

This manifold property can be explored to understand its geometry in the vicinity of the homoclinic point. The
points inWS(P0) ∩ ES(P0) form the basin of attraction of theα-limit setsx±∞. In the basin shown inFig. 13(b),
there are two boundaries where the black color meets the gray color. These boundaries do not belong to the basin
of either of theα-limit setsx+∞ andx−∞. Therefore, theα-limit set of these boundaries should be a bounded set.

In Fig. 13(b), we indicate the pointsQ± that lie in the vicinity of a homoclinic orbit, if one exists (see alsoFig. 2).
Although the pointsQ± seem to be close to the basin boundaries ofx±∞, they are not part of the boundaries. These
points belong toEU(P+) and do not belong toWU(P+). A trajectory leavingQ±, for backward integration, does
not go to the pointP+ and does not belong to a homoclinic orbit.

5.4. Homoclinic orbits, the double-scroll attractor, and the basins of attraction

When the parameters inEq. (1)are such that the double-scroll attractor exists, the basin boundary of the sets
x±∞ becomes more complex than in the case of the Rössler attractors. Four more boundaries appear. Again, these
boundaries belong to trajectories that should asymptotically go to bounded sets for backward time integration. In
Fig. 14(a), we show the basin of the limit setsx±∞ and a homoclinic orbit. A magnification of this figure in the
region of the pointQ+ is shown inFig. 14(b). We see a homoclinic orbit passing along a new basin boundary
created by the presence of the double-scroll attractor. This new basin boundary, a gray strip in this figure, can be
better visualized inFig. 14(c), where we have omitted the homoclinic orbit.

This new gray strip appears due to the existence of the double-scroll attractor, and it is a consequence of the fact
that the manifoldsWS(P0) andWU(P0) are becoming tangent. The approach of these two manifolds is responsible
for two new bounded trajectories departing fromP0 in backward time. In addition, a special case of a bounded
trajectory is about to be created: a trajectory that leavesP0, and fort → −∞ returns toP0, i.e., the homoclinic orbit.
The existence of a homoclinic orbit (Fig. 14(a)) to the pointP0 means that two trajectories, departing fromP0 for
backward integration, leaveES(P0) and do not go any longer to the limit setsx±∞. Instead, they bounce back and
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Fig. 14. (a) The basin of theα-limit setsx±∞ and a homoclinic orbit for the parametersα3−H = 11.174540527682883 andβ = 19.0. (b)
Magnification of (a) in the region of the pointQ+. A homoclinic orbit passes along the basin boundary of the setsx±∞. This basin boundary, a
gray strip in this figure, can be better visualized in (c), where we do not show the homoclinic orbit.

return toP0 along its one-dimensional unstable subspace,EU(P0). In fact, we believe that these new boundaries
(onES(P0)) belong to the homoclinic orbit. So a trajectory leaving the pointP0 alongEU(P0) entersES(P0) along
the boundaries of the limit setsx±∞.

We believe the other four non-trivial trajectories, which belong to the boundaries of the±∞ attractor, go to an
unstable chaotic set within the domainD0 in backward time.

6. Conclusions

We propose a series of conditions to demonstrate the existence of homoclinic and heteroclinic orbits in piecewise-
linear systems. Satisfying these conditions implies the existence of a parameter within a specified range for which
those special orbits must exist. We apply these conditions to obtain homo- and heteroclinic orbits for the three fixed
points of the double-scroll system. We show examples of homoclinic orbits to the fixed pointP0 in the central
domain and of a heteroclinic orbit connectingP+ andP−, the other fixed points in the external domains. Once the
proposed conditions are constructed based on properties of the system for a finite range of parameter values, they can
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instruct an experimentalist who seeks the existence of homo- (hetero-)clinic orbits in piecewise-linear laboratory
systems whose parameters cannot be maintained with infinite precision.

We also give a full geometrical picture of the stable manifolds of the pointP0. We describe a basin of attraction, lo-
cated on the subspaceES(P0), of two importantα-limit sets, one calledx+∞, located at(x, y, z) = (+∞,−∞,−∞)

and another calledx−∞, located at(x, y, z) = (−∞,+∞,+∞). To understand the geometry of the stable manifold
WS(P0), we must understand the geometry of this basin of attraction. This basin, formed by two subsets, represents
points that go either tox+∞ or to x−∞. The boundary between these two subsets belongs to trajectories that, for
backward integration, do not go to eitherα-limit set. Therefore, trajectories departing from this boundary should
evolve to a different, boundedα-limit set.

Changes in the manifolds, which indicate that a homoclinic orbit exists, can be observed by looking at the changes
in this basin. For parameters within the range for which the double-scroll attractor exists, the basin of the limit sets
x±∞ has six continuous boundaries, four more boundaries than when a Rössler-type attractor exists. These extra
boundaries are a consequence of the complexity of basin of attraction and result from the imminent tangency between
the stable and unstable manifolds ofP0. At the tangency, one special bounded orbit is created that connectsP0 to
itself, which is the homoclinic orbit. Therefore, the creation of the double-scroll attractor enables the existence of
the homoclinic orbit. We believe this new boundary belongs to the homoclinic orbit.

As a way to understand the relation between the invariant manifolds and the attracting set, we show that the
attractors areω-limit sets of initial conditions on the manifoldsWU, when no homo- (hetero-)clinic orbits are
present. Otherwise, when there are homo- (hetero-)clinic orbits, there are twoω-limit sets of initial conditions on
WU: one is the attractor, and the other is a fixed point.
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