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ABSTRACT

The routes to chaos play an important role in predictions about the transitions from regular to irregular behavior in nonlinear dynamical
systems, such as electrical oscillators, chemical reactions, biomedical rhythms, and nonlinear wave coupling. Of special interest are dissipative
systems obtained by adding a dissipation term in a given Hamiltonian system. If the latter satisfies the so-called twist property, the corre-
sponding dissipative version can be called a “dissipative twist system.” Transitions to chaos in these systems are well established; for instance,
the Curry–Yorke route describes the transition from a quasiperiodic attractor on torus to chaos passing by a chaotic banded attractor. In
this paper, we study the transitions from an attractor on torus to chaotic motion in dissipative nontwist systems. We choose the dissipative
standard nontwist map, which is a non-conservative version of the standard nontwist map. In our simulations, we observe the same transition
to chaos that happens in twist systems, known as a soft one, where the quasiperiodic attractor becomes wrinkled and then chaotic through
the Curry–Yorke route. By the Lyapunov exponent, we study the nature of the orbits for a different set of parameters, and we observe that
quasiperiodic motion and periodic and chaotic behavior are possible in the system. We observe that they can coexist in the phase space,
implying in multistability. The different coexistence scenarios were studied by the basin entropy and by the boundary basin entropy.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0035303

Conservative systems belong to a class of dynamical systems that
have been studied in classical mechanics and electrodynamics.
One simple and general example of conservative system is the
nontwist map. It does not satisfy the twist condition and has been
used to describe various physical phenomena related to parti-
cle accelerators and plasma devices. The nontwist map exhibits
meandering invariant tori, separatrix reconnection, and shearless
tori. It was reported that dissipation in the nontwist map turns
the shearless curve into a robust attractor, called as a shearless
attractor. Given the ubiquitous nature of dissipation, however,
it is of interest in the study of conservative systems in which a
small dissipative term has been added. In this case, we can call
the resulting system as a “dissipative nontwist” one. Here, we

study the dynamical behavior of the dissipative standard non-
twist map. We find the Curry–Yorke route to shearless attractors,
which occurs due to the destabilization of a two-dimensional
torus. This route was observed in laser with delayed feedback and
a driven double scroll circuit. Through the Lyapunov exponent,
we identify the coexistence of attractor basins and their different
interaction scenarios using the basin entropy.

I. INTRODUCTION

Conservative dynamical systems belong to a wide class of
systems that describe physical phenomena in which the dissipation
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can be neglected. Inside this class, the Hamiltonian description is
a valuable tool to study the solutions and the time evolution of the
system. The behavior of fields and particles and classical and quan-
tum objects can be analyzed and studied by integrable Hamiltonian
systems.1 However, when a perturbation breaks the Hamiltonian
integrability, the chaotic motion becomes a possible solution for
the system, along with the periodic and quasiperiodic solutions.
The perturbed conservative systems require a more sophisticated
mathematics to study the evolution of the regular orbits. The begin-
ning of this new mathematical development started with Poincaré
with his work on the existence of invariant surfaces, the tori, and
their destruction as a consequence of perturbation.2–4 The work
started by Poincaré was concluded by Birkhoff4 in the famous
Poincaré–Birkhoff theorem, which was established in the first half
of the 20th century.

Following the second half of the last century, Kolmogorov,
Arnold, and Moser achieved one of the most celebrated progress
in classical mechanics, the KAM theorem.2–4 The KAM theorem
provides a solid foundation to the study of regular motion in Hamil-
tonian systems5 and also gives meaning to perturbation theory and
the notion of chaos.4 Along with the Poincaré–Birkhoff theorem,
these theorems describe the dynamics of quasiperiodic and periodic
solutions under the action of external perturbations. Both theorems
are general and valid for many dynamical systems but not for all of
them. One of the necessary and essential conditions for the KAM
and Poincaré–Birkhoff theorems to be valid is the twist condition,
which needs to be globally satisfied. The twist condition is applied in
Hamiltonian dynamics described by map and differential equation
models.4 Considering the latter, the Hamiltonian of a perturbed
Hamiltonian system with one and a half degrees of freedom can be
written as

H = H0(J) + εH1(θ , J, t), (1)

where (J, θ) are the action-angle variables and ε ≪ 1.4 Once the
frequency can be defined as ω(J) = ∂H0/∂J, the twist condition is
stated as

∣

∣

∣

∣

∂ω(J)

∂J

∣

∣

∣

∣

> 0, (2)

ensuring that the frequency has a monotonic behavior. For a dis-
crete description of the Hamiltonian system, the twist condition can
be defined as |∂yn+1/∂xn| > 0, where x and y are the canonically
conjugate coordinates of the map.

If at one point in the phase space the twist condition (2) is
violated, i.e., it is equal to zero, the frequency ω(J) is no longer
monotonic. It exhibits an extreme value and the system is denom-
inated nontwist.4 Nontwist systems are useful to describe several
physical phenomena, such as magnetic field lines in toroidal plasma
devices, atmospheric zonal flows, and others.4,6 The violation of the
twist condition occurs over a specific curve in the phase space, the
shearless curve, and it leads to the existence of a new and rich
behavior in the space, as the presence of twin island chains (the
down and up periodic orbits), the separatrix and stochasticity layer
reconnection, and the collision of periodic orbits.6,7

The universal features of the nontwist systems can be repre-
sented by the characteristics of the standard nontwist map (SNM),
which was proposed by Castillo-Negrete and Morrison in their study

published in 1993.7 The SNM is a two-dimensional conservative
perturbed system that violates the twist condition and exhibits a
two-parameter dependence. The properties of the SNM were widely
studied in the last few decades, such as the reconnection and the
bifurcation phenomena of meanders,6 the symmetry properties, the
collision of periodic orbits and the transition to chaos,8 the transport
properties and the transport mechanism,9–12 and also expansions
and modifications in the SNM.13–17

The dissipation in nontwist Hamiltonian systems is of practi-
cal interest once real experiments often present a small amount of
dissipation.18 The introduction of dissipation in nontwist systems
was considered by Van der Weele and Valkering in a work published
in 1990.18 The authors studied the influence of the dissipation in
the birth of periodic orbits and in the reconnection process in non-
twist maps. The dissipation was also included by Carvalho and Abud
in the labyrinthic standard nontwist map (LSNM),14 first described
without dissipation in Refs. 13 and 19, with the purpose of under-
standing the dynamics of the shearless curve in a non-conservative
scenario. As stated in Refs. 14 and 15, the shearless curve becomes
a shearless attractor on a torus and can show a chaotic behavior for
some set of parameters.

For twist systems, the transition from a quasiperiodic to chaotic
attractor on a torus is well established. In general, this transition
occurs when the torus breaks up and it can happen in many different
ways. Letellier et al. analyzed the transition to chaos on a periodically
driven van der Pol oscillator that can be interpreted, in a simplified
way, by the Curry–Yorke map.20 In this study, they established two
routes from quasiperiodic motion to a chaotic behavior on a torus.
The first route is the “hard” transition to chaos, which involves the
wrinkling of the torus and then its replacement by a chaotic attrac-
tor. The second route is the “soft” one, where after the wrinkling,
a banded chaotic attractor structure is settled and then the chaotic
attractor emerges.20,21 We will use this designation of “soft” and
“hard” transitions defined by Letellier in Ref. 20 in our study. The
soft transition is also nominated as the “Curry–Yorke route,” first
discussed by Curry and Yorke in 1978.22 The route was also investi-
gated in a global bifurcation scenario23,24 and applied in examples as
van der Pol oscillators20 and the driver double scroll circuit.21

In this survey, we choose the dissipative standard nontwist
system, namely, the SNM with a controllable dissipation, to study
the evolution of attractors when parameters of the system are
changed. We find the Curry–Yorke route to chaos, in which the
attractor is wrinkled, as a parameter is varied, and the chaotic
behavior of the attractor on the torus appears. We also show the
coexistence of attractors in the phase space, and we analyze the
coexistence scenario by the basin entropy and the boundary basin
entropy.

The paper is organized as follows. In Sec. II, we describe our
chosen system and analyze the diagram bifurcation in such a way
that it is possible to find a hard transition to chaos. The Curry–Yorke
route is explained in Sec. III, and we show this scenario through the
dissipative standard nontwist map. Section IV is dedicated to the
study of the nature of the attractors in the phase space by the analysis
of the Lyapunov exponent and the period counting. We also study
the possibility of multiple attractors and their basins of attraction.
The results of multistability are shown in Sec. V. Our conclusions
are left to Sec. VI.
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II. DISSIPATIVE STANDARD NONTWIST MAP

The labyrinthic standard nontwist map (LSNM) was
proposed13,19 as a novel discrete area-preserving map that can be
used to study the features of nontwist systems. The map was studied
first in Refs. 13 and 19. It was considered in a dissipative scenario
by Carvalho and Abud14 and was revisited in Ref. 15. The LSNM,
presented in Refs. 14 and 15, is defined by the equations

yn+1 = (1 − γ )yn − b[sin(2πxn) + sin(2ηπxn)],

xn+1 = xn − a(yn+1 − r1)(yn+1 − r2).
(3)

In Eq. (3), the parameters γ , a, and b are responsible for the dis-
sipation, for the influence control of the nontwist term, and for the
amplitude control of the non-linearity, respectively.15 The parame-
ters a and b affect the amplitude of the islands and the size of the
chaotic sea.14 The parameters r1 and r2 indicate the location where
the resonances will appear in the phase space.15 Finally, η is responsi-
ble for the bifurcations inside the resonance islands.15 The variable x
has a period equal to 1, x ∈ [0, 1), and the twist condition is violated

when ∂xn+1
∂yn

̸= 0 is satisfied.

According to Martins et al.,13 the LSNM exhibits all properties
of the usual nontwist maps and the possibility of several regions with
meanders. Meanders correspond to the invariant curves that are no
longer graphs in the phase space once they exhibit two values of y
for one value of x.19 For the conservative LSNM, the Hamiltonian
function is given by13

H(x, y, t) =

[

a

(

y −
y3

3

)]

+
b

2π
cos(2πx)

∞
∑

n=−∞

δ(t − n)

+
b

η2π
cos(2ηπx)

∞
∑

n=−∞

δ(t − n). (4)

The function in (4) is constituted by the Hamiltonian of the stan-
dard nontwist map (SNM) with the addition of a perturbation (last
term)7. The amplitude control of the non-linearity is described by a
rotor kicked periodically by a Dirac delta function, where the dis-
crete iterative map in Eq. (3) is obtained from these successive peri-
odic kicks. The SNM is the simplest nontwist map that exhibits the
main nontwist characteristics and is considered an approximation
for more complex nontwist systems.25

As concluded by Martins et al., the perturbation introduced as
the last term in (4) interacts with the first perturbation represented
by the second term. Due to this fact, new topological effects emerge;
i.e., plenty meanders regions coexist, where each region presents its
own shearless torus.13

Once our goal is to understand the effects of the presence of the
dissipation and the route to chaos in nontwist systems, we simplify
the LSNM in (3) by setting η = 0, r1 = 1, and r2 = −1. In this way,
we obtain

yn+1 = (1 − γ )yn − b sin(2πxn),

xn+1 = xn + a(1 − y2
n+1) mod 1.

(5)

For γ = 0, we recover the nontwist standard map (SNM). In this
way, for γ ̸= 0, we have dissipation in the SNM and, consequently,

the dissipative standard nontwist map (DSNM). As the SNM is con-
sidered the simplest conservative nontwist system and an approxi-
mation to more complex models, we can say that the DSNM is the
simplest dissipative nontwist map, and the results obtained for it can
be extended to more complex dissipative cases. Therefore, we chose
the DSNM to study the consequences of dissipation in a nontwist
system and the loss of the constant of motion represented by the
Hamiltonian function so that the DSNM is no longer invertible in
time such as autonomous Hamiltonian systems.

As demonstrated by Carvalho and Abud,14 in the perturbed dis-
sipative LSNM, the shearless curve survives a perturbation, as long
as it is not very large, and becomes an attractor in the phase space.
The shearless curve is the representation of the quasiperiodic shear-
less torus in the Poincaré section. Therefore, the shearless attractor
is an attractor on a torus. For different values of the parameters, the
quasiperiodic behavior on a torus can transit to a chaotic behavior,
leading to a chaotic attractor (or a strange attractor).

Another interesting feature in the LSNM presented by Kato
and De Carvalho,15 it is the possibility of multiple shearless attrac-
tors forming, in this way, a region of robust attractors. The shearless
attractors are considered robust due to their origin on shearless torus
and due to the fact that they survive under generic perturbations
and different intensities of the dissipation.14,15 In order to illustrate
the shearless attractor and the consequence of dissipation in the
standard nontwist map, we construct the phase space for the conser-
vative (γ = 0.0) and the dissipative cases (γ = 0.1) with parameters
a = 0.47 and b = 0.6. The two phase spaces are shown in Fig. 1.

In Fig. 1(a), once the Hamiltonian system is perturbed, a coex-
istence of chaotic (black points), quasi-regular (blue and red curves),
and regular (colored islands) solutions is present in the phase space.
The red curve in Fig. 1(a) is the shearless curve: the curve where
the twist condition is violated and is constructed by the indicator
point z = (− 1

4
, − b

2
) as the initial condition.6,26 When the dissipa-

tion is considered, the conservative phase space in Fig. 1(a) becomes
the attractors in Fig. 1(b). Comparing the two figures, we can see that
the upper (lower) periodic solution, indicated by the purple (orange)
islands, becomes fixed point attractors, the purple (orange) point,
while almost all of the quasiperiodic solutions are destroyed and
replaced by only one attractor: the shearless attractor, represented
by the black curve in Fig. 1(b).

The attractors of the dissipative LSNM were reported in the
papers.14,15 In Ref. 14, the authors showed the presence of a shearless
attractor resultant of the dissipation of a shearless curve. However,
another interesting point is the presence of different behaviors in
this attractor on the torus, in which the attractor can change from
quasiperiodic to chaotic.14 In this paper, we develop a similar study
for the DSNM [Eq. (5)]. Once we consider dissipation in the stan-
dard nontwist map, it has attractors in the phase space. We compute
the bifurcation diagram, for a fixed value of b, in order to investi-
gate the shapes and structures of the attractors along the variation
of the parameter a. In the diagram, as shown in Fig. 2, we fix a
set of parameters (a, b) and one initial condition is iterated for a
long time. We plot the values of y for the last iterations and dif-
ferent values of a. The initial condition is chosen according to the
methodology used by Letellier et al.20 For each change in the param-
eter a, the initial condition (x0, y0) for the next parameter value is
the same as the last iteration of the previous one. For the bifurcation
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FIG. 1. Phase spaces for the (a) conser-
vative map and the (b) dissipative system.
The parameters are a = 0.47 and b = 0.6
for both cases, and we considered γ = 0.1
for the dissipative scenario. The coexistence
of chaotic (disperse points), quasiperiodic
(blue and red curves), and periodic (colored
closed curves) solutions in the phase space
is observed for the conservative case. When
the dissipation is present, we observe only
a quasiperiodic attractor and two period-one
fixed points (orange and purple points). The
shearless curve (attractor) is indicated by the
red (black) curve in (a) [(b)].

diagrams, we take as the first initial condition, for the first value of
a, the indicator point of the non-dissipative standard nontwist map
z = (− 1

4
, − b

2
).6,26 As the final iteration, we consider n = 104 and plot

the last 2000 iterations in the diagram.
Along with the bifurcation diagram, we plot the Lyapunov

exponent value for the orbit in the diagram. The Lyapunov exponent
provides us an estimate of the exponential separation between tra-
jectories with close initial conditions.27 For a discrete time dynamical
system, the map is defined by f(x), and the matrix of partial deriva-
tives of the m components of f(x) is denoted by T(x).27 The largest
Lyapunov exponent is determined by the limit

λ1 = lim
n→∞

1

n
log

∥

∥Tn
xu

∥

∥ , (6)

where Tn
x = T(fn−1(x))T(fn−2(x)) · · · T(f(x))T(x) is the product of

the matrix of derivatives for each time step and u is an eigenvector
of Tn

x .9,27 More details of how the calculation is done computa-
tionally can be found in Refs. 27–29. A null Lyapunov exponent
indicates quasiperiodic attractors, while a negative exponent implies
a periodic attractor, and a positive one indicates chaos or a chaotic
attractor. The Lyapunov exponent is computed simultaneously with
the bifurcation diagram. The Lyapunov exponents are calculated
according to the method proposed by Eckmann and Ruelle,27 dis-
regarding the first 5000 iterations until the final time n = 104. The
results of the bifurcation diagram and the Lyapunov exponent are
shown in Fig. 2 for b = 0.58 and a ∈ [0.7, 0.715].

The bifurcation diagram in Fig. 2 exhibits a set of different
behaviors. Close to a = 0.7, we observe attractors that occupy and
fill a range in the y domain until the point indicated by the red
dashed line (a). After this point, we see distinguishable points, and
then the attractor is only in some points in y. These two structures
alternate along the entire diagram. For the first structure, it can rep-
resent two possible situations: a shearless attractor14 or a chaotic
behavior (a chaotic attractor or a chaotic solution with y restricted).
Differently from the last case, the second structure indicates peri-
odic attractors in the phase space, namely, distinct points where the
solution is attracted and then jumps to one and then to another
point repeatedly until completes its period. Analyzing the Lyapunov
exponent, for the periodic attractors, their values are always nega-
tive. The null Lyapunov exponent happens when the attractors fill a
y-range, suggesting a quasiperiodic orbit, or a bifurcation happens.
The regions of a positive Lyapunov exponent often occur on the
right side of the graph, indicating some kind of chaotic behavior.
To identify and discern these behaviors, especially in the first case
when the Lyapunov exponent is equal to zero, we check carefully the
solutions in the phase space. To illustrate the different scenarios, we
choose three parameter values in the bifurcation diagram, which are
indicated by the red dashed lines (a)–(c), and we construct the phase
spaces. The three phase spaces are shown in Fig. 3.

The phase spaces in Fig. 3 follow one of the routes cited by
Letellier et al.,20 the route with a hard transition to chaos. In Fig. 3(a),
the attractor is a curve, namely, a meander in the phase space,
and, as Carvalho and Abud named,14 it is the shearless attractor

FIG. 2. Bifurcation diagram for
b = 0.58 and γ = 0.1, where the black
points indicate the last 2000 iterations of
the orbit. The pink curve represents the
Lyapunov exponent computed simultane-
ously for the orbit plotted in the diagram.
The axis for the diagram (Lyapunov
exponent) is in the left (right). The red
vertical dashed lines correspond to the
values of parameters: (a) a = 0.7023, (b)
a = 0.7060, and (c) a = 0.7076.
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FIG. 3. Attractors and ghosts for the cases marked in Fig. 2. The cases are
(a) a = 0.7023 (ghost a = 0.7030), (b) a = 0.7060 (ghost a = 0.7050), and (c)
a = 0.7076. For all cases, the attractor on the torus is represented by the black
curves and the ghost attractors are pictured by the red points, and we consider
b = 0.58 and γ = 0.1.

once its shape is similar to the shearless curve in the conservative
case. Therefore, when the attractor fills a y-range and the respec-
tive Lyapunov exponent is null, we have the shearless attractor. The
red points are denominated “ghosts” and represent stable orbits for
nearby parameter values.20 These ghosts are fixed points responsi-
ble for a large invariant density on the attractor, which is significant
for the dynamics in the phase space.20 In Fig. 3(a), there are peri-
odic attractors for a posterior value of the parameter a for which
the shearless attractor no longer exists. For the second phase space,
in Fig. 3(b), we verify that the shearless attractor is wrinkled, and,
if we analyze the magnification (the box in the upper right cor-
ner), the wrinkles are close to the ghost periodic points. In this case
[Fig. 3(b)], the ghost points are periodic points for a previous param-
eter a. For both cases, the ghost points are one chain of fixed points
with period 20. In the last phase space, Fig. 3(c), the attractor shows
a shape similar to the attractor in Fig. 3(a). However, if we check the
value of the Lyapunov exponent in Fig. 2 for the (c) red dashed line,
we see that the value is small but is greater than zero. In this way,
the attractor is chaotic in (c). If we pay attention to the Lyapunov
exponent for the other two points, the exponents are null, and this is
correct once there is a shearless attractor in (a) and (b). Summariz-
ing, as the parameter value a increases, the attractor that was smooth
becomes wrinkled and then chaotic. Observing the phase space in (a)
and (b), we can see that the presence of the ghost points affects the
shape of the attractor, as also verified by Letellier et al.20

III. CURRY–YORKE ROUTE

In the study developed by Letellier et al.,20 a “hard” route to the
chaos and a “soft” route were identified in which the chaotic behav-
ior on the torus emerges after the wrinkling. In Sec. II, we found
the hard transition to chaos. Now, we search for the presence of the
other route. The second route, also called the Curry–Yorke route, is
a transition from quasiperiodic behavior to chaotic motion by the
breakup of the torus, leading to a banded chaotic attractor and then
to the chaotic attractor on a torus.20 In order to look for the soft tran-
sition, we slightly modify the value of b to b = 0.6. Following the
same steps, we build the bifurcation diagram and superimpose the
Lyapunov exponent on it. We follow the same methodology used in
Fig. 2, as shown in Fig. 4 for b = 0.6.

The bifurcation diagram in Fig. 4 also shows a set of differ-
ent behaviors. Similarly to Fig. 2, we see the two structures already
seen. The attractors occupy and fill the y-range and the periodic
attractors, which are represented by distinguishable points, alternate
along the diagram, as the value of a increases. However, for the last
values of a in the diagram, we observe a slightly different behav-
ior, namely, dispersed points in the y direction. Equally to Fig. 2,
for small values of a, the attractors that fill the y-direction have
a null Lyapunov exponent, indicating the quasiperiodic shearless
attractors. The distinguishable points are periodic attractors with a
negative Lyapunov exponent, and for greater values of a, we ver-
ify the existence of attractors and chaotic windows (a > 0.713) with
a positive Lyapunov exponent. In order to investigate the shape of
those attractors, we choose three points (a, b = 0.6), which are indi-
cated by the three red dashed lines, and construct the phase spaces
for each case, as shown in Fig. 5.
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FIG. 4. Bifurcation diagram and the Lyapunov exponent vs the parameter a for b = 0.6 and γ = 0.1. The quasiperiodic and periodic attractor alternates between each other
until a chaotic behavior appears in the right side of the diagram. As in Fig. 2, the black and pink points indicate the diagram and the Lyapunov exponent. The red vertical
dashed lines correspond to the values of parameters: (a) a = 0.7052, (b) a = 0.7118, and (c) a = 0.7124.

Analyzing the structures in each phase space in Fig. 5, we see
in (a) an attractor in a meander, which is a smooth quasiperiodic
shearless attractor surrounded by ghost fixed points. Again, these
ghosts are periodic attractors of a posterior parameter, in this case
a = 0.7063. These ghost points are the red and blue points, and
both have period 37. In this case, we have two chains of fixed points
(the red and the blue one), which is a dissipative correspondent for
the twin island chains of the conservative map. Slightly increasing
the value of a and comparing with the result in Fig. 3(b), we observe
a different scenario. In Fig. 5(b), we verify many separated structures
in the phase space closed to the ghost periodic attractors of a previ-
ous parameter. Here, the period of the ghost points is 40, and, as we
can verify in the magnification in Fig. 5(b), it seems that they suffer
a double-period bifurcation once there are two fixed points really
closed. It is important to emphasize that a single orbit visits all the
black separated structures, called bands, leading to a phase-locking
scenario. Going back to the Lyapunov exponent for the case (b) in
Fig. 4, we see that its value is positive for the banded chaotic attrac-
tor. In the last phase space, Fig. 5(c), we observe an attractor with a
more complex shape and, by the Lyapunov exponent in Fig. 4, the
attractor is chaotic. In this sequence of the phase space, we see the
Curry–Yorke route23 or the “soft” transition to chaos20 in which the
attractor on a “torus” is destabilized and followed by a sequence of
phase-locking (banded attractor) and then chaos emerges.23

The existence of the same transition to chaos in both twist and
nontwist systems is an interesting result. The quasiperiodic attractor
acts similarly to the shearless curve, while the periodic ghost attrac-
tors can be divided into two twin chains of periodic points, which is
an inherent feature of nontwist systems.30 The main point of the two
last section is that the “hard” transition to chaos, smooth attractor
→ wrinkled attractor → chaotic attractor, and the “soft” transition
(or Curry–Yorke route), smooth attractor → chaotic banded attrac-
tor, → chaotic attractor, are both possible to be found in systems
that violate the twist condition.

IV. ORBIT ANALYSIS AND THE PARAMETER SPACE

The analysis of the phase space performed in the last section,
by means of the Lyapunov exponent and the bifurcation diagram
perspective, was restricted to a fixed value for b and a short range of
a. Fixing γ = 0.1 in our simulations, the DSNM depends on a and

b. The study of bifurcation routes in the systems depending on two
parameters can reveal nontrivial paths in the parameter space.20 Our
purpose in this section is to study the nature of the solutions in the
phase space for each parameter pair (a, b).

Bifurcation diagrams are commonly used to study the bifur-
cation route when only one parameter varies. The study of these
diagrams when two parameters are varied is possible; however, it
is not simple or easy to visualize and analyze. For this reason, we
choose to study only the Lyapunov exponent. Thus, we calculate the
Lyapunov exponent for each pair (a, b) with a ∈ [0, 1] and b ∈ [0, 1],
and its value is marked through a color scale in the parameter space
a × b.

To construct the parameter space, first, we fix a value for the
parameter a and then we choose the indicator point of the conser-
vative standard nontwist map z = (− 1

4
, − b

2
), as an initial guess, for

the first value of b. We iterate this condition until the final iteration
n = 104, neglecting the first 5000 iterations, and calculate the Lya-
punov exponent λ by the Eckmann and Ruelle method27 for the last
5000 iterations. The final value of the Lyapunov exponent is plot-
ted in the parameter space according to a color scale. For the next
value of b, the last iteration (x, y) of the previous parameter is used
as an initial condition, and the computation of λ is repeated until
b = 1.0. For the next value of a, we restart the initial condition for
the indicator point z, and all the process is repeated. In the param-
eter spaces shown in Fig. 6, we use a linear grid of 2000 × 2000
points (a, b).

In Fig. 6(a), we see the overview for a, b ∈ [0, 1]. The black dots
represent the solution with a null Lyapunov exponent (quasiperiodic
attractors). In general, the black dotted structure indicates the exis-
tence of a shearless attractor and is really similar to the parameter
space for the existence of the shearless curve for the non-dissipative
standard nontwist map.6 The comparison between the parameter
space for the shearless curve and the shearless attractor fails for small
values of a where, for the conservative case, the shearless curve is
present and for the dissipative case, there is a tendency for the orbits
to be attracted to periodic attractors. We use the word “tendency”
because we still cannot prove rigorously that there exists only one
attractor in the phase space.

For larger values of a in the parameter space, we verify a signif-
icant tendency for a chaotic behavior in the phase space. We choose
red, orange, and purple dots to represent the positive Lyapunov
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FIG. 5. The route to chaos for b = 0.6. For (a) a = 0.7052, the smooth quasiperi-
odic attractor on the torus is represented by the black curve, and there are two
chains of a ghost periodic attractor, indicated by the blue and red points. In (b), we
have a = 0.7118; there are chaotic banded attractors, and the ghost attractors
are two chains of period-40. For (c) a = 0.7124, there is only one chaotic attractor
on the torus. The ghosts in (a) and (b) are shown for a = 0.7063 and a = 0.7112,
respectively.

exponent. The red dots indicate exponent values between 0 < λ
< 0.03, while the orange region represents 0.03 < λ < 0.18, and
the purple region is for λ > 0.18. The banded chaotic attractor
[Fig. 5(b)] solution has a relatively small positive Lyapunov expo-
nent, λ ≈ 0.02. In this way, the red dots indicate possible points for
chaotic band existence.

The magnification in Fig. 6(b) highlights the region of the
bifurcation diagrams in Figs. 2 and 4. The white lines represent the
lines along which those bifurcations diagrams are calculated. We
see in both lines that there is a transition from the quasiperiodic
attractor to a periodic one. After this, it goes back to a quasiperiodic
attractor and then emerges a chaotic behavior with a small Lyapunov
exponent. The sequence corroborates with the Lyapunov exponent
profile in Figs. 2 and 4.

We emphasize that if we consider another initial condition, the
results shown could be different. As we show in Sec. V, this map has
multistability in the phase space, and different initial conditions can
generate solutions that go to different attractors.

Our next step for the analysis of the solution in the phase space
is the period of the periodic attractors, which are represented by the
blue points in Fig. 6 (negative Lyapunov exponent). For this analysis,
we select only the points (a, b) with a negative Lyapunov exponent
and then we calculate the period of the orbit. Next, after we com-
pute λ and verify if it is negative, we take the last point of the orbit as
an initial condition for a time evolution of 2000 iterations in order
to calculate its period. Therefore, we count the iterations that the
orbit takes to return to the first point. To verify the period value,
we calculate it three times and check if the three values are equiva-
lent. If they are all equal, we plot the period value according to the
color for (a, b) in the parameter space. The results for the periods of
the attractors, for the same range of parameters in Fig. 6, are shown
in Fig. 7.

Analyzing Fig. 7(a), we see a gray triangle shape region in the
beginning of the parameter space, and this observation states that
periodic attractors with period equal to 1 are more likely to exist
for smaller values of a. For another small periods, such as period
2 and 3 represented by the navy blue and red points, respectively,
we observe an interesting structure that appears to be periodic, and
there is alternation between the red and navy blue region. In fact,
this structure is similar to the Arnold tongues.2,31

In the magnification in Fig. 7(b), we see that the two lines in
black, corresponding to the bifurcation diagrams in Figs. 2 and 4,
intersect the period 20 (green region), and the line b = 0.6 also inter-
sects the period 40 (yellow region). If we go back to Fig. 3(b), we
count a period 20 for the ghost attractor that is indicated by the
red points. In Fig. 5(b), the ghost fixed points close to the chaotic
band have a period equal to 40, corroborating with the result that
is shown in Fig. 7(b). If we follow the line b = 0.6 for values after
a = 0.71, we observe the period 20, in green, followed by the period
40, in yellow, and then there is a small region of period 80 (pink
region). In this way, we verify a bifurcation route of period doubling
for these periodic attractors. These routes are interesting because, as
is well known, the period-doubling bifurcations can also lead to a
chaotic behavior in the system. In previous studies, it was stated that
chaotic behavior can emerge from a period-doubling scenario in the
Curry–Yorke route.21,32
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FIG. 6. (a) Parameter space for the Lya-
punov exponent and (b) the magnifica-
tion region for the bifurcation parameters
shown in Figs. 2 and 4. The majority of the
parameter space shows a periodic (blue
points) or a quasiperiodic (black points)
attractor. For high values of a and b, a
chaotic behavior is possible for the sys-
tem.

As we mentioned, the selection of different conditions to per-
form the computation of Figs. 6 and 7 can lead to a different result
if we have more than one attractor in the phase space. The existence
of multiple attractors is analyzed in Sec. V.

V. MULTISTABILITY AND BASIN ENTROPY

The multistability can be defined as the coexistence of differ-
ent attractors in the phase space for one set of control parameters.33

This scenario of multiattractors can be observed, for example, in
situations where a weak dissipation is considered in Hamiltonian
systems.34 As stated in Refs. 35 and 36, the stable fixed points, in
a conservative twist scenario, become periodic attractors, while the
KAM curves are destroyed and the chaotic solutions are turned into
transient chaos.

In order to investigate the possibility of the existence of mul-
tiple attractors in the DSNM, we study the multistability by the
hysteresis of the bifurcation diagram. We fix b = 0.6 and compare
the two bifurcation diagrams that are obtained by increasing and

decreasing a. The diagram calculation follows the methodology used
for Figs. 2 and 4. In Fig. 8(a), we plot the case where a varies from
a = 0.0 to a = 1.0 and in Fig. 8(b), the case in which the value of a
is decreased from a = 1.0 to a = 0.0.

In Fig. 8, the diagram in red is significantly different when com-
pared to the diagram in black. Up to a ≈ 0.5, the diagram in red
exhibits only a periodic attractor in y = 1.0, while the diagram in
black shows a periodic attractor in y = −1.0, up to a ≈ 0.2, and an
quasiperiodic attractor up to a = 0.5. After a = 0.5, we see that peri-
odic and quasiperiodic attractors alternate in the diagrams up to
a ≈ 0.7 when a chaotic behavior emerges. After this point, chaotic
windows alternate with quasiperiodic and periodic attractors in both
diagrams. There is a window where the periodic attractors of both
diagrams are symmetric in y, just before a = 0.75. For a > 0.75, the
two diagrams are equivalent.

This difference between the two diagrams represents the coex-
istence of different attractors in the phase space. In order to illustrate
this coexistence, we consider different values of a in the diagram
and calculate the basins of attraction. The six chosen values for a are

FIG. 7. Orbit period for the solution with a negative Lyapunov exponent (λ < 0). In (a) and (b), we compute the period of the orbits for each point (a, b) with λ < 0 in the
parameter space region that are represented in Figs. 6(a) and 6(b).
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FIG. 8. Bifurcation diagram vs the parameter a for the DSNM with b = 0.6 and γ = 0.1. For the black diagram, we increase the value of a, and for the red one, we start
with a = 1.0 and then we decrease it. We see a hysteresis between the attractors for the system. The values of a indicated by the purple dashed lines are (a) a = 0.380,
(b) a = 0.510, (c) a = 0.607, (d) a = 0.660, (e) a = 0.730, and (f) a = 0.816.

FIG. 9. Basins of attraction for the values of a indicated by the purple lines in Fig. 8, where each color indicates a different basin. We consider b = 0.6, γ = 0.1: (a)
a = 0.380, (b) a = 0.510, (c) a = 0.607, (d) a = 0.660, (e) a = 0.730, and (f) a = 0.816. The periodic attractor is indicated by geometrical symbols, while the shearless
(chaotic banded) attractor is presented by a white curve (line segments).
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indicated by the violet lines in the diagrams in Fig. 8. To calculate
the basin, first, we find the attractors in the phase space. After this,
we construct a grid of 3 · 103 × 6 · 103 initial conditions, linearly dis-
tributed in the phase space. Then, we iterate all the initial conditions
until n = 104 iterations and observe which attractor each orbit con-
verges to. Each basin of attraction is assigned by a different color.
The basins for the six values of a are shown in Fig. 9.

In all cases shown in Fig. 9, we see the coexistence of different
attractors in the phase space. For a = 0.38, a = 0.607, and a = 0.66,
the black points represent the basin of attraction for the shearless
attractor, which is indicated by the white curve in the center. The
periodic attractors, in these three cases, are denoted by the geometri-
cal symbols, and the respective basins of attractions are represented
by the colored points: triangle (orange basin), square (purple basin),
circle (cyan basin), and diamond (yellow basin). For a = 0.51 and
a = 0.73, there are only periodic attractors in the phase space. For
a = 0.51, we see four different attractors: the period-one attractors
that are indicated by the triangle and square with orange and pur-
ple basins, respectively, and the period-two attractors around the
center that are indicated by the circle and diamond symbols with
the maroon and cyan basins. For a = 0.73, there are two chains of
period-three attractors, in which the triangle (square) is the attrac-
tor related to the orange (purple) basin. For a = 0.816, the result is
similar to the ones presented in Figs. 9(a), 9(c), and 9(d). The black
points are not related to the basin for a shearless attractor; in fact,
they compose the basin of attraction for the chaotic band attractor,
which is indicated by the white segments in the central region.

In Fig. 9, the basins of attraction are visually different. For
a = 0.38 and a = 0.51, there are regions considerably large where
only one color is exhibited. The two colors are mixed in the “tran-
sition” from one color to the other. For the other cases of a, the
majority of the space is composed of mixing of the basins, especially
for a = 0.73 where the purple and orange basins are well mixed, due
to the fact that there is not a shearless attractor dividing the phase
space. A mixed region represents a certain uncertainty in the final
state of the solution; specifically, close initial conditions can lead to
different attractors.

In order to distinguish the two cases discussed in the previ-
ous paragraph, we employ the basin entropy proposed by Daza et
al. to quantify the uncertainty inherent to the basins.37 We analyze
the entropy in discretization of the phase space for a certain set of
parameter values with NA distinguishable attractors. To discretize
the phase space, a finite number of boxes is placed on it. In our case,
we have a bi-dimensional phase space, in which the result of the dis-
cretization is a bi-dimensional grid with NT non-overlapping boxes.
Inside each box, there is a large number of initial conditions and
each one converges to one of the NA attractors. In this way, after the
construction of the basins of attraction, we have boxes with colored
points inside. For each box i, we can associate an entropy, known as
Gibbs entropy, defined by

Si =

ni
∑

j=1

pi,j log

(

1

pi,j

)

, (7)

where ni is the quantity of different colors inside the box (ni ∈
[1, NA]) and pi,j is the probability of a certain color j to exist in the
box i. This probability is simply computed by the division of the

TABLE I. Basin entropy (Sb), boundary basin entropy (Sbb), number of attractors
(NA), and attractor types for each case of a indicated in Fig. 8. The letters P, S, and
CB in the last column mean periodic, shearless, and chaotic banded, respectively.

Sb Sbb NA Types of attractor

a = 0.380 0.2367 0.6106 3 P, S
a = 0.510 0.1532 0.3622 4 P
a = 0.607 0.2742 0.3813 5 P, S
a = 0.660 0.2783 0.3700 3 P, S
a = 0.730 0.5993 0.6601 2 P
a = 0.816 0.5519 0.6601 3 P, CB

number of points with color j by the total number of the initial con-
ditions in the box. In this work, we consider a box with 25 initial
conditions.37 A non-zero value of Si is obtained only if there is more
than one color in the box.

After calculating the entropy (7) to all the NT boxes, we com-
pute the basin entropy Sb and the boundary basin entropy Sbb.
Theses quantities are defined as37

Sb =
S

NT

=
1

NT

NT
∑

i=1

Si (8)

for the basin entropy and

Sbb =
S

NB

=
1

NB

NT
∑

i=1

Si (9)

for the boundary basin entropy, where NB is the number of boxes
in the boundary between the basins, i.e., boxes with more than one
color. The basin entropy can describe the structures in the phase
space38 and is associated with the uncertainty of the basin, and its
limit values are Sb = 0 for a unique attractor and Sb = log NA for
a completely randomized basin.37 The boundary basin entropy is
related to the uncertainty of the boundaries.39

For each case in Figs. 8 and 9, we calculate Sb and Sbb from a
grid of 2000 × 4000 boxes. We iterate the 25 initial conditions in
each box until 104 iterations to identify the final state (the attractor).
In Table I, we show the values of Sb and Sbb.

From the results shown in Table I, all the basins present a cer-
tain degree of uncertainty once Sb > 0 for all cases. The two last
cases have high values of Sb, and the region of mixed basins is larger.
The lowest value for the basin entropy is in the case for a = 0.510,
where the mixing is low; in fact, there is a mixing only between the
orange and maroon basin and the cyan and purple ones. For the last
three cases, we verify the coexistence of a shearless attractor with
periodic attractors and find 0.2 < Sb < 0.3. The difference between
these three cases is the boundary basin entropy, which is higher for
a = 0.380 and almost the same for a = 0.607 and a = 0.660.

Analyzing the results for the boundary basin entropy, we can
divide the six cases in two situations: Sbb ≈ 0.36 and 0.6 < Sbb < 0.7.
The first situation comprises the basins for a = 0.510, a = 0.607,
and a = 0.660. We see that in the center of the basin, there is a solid
region with one color around y = 0 and a mixing between the basins
appears for higher values of y. In the second situation, we have the
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basins for a = 0.380, a = 0.730, and a = 0.816. We verify a solid
central region for a = 0.380 and a = 0.816, while for a = 0.730, the
solid region is around the periodic attractors. The mixing between
the regions occupies the majority of the phase space for a = 0.730
and a = 0.816, while for a = 0.380, the mixing is restricted to the
surroundings of the fixed point attractors.

The results for the first situation are due to the solid region
around y = 0. This region decreases the final value of S and also is
a consequence of the large mixing region, which increases the num-
ber of NB and decreases the value of Sbb. In the second situation for
a = 0.730 and a = 0.816, the results of Sb and Sbb are similar. This
happens because the majority of the phase space is formed by a mix-
ing region, and then the entropy is larger and the Sbb will be higher,
comparing to the other cases, even if NB is larger too. For a = 0.380,
we see a smaller Sb and a larger Sbb as a consequence of the large solid
central region, which decreases S and Sb, and the relatively small area
of mixing, resulting in a small number NB and a larger value of Sbb.

At last, analyzing the results for a = 0.380, a = 0.660, and
a = 0.816 (all of them exhibit three distinct attractors), we see
that the phase spaces with the same number of distinct attractors
can present different scenarios of interaction between the basins
of attraction. These different interactions are identified by different
values for the basin entropy and the boundary basin entropy.

VI. CONCLUSIONS

By the bifurcation diagrams and the construction of phase
spaces, we observe two transitions in a dissipative nontwist system
that were observed by Letellier et al.20 in van der Pol oscillators. We
observe the hard transition in which a quasiperiodic attractor on a
torus becomes wrinkled and then chaotic, as the parameter value a
varies. Changing the value of b from b = 0.58 to b = 0.6, we verify
the soft transition, known as the Curry–Yorke route, for the same
range of a. In the Curry–Yorke route, the quasiperiodic attractor
on torus breaks up in chaotic bands and then becomes a chaotic
attractor.

Analyzing the parameter spaces for the Lyapunov exponent
of the attractors, we see that the quasiperiodic shearless attractors
show a structure similar to the parameter space for the existence
of the shearless curve in the conservative map. For low values of
a, the orbits exhibit a tendency to go to periodic attractors, and, as
the value of a increases, the possibility of a chaotic behavior increases
as well. We calculate the period of the periodic attractors, and we
observe in the parameter space a structure similar to the Arnold
tongues, in which the periods exhibit a certain order and a certain
hierarchy.

The hysteresis in the bifurcation diagram indicates the possi-
bility of multistability in the system. The construction of the basins
of attraction shows the coexistence of three distinct attractors in
the phase space: the shearless and two twin periodic attractors.
The twin attractors satisfy the symmetry transformation T(x, y)
= (x ± 1/2, −y) well known for the conservative case.

We analyze the basin entropy and the boundary basin entropy
in a discretization of the phase space for a set of parameter val-
ues. By means of the entropy, we find that the basins exhibit a
degree of uncertainty. In our simulations, we observe that the phase

spaces with the same number of distinct attractors can show differ-
ent scenarios of interaction between the basins of attraction. These
different interactions can be identified through the basin entropy
and the boundary basin entropy.

ACKNOWLEDGMENTS

We wish to acknowledge the support from the Araucária
Foundation, National Council for Scientific and Technological
Development (CNPq), Coordination for the Improvement of
Higher Education Personnel (CAPES), and São Paulo Research
Foundation (FAPESP) under Grant Nos. 2018/03211–6 and
2019/07329-4. The authors would like to thank 105 Group Science
(www.105groupscience.com) for the fruitful discussions.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics (Oxford Univer-
sity Press on Demand, 2005).
2A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic Dynamics (Springer,
1992), Vol. 38.
3A. M. O. Almeida, Hamiltonian Systems: Chaos and Quantization (Cambridge
University Press, 1990).
4P. J. Morrison, “Magnetic field lines, Hamiltonian dynamics, and nontwist
systems,” Phys. Plasmas 7, 2279–2289 (2000).
5R. S. MacKay, J. D. Meiss, and I. C. Percival, “Stochasticity and transport in
Hamiltonian systems,” Phys. Rev. Lett. 52, 697 (1984).
6A. Wurm, A. Apte, and P. J. Morrison, “On reconnection phenomena in the
standard nontwist map,” Braz. J. Phys. 34, 1700–1706 (2004).
7D. del Castillo-Negrete and P. J. Morrison, “Chaotic transport by Rossby waves
in shear flow,” Phys. Fluids A: Fluid Dyn. 5, 948–965 (1993).
8D. del Castillo-Negrete, J. M. Greene, and P. J. Morrison, “Area preserving
nontwist maps: Periodic orbits and transition to chaos,” Physica D 91, 1–23
(1996).
9J. D. Szezech, Jr., I. L. Caldas, S. R. Lopes, R. L. Viana, and P. J. Morri-
son, “Transport properties in nontwist area-preserving maps,” Chaos 19, 043108
(2009).
10J. D. Szezech, Jr., I. L. Caldas, S. R. Lopes, P. J. Morrison, and R. L. Viana,
“Effective transport barriers in nontwist systems,” Phys. Rev. E 86, 036206 (2012).
11I. L. Caldas, R. L. Viana, C. V. Abud, J. C. D. Fonseca, Z. D. O. Guimarães Filho,
T. Kroetz, F. A. Marcus, A. B. Schelin, J. D. Szezech, D. L. Toufen et al., Shear-
less transport barriers in magnetically confined plasmas,” Plasma Phys. Control.
Fusion 54, 124035 (2012).
12M. Mugnaine, A. C. Mathias, M. S. Santos, A. M. Batista, J. D. Szezech, and R. L.
Viana, “Dynamical characterization of transport barriers in nontwist Hamiltonian
systems,” Phys. Rev. E 97, 012214 (2018).
13C. G. L. Martins, R. E. de Carvalho, I. L. Caldas, and M. Roberto, “Labyrinthic
standard non-twist map,” J. Phys. A: Math. Theor. 44, 045102 (2010).
14R. E. De Carvalho and C. V. Abud, “Robust attractor of non-twist systems,”
Physica A 440, 42–48 (2015).
15L. K. Kato and R. E. De Carvalho, “Transport barriers with shearless attractors,”
Phys. Rev. E 99, 032218 (2019).
16A. Wurm and K. M. Martini, “Breakup of inverse golden mean shearless tori in
the two-frequency standard nontwist map,” Phys. Lett. A 377, 622–627 (2013).
17M. Mugnaine, A. M. Batista, I. L. Caldas, J. D. Szezech, and R. L. Viana, “Ratchet
current in nontwist Hamiltonian systems,” Chaos 30, 093141 (2020).
18J. P. Van der Weele and T. P. Valkering, “The birth process of periodic orbits in
non-twist maps,” Physica A 169, 42–72 (1990).

Chaos 31, 023125 (2021); doi: 10.1063/5.0035303 31, 023125-11

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha
https://www.105groupscience.com
https://doi.org/10.1063/1.874062
https://doi.org/10.1103/PhysRevLett.52.697
https://doi.org/10.1590/S0103-97332004000800035
https://doi.org/10.1063/1.858639
https://doi.org/10.1016/0167-2789(95)00257-X
https://doi.org/10.1063/1.3247349
https://doi.org/10.1103/PhysRevE.86.036206
https://doi.org/10.1088/0741-3335/54/12/124035
https://doi.org/10.1103/PhysRevE.97.012214
https://doi.org/10.1088/1751-8113/44/4/045102
https://doi.org/10.1016/j.physa.2015.08.008
https://doi.org/10.1103/PhysRevE.99.032218
https://doi.org/10.1016/j.physleta.2013.01.003
https://doi.org/10.1063/5.0022073
https://doi.org/10.1016/0378-4371(90)90216-F


Chaos ARTICLE scitation.org/journal/cha

19C. Simó, “Invariant curves of analytic perturbed nontwist area preserving
maps,” Regul. Chaotic Dyn. 3, 180–195 (1998).
20C. Letellier, V. Messager, and R. Gilmore, “From quasiperiodicity to toroidal
chaos: Analogy between the Curry-Yorke map and the van der Pol system,” Phys.
Rev. E 77, 046203 (2008).
21M. S. Baptista and I. L. Caldas, “Dynamics of the two-frequency torus
breakdown in the driven double scroll circuit,” Phys. Rev. E 58, 4413
(1998).
22J. H. Curry and J. A. Yorke, “A transition from Hopf bifurcation to chaos: Com-
puter experiments with maps on R2,” in The Structure of Attractors in Dynamical
Systems (Springer, 1978), pp. 48–66.
23T. Pereira, M. S. Baptista, M. B. Reyes, I. L. Caldas, J. C. Sartorelli, and J. Kurths,
“A scenario for torus T2 destruction via a global bifurcation,” Chaos Solitons
Fractals 39, 2198–2210 (2009).
24T. Pereira, M. S. Baptista, M. B. Reyes, I. L. Caldas, J. C. Sartorelli, and J.
Kurths, “Global bifurcation destroying the experimental torus T2,” Phys. Rev. E
73, 017201 (2006).
25J. S. E. Portela, I. L. Caldas, and R. L. Viana, “Tokamak magnetic field lines
described by simple maps,” Eur. Phys. J. Spec. Top. 165, 195–210 (2008).
26S. Shinohara and Y. Aizawa, “Indicators of reconnection processes and tran-
sition to global chaos in nontwist maps,” Prog. Theor. Phys. 100, 219–233
(1998).
27J.-P. Eckmann and D. Ruelle, “Ergodic theory of chaos and strange attractors,”
in The Theory of Chaotic Attractors (Springer, 1985), pp. 273–312.
28M. Sandri, “Numerical calculation of Lyapunov exponents,” Math. J. 6, 78–84
(1996).

29K. Geist, U. Parlitz, and W. Lauterborn, “Comparison of different methods for
computing Lyapunov exponents,” Prog. Theor. Phys. 83, 875–893 (1990).
30D. del Castillo-Negrete, J. M. Greene, and P. J. Morrison, “Renormalization and
transition to chaos in area preserving nontwist maps,” Physica D 100, 311–329
(1997).
31V. I. Arnol’d, Geometrical Methods in the Theory of Ordinary Differential
Equations (Springer, 1988).
32R. Van Buskirk and C. Jeffries, “Observation of chaotic dynamics of coupled
nonlinear oscillators,” Phys. Rev. A 31, 3332 (1985).
33A. N. Pisarchik and U. Feudel, “Control of multistability,” Phys. Rep. 540,
167–218 (2014).
34U. Feudel and C. Grebogi, “Multistability and the control of complexity,” Chaos
7, 597–604 (1997).
35M. A. Lieberman and K. Y. Tsang, “Transient chaos in dissipatively perturbed,
near-integrable Hamiltonian systems,” Phys. Rev. Lett. 55, 908 (1985).
36U. Feudel, “Complex dynamics in multistable systems,” Int. J. Bifurcat. Chaos
18, 1607–1626 (2008).
37A. Daza, A. Wagemakers, B. Georgeot, D. Guéry-Odelin, and M. A. Sanjuán,
“Basin entropy: A new tool to analyze uncertainty in dynamical systems,” Sci. Rep.
6, 31416 (2016).
38A. Puy, A. Daza, A. Wagemakers, and M. A. Sanjuán, “A test for fractal bound-
aries based on the basin entropy,” Commun. Nonlinear Sci. Numer. Simul. 95,
105588 (2020).
39A. Daza, B. Georgeot, D. Guéry-Odelin, A. Wagemakers, and M. A. Sanjuán,
“Chaotic dynamics and fractal structures in experiments with cold atoms,” Phys.
Rev. A 95, 013629 (2017).

Chaos 31, 023125 (2021); doi: 10.1063/5.0035303 31, 023125-12

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha
https://doi.org/10.1070/rd1998v003n03ABEH000088
https://doi.org/10.1103/PhysRevE.77.046203
https://doi.org/10.1103/PhysRevE.58.4413
https://doi.org/10.1016/j.chaos.2007.06.115
https://doi.org/10.1103/PhysRevE.73.017201
https://doi.org/10.1140/epjst/e2008-00863-y
https://doi.org/10.1143/PTP.100.219
https://doi.org/10.1143/PTP.83.875
https://doi.org/10.1016/S0167-2789(96)00200-X
https://doi.org/10.1103/PhysRevA.31.3332
https://doi.org/10.1016/j.physrep.2014.02.007
https://doi.org/10.1063/1.166259
https://doi.org/10.1103/PhysRevLett.55.908
https://doi.org/10.1142/S0218127408021233
https://doi.org/10.1038/srep31416
https://doi.org/10.1016/j.cnsns.2020.105588
https://doi.org/10.1103/PhysRevA.95.013629

